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A Santalo’s formula in L-P

Graciela Silvia BIRMAN
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Abstract It is show that a formula by Santal\’o on hyperbolic space of
curvature -1 holds for Lorentz-Poincar\^e upper half space with curvature 1.

Introduction We call L-P plane, or simply L-P, relating to Lorentz-
Poincare, to the upper half space with the metric ds^{2}= \frac{dx^{2}-dyz}{y^{2}} . The

curvature of the L-P plane is 1.
If z is a complex variable, the group SL(2) acts on the upper half plane

{\rm Im}(z)>0 as the transformation group.

z’= \frac{az+b}{pz+q} aq-bp=1

Where a , b , p, q are real numbers. This is the classical Poincar\^e model
for non-euclidean hyperbolic geometry. In the first section we introduce the
double numbers, see [1], [7] and [8]. The referee observed that the refer-
ence [6], pag . 166, is appropiate. We show that substitution in the above
transformation of the complex variable by a double number variable we
obtain the Lorentz-Poincar\’e geometry. We also find relationship between
double numbers, curvature and geodesies. Our main results is the integral
formula in the third section.

Along the second section we obtain different expressions for the density
of points, pair of points, geodesies, pair of geodesies, and kinematic density
as is customary in integral geometry. Some of them will be used in the
following section.

1. Double numbers in L-P

Let L-P plane be the upper half plane of Lorentz-Poincar\^e that means,
the upper half plane y>0 with the metric

(1) ds^{2}= \frac{dx^{2}-d_{\mathcal{Y}}^{2}}{y^{2}}

Considering [1] and [7], we find an interesting relation between this metric
and the s0-called double numbers.

As a generalization of complex numbers, Benz, [1], and Yaglom, [7],
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[8], call z=x+jy with x , y\in R , j^{2}=1 , j\neq\pm 1 : this set is a commutative
ring. On the natural way, the conjugate of z,\overline{z} , is \overline{z}=x-jy , y>0 .

LEMMA. Let z be a double number. The element of arc of the L-P
plane is

(2) ds^{2}=4 \frac{dz\Lambda d\overline{z}}{(z-\overline{z})^{2}}

and (2) is invariant under Moebius transformations.
PROOF. Routine calculation gives (2).

Applying a Moebius transformation to double numbers we get z’=

\frac{az+b}{pz+q} with a , q , p, b\in R , aq-pb =1 , z , z’ double numbers.

We obtain

z’- \overline{z}’=\frac{(az+b)(p\overline{z}+q)-(\overline{a}\overline{z}+b)(pz+q)}{(pz+q)(p\overline{z}+q)}

= \frac{pb(\overline{z}-z)+aq(z+\overline{z})}{(pz+q)(p\overline{z}+q)}=\frac{(aq-pb)-(z-\overline{z})}{(pz+q)(p\overline{z}+q)} .

On the other side, from the expression of z’ we get

dz’= \frac{(a(pz+q)-p(az+b))}{(pz+q)}dz=\frac{dz}{(pz+q)^{2}} ,

and conjugating we have

d \overline{z}’=\frac{d\overline{z}}{(p\overline{z}+q)^{2}} ,

and
dz’ \Lambda d\overline{z}’=\frac{dz\Lambda d\overline{z}}{(pz+q)^{2}(p\overline{z}+q)^{2}} .

Finally,

ds^{2}=4 \frac{dz\Lambda d\overline{z}}{(z-\overline{z})^{2}}=4\frac{dz’\Lambda d\overline{z}’}{(z’-\overline{z}’)^{2}} .

Any point (x, y) in the L-P plane can be parametrized by a double number.
Let us consider x=jv , y=e^{-jy} with u , v\in R , where e^{-ju} is the

exponential function defined by the serie

e^{-jy}= \sum_{k=0}^{\infty}\frac{(-ju)^{k}}{k!}

then we have dx=jdv , dy=-j . e^{-ju}du . Replacing in (1) we get
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(3) ds^{2}= \frac{dv^{2}-e^{-2j\mathcal{U}}du^{2}}{e^{-2jy}}=-du^{2}+e^{2jy}dv^{2}

which we call the polar form of the element of arc. It is well known that the
Gauss curvature K is given by

K= \frac{-1}{2\sqrt{EG}}((\frac{E_{v}}{\sqrt{EG}})_{v}+(\frac{G_{u}}{\sqrt{EG}})_{u})

where E, G are the coefficients of the first fundamental form and the sub-
scripts denote partial derivation.

We can rewrite (3) as
ds^{2}=(i)^{2}du^{2}+e^{2ju}dv^{2} . i^{2}=-1 .

Considering the coefficients of the first fundamental form E=i^{2} . G=e^{2ju} an
easy computation gives

K= \frac{-1}{2\sqrt{-e^{2jy}}}((\frac{2je^{2jy}}{\sqrt{-e^{2j_{\mathcal{U}}}}})_{u})=1 .

Therefore, the L-P plane with metric (3) has constant Gauss curvature 1.
If we do not want to mix double and complex numbers we can take the
complex parametrization x=iv , y=e^{-iu} then ds^{2}=du^{2}+e^{2iu}dv^{2} and also,
K=1 .

At any point (x_{0}, y_{0}) of the L-P plane, the metric (1) is associated to
the following inner product, if P=(p_{1}, p_{2}) and Q=(q_{1}, q_{2}) with p_{2}>0 , q_{2}>0

(4) <P , Q>= \frac{p_{1}q_{1}-p_{2}q_{2}}{y_{0}^{2}}

and the norm of P, is ||P||= \frac{\sqrt{|p_{1}^{2}-p_{2}^{2}|}}{\mathcal{Y}0} .

Then essentially, the L-P inner product coincides with the Lorentzian
one of [2], and [3],

In n-dimensional spacetime, it is usual to give a time orientation by
saying a timelike vector X(<X, X><0) is future pointing if its n-
coordinate is positive; in our case, every vector of the L-P plane is future
pointing and the lemma of [3] holds in the following way:

LEMMA. Let P and Q be timelike vectors in the L-P plane then

(i) <P, Q>\leq 0

(ii) P+Q is a timelike vector
(iii) -<P, Q>\geq||P||||Q|| , and the equality holds if and only if Q=
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cP for some c>0 .
(iv) ||P+Q||\geq||P||+||Q|| and the equality holds if and only if Q=cP

for c>0 .

We conclude that every results related to pure angles and triangles, see
[3], holds in the L-P plane.

From [4] we have another point of view. Nomizu considers the group
of matrices G_{2} consisting of all 2 X2 matrices of the form

\{\begin{array}{ll}p q0 1\end{array}\} p>0 , q\in R

and a diffeomorphism of G_{2} onto the L-P plane given by g\in G_{2}arrow(q, p) .
The action of G_{2} on the L-P plane is
(5) (x, y)arrow(px+q, py)=u(p, q) .

We find that the metric (1) is invariant by the action (5) of G_{2} and cor-
responds to a left invariant Lorentz metric on the G_{2} of constant Gauss
curvature 1.

Let (x(t), y(t)) be a geodesic with t affine parameter. The equations
are (see [4])

(6) \frac{d^{2}x}{dt^{2}}=2\frac{(dx)}{dt}\frac{(dy)}{dt}/y

\frac{d^{2}x}{dt^{2}}=((\frac{dx}{dt})^{2}(\frac{dy}{dt})^{2})/y .

The geodesies are classified in:

1) null, given by null lines
2) spacelike, given by the curves x(u)=b+a. shu , y(u)=a\cdot chu with

the arc-lenght parameter t is given by t=t(u)= \int_{uo}^{u}\frac{du}{chu}

3) timelike, given by the vertical lines x=b, y=ae^{ct} respect to the
affine parameter t and also, by two half branches of hyperbolas (y>
0) parametrized by x(u)=b\pm a\cdot chuy(u)=shuy>0 and the proper-

time parameter t measured from u=u_{0}>0 being t(u)= \int_{u_{0}}^{u}\frac{du}{shu} .

According to the Yaglom’s classification, [8] pag. 223, these spacelike
geodesies are the great circles of an Euclidean hyperbolid of two sheets: in
fact our geodesies are the great circles of one sheet of an Euclidean hyper-
boloid of two sheets. The distance can be defined as we define angular
measure in a pencil of lines in the Minkowskian plane; this metric is hyper-
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bolic. Therefore, its integral geometry is well known from [5], chap. 17.
Also, according to Yaglom, [8], the non-null timelike geodesies can be

obtained intersecting the hyperbolic hemicylinder with planes which planes
which contain the z-axe.

In this way, we can consider the L-P plane with the trigonometry given
by the relations

a–b+c
\frac{A}{sha}=\frac{B}{shb}=\frac{C}{shc}

A^{2}=B^{2}+C^{2}+2BCcha

where A, B , C are angles of a pure triangle, [3], and a , b , c , its opposite
sides.

This trigonometry corresponds to the co-Minkowskian geometry which,
in fact, is dual to the Lorentzian trigonometry, [3], [8], The motions of the
co-Minkowskian plane are \dot{1}nduced by the motions of the three-dimensional
space

x’=chx+shy+a
y’=shx+chy+b
z’=u\cdot x+v\cdot y+w\cdot z+c .

with y>0 , y’>0 .

2. Densities in L-P

We already showed that the group SL(2) keeps the form (2) invariant.
In fact, the group SL(2) acts on the L-P plane as a transformation group:

z’= \frac{az+b}{pz+q} , aq -pb=1a, b , p, q\in R and z’ , z double numbers.

Its Maurer-Cartan forms are equal to those of SL(2) acting on the classical
hyperbolic model of Poincar\’e. Then from [5], pag. 174, we have

w_{1}=q da-b dp, w_{2}--q db - b dq , w_{3}=-pda+adp .

Keeping in mind that d(aq-pb)=0 , we get

da=a w_{1}+bw_{2} dp=pw_{1}+qw_{3}
(7)

db=-bw_{1}+aw_{2} dq=-qw_{1}+pw_{2} .

The structure equations are
dw_{1}=-w_{2}\Lambda w_{3} , dw_{2}=-2w_{1}\Lambda w_{3} , dw_{3}=-2w_{3}\Lambda w_{1}
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The isotropy group G_{0} at z=j(j^{2}=1) is a characterized by a=q, b=p
which are equivalent to w_{1}=0 , w_{2}-w_{3}=0 . Since d(w_{1}\Lambda(w_{2}-w_{3}))=0 , fol-
lowing [5], we have that the invariant density of G/G_{0} is the density of
po\overline{l}nts of the L-P, i . e .

(8) d(G/G_{0})=dp=(w_{1}\Lambda(w_{2}-w_{3}))

=q^{2}da\Lambda db+b^{2}dp\Lambda dq- bq(da\Lambda dq+dp\Lambda db)+dp\Lambdada.

Also, since ds^{2}= \frac{dx^{2}-dy^{2}}{y^{2}} , we know that density of points P\in L- P (or

its element of area) is given by

(9) dP= \frac{dx\Lambda dy}{y^{2}} .

For geodesies
a) From [4], we can parametrize the non-null timelike geodesies by

(10) x(u)=b+achu y(u)=ashu .

The tangent vector is ( \frac{dx}{du} , \frac{dy}{du}) and its lenght \frac{1}{shu} . Its proper time

parameter t will be t=t(u)= \int_{uo}^{u}\frac{1}{shr}dr=1n(tgh\frac{u}{2}-tgh\frac{\mathcal{U}0}{2}) for u_{0}>0 .

We identify \{\begin{array}{ll}y x0 1\end{array}\}\in G_{2} with (x, y)\in L- P and applying it to geodesies

we have

(11) \{\begin{array}{llllll}a sh u b\pm a ch u 0 1 \end{array}\}

The action defined by (5) can be rewritten as

\{\begin{array}{ll}p q0 1\end{array}\}\{\begin{array}{llllll}a sh u b\pm a ch u 0 1 \end{array}\}=\{\begin{array}{llllll}p_{a} sh u pb\pm pa ch u+q 0 1 \end{array}\} .

It follows that

(12) x’=pb+q\pm pa chu , y’=pa\cdot sh u .

The geodesies remain invariant under the transformation if and only if p=
1 , q=0. Thus the subgroup H of G_{2} which leaves the geodesies invariant is
H=\{id\} : then we have a bijection between the set geodesies of the L-P plane
and the homogeneous space G_{2}/H . The Lie algebra of H is \mathscr{H}=\{0\} and the
Lie algebra of G_{2} is
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X=\{\{\begin{array}{ll}1 00 0\end{array}\} \{\begin{array}{ll}0 10 0\end{array}\}\} .

We call \mathscr{M} the subspace of X such that X=\mathscr{M}\oplus \mathscr{M} and Ad(H)\mathscr{M}=\mathscr{M} .

Trivially \mathscr{M}=X and dp\Lambda dq is the 2-form invariant by Ad(H) .
On the other side, it is known that the forms of Maurer-Cartan of a

group G are given by A^{-1} . dA for A\in G . Thus, if

A=\{\begin{array}{ll}p q0 1\end{array}\} we have A^{-1}=\{\begin{array}{ll}1/p -q/p0 1\end{array}\} dA=\{\begin{array}{ll}dp dq0 0\end{array}\}

and

A^{-1} . dA= \frac{dp}{p,0’} \frac{dq}{p,0’}]

Therefore the density of geodesies is

(13) dG= \frac{dp\Lambda dq}{p^{2}}

b) We will find another expression for dG. The equation of the non null
timelike geodesic G is

(x-b)^{2}-y^{2}=a^{2}

or equivalently

x=b+achu , y=ashu .

By the action (5), the geodesic G transforms into (12). We see that under
the action u(p, q) , the coordinates a , b of G transform according to

a’=pa , b’=pb+q
so that

da’= p da, db’=pdb
then

da’ \Lambda db’=P^{2}da\Lambda db=(\frac{a’}{a})^{2}da\Lambda db

and we get

\frac{da’\Lambda db’}{(a’)^{2}}=\frac{da\Lambda db}{a^{2}} .

This 2-form is invariant under the transformation (12). We obtained

(14) dG= \frac{da\Lambda db}{a^{2}}
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c) Now we want to express the density in terms of the affine parameter u .
We already have (11)

A=\{\begin{array}{llllll}a sh u b\pm a ch u 0 l \end{array}\} and A^{-1}=[^{\frac{1}{ashu0}} \frac{-bachu}{ashu,1},]

hence

A^{-1} . dA=[_{0}^{\frac{chu}{shu}du+\frac{da}{a}} \frac{-ub\mp chuda\mp ashudu}{ashu,0},]

From [5] it is known that

dG=- \frac{chu}{ash^{2}u}du\Lambda db\mp\frac{da\Lambda db}{a^{2}shu}\mp\frac{du\Lambda da}{ash^{2}u} .

In part b) we showed (14), so we get

dG(1- \frac{1}{shu})=-\frac{chu}{ash^{2}u}du\Lambda db\mp\frac{du\Lambda da}{ash^{2}u}

and, finally

(15) dG= \frac{chudu\Lambda db\mp du\Lambda da}{a(shu-1)}

d) It is known that the equation of G is (x-b)^{2}-y^{2}=a^{2} and differenciating
(x-b)(dx-db)-ydy=a da. Using this and (14) we obtain the density of
geodesies in terms of the coordinates x , y , and of parameter b :

(16) dG= \frac{(x-b)dx\Lambda db\mp ydy\Lambda db}{((x-b)^{2}-y^{2})^{32}},

e) We want to obtain an expression of dG in terms of double numbers.
The geodesies |z|=1 where z=x+jy , j^{2}=1 and y>0 is invariant under

the subgroup G_{1} of G given by a=-q , b=p or a=q , b=-p.
In view of (7), this is equivalent to w_{1}=0 , w_{2}+w_{3}=0 and d(w_{1}\Lambda(w_{2}+

w_{3}))=0 , then the invariant density of G/G_{1} is
d(G/G_{1})=w_{1}\Lambda(w_{2}+w_{3}) .

An element of SL(2) transforms the L-P geodesic |z|=1 on another one
with center (\xi, 0) and radius r . To obtain \xi and r we have that

\frac{az+b}{pz+q}=w then \frac{(qw-b)(q\overline{w}-b)}{(-pw+a)(-p\overline{w}+a)}=1 and
(q^{2}-p^{2})w\overline{w}+(ap-bp)(w+\overline{w})+b^{2}-a^{2}=0
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Since aq-pb=1, it follows that

\xi=\frac{ap-bp}{q^{2}-p^{2}} and r= \frac{1}{q^{2}-p^{2}}

We know that up to a constant factor, the invariant density for set of
geodesies is

(17) d(G/G_{1})-- \frac{dr\Lambda d\xi}{2r^{2}}=dG

Density of pairs of points

Let P_{1} and P_{2} be two points of the L-P plane. There is a geodesic G
which passes through these two points.

We consider

P_{1}\{

x_{1}=b\pm achu_{1}

y_{1}=ashu_{1}
P_{2}\{

x_{2}=b\pm achu_{2}

y_{2}=ashu_{2}

They satisfy the equation

(x_{1}-b)^{2}-y_{1}^{2}=(x_{2}-b)^{2}-y_{2}^{2}=a^{2}

or equivalently

((x_{1}-b)+(x_{2}-b))(x_{1}-x_{2})=y_{1}^{2}-y_{2}^{2}

that is

\frac{1}{2}(x_{1}+x_{2}-\frac{y_{1}^{2}-y_{2}^{2}}{x_{1}-x_{2}})=b

where b is unique because y_{1}>0 and y_{2}>0 . Subst\overline{l}tution in the general
equation gives

\frac{1}{2}(x_{1}-x_{2}+\frac{y_{1}^{2}-y_{2}^{2}}{x_{1}-x_{2}})-y_{1}^{2}=a^{2} .

As a>0 , a is also unique and the geodesic is well determined. Computing
dx_{1}=db\pm chu_{1}da\pm ashu_{1}du_{1}

dy_{1}=shu_{1}da+achu_{1}du_{1}

dx_{2}=db\pm chu_{2}da\pm ashu_{2}du_{2}

dy_{2}=shu_{2}da+achu_{2}du_{2}

From (9)

dP_{i}= \frac{dx_{i}\Lambda dy_{i}}{y_{1}^{2}} for i=1,2 and u_{1}>0 .
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dP_{1}= \frac{shu_{1}db\Lambda da-ada\Lambda du_{1}+achu_{1}db\Lambda du_{1}}{a^{2}sh^{2}u_{1}}

and
dP_{2}= \frac{shu_{2}db\Lambda da-ada\Lambda du_{2}+achu_{2}db\Lambda du_{2}}{a^{2}sh^{2}u_{2}} .

The density of pairs of points is

dP_{1} \Lambda dP_{2}=\frac{chu_{2}-chu_{1}}{a^{2}sh^{2}u_{1}sh^{2}u_{2}}du_{1}\Lambda du_{2}\Lambda da\Lambda db

or equivalently

(18) dP_{1} \Lambda dP_{2}=\frac{chu_{2}-chu_{1}}{sh^{2}u_{1}sh^{2}u_{2}}du_{1}\Lambda du_{2}\Lambda dG

where G is the geodesic through P_{1} and P_{2} . As a kind of duality we look
for.

Density of pair of geodesic

We assume G_{1} and G_{2} are each a branch of timelike geodesic. From

(14) we know that density of geodesic dG_{i}= \frac{da_{i}\Lambda db_{i}}{a_{i}^{2}} where b_{i} is its center

and a_{i} its radius, i : 1, 2.
Considering the geodesic defined by (x-b_{i})^{2}-y^{2}=a_{i}^{2} , i:1 , 2 we already

know their densities, (16), i . e .,

dG_{i}= \frac{(x-b_{i})dx\Lambda db_{i}-ydy\Lambda db_{i}}{((x-b_{i})^{2}-y^{2})^{3/2}} i=1,2

and the density of pairs of geodesies is given by

dG_{1} \Lambda dG_{2}=\frac{(b_{2}-b_{1})ydb_{1}\Lambda db_{2}\Lambda dx\Lambda dy}{(((x-b_{1})^{2}-y^{2})((x-b_{2})^{2}-y^{2}))^{3/2}} .

Equivalently,

dG_{1} \Lambda dG_{2}=\frac{(b_{2}-b_{1})y^{3}db_{1}\Lambda db_{2}\Lambda dP}{(((x-b_{1})^{2}-y^{2})((x-b_{2})^{2}-y^{2}))^{3/2}}

where P is the point of intersection of G_{1} and G_{2} .

Kinematic density

According to [5], chapters 15 and 18, and [2], the kinematic density is

dK=w_{1}\Lambda w_{2}\Lambda w_{3}= ( q da-b dp) \Lambda (qdb-bdq)\Lambda(-pda+adp)

=q(aq-pb) da\Lambda db\Lambda dp+b(aq-pb)da\Lambda dp\Lambda dq
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= (bdq-qdb)AdaAdp.

A motion in the L-P plane can be represented by

x’=ch\alpha\cdot x+sh\alpha\cdot y+a

y’=sh\alpha\cdot x+ch\alpha\cdot y+b

with y>0 , y’>0 . This is essentially the motion on the Lorentzian plane,
[3]; consequently we can assert that Poincar\’e’s formula holds as in [2] but
only for two timelike curves. Thereupon, the statement of this result is.

PROPOSITION. Let \Gamma_{0} and \Gamma_{1} be two timelike curves. Suppose that
the lenght of \Gamma_{i} is L_{i} and T_{i} is the tangent line to \Gamma_{i} at the point of inter-
section of these curves, for i:0,1 . Then

\int dK=4L_{0}L_{1}

\Gamma_{0}\cap\Gamma_{1}\neq\phi , 0<(T_{0}, T_{1})<arcch5

where ( T_{1}, T_{0}) denote the angle from T_{1} to T_{0} .

3. An integral formula

THEOREM. Let C be a simple, closed curve in the L-P plane, which is
the border of convex set K of area F. Let \sigma be the lenght of the geodesic
segment obtained by the intersection of branch of geodesic G with K then

\int_{G\cap K\neq\phi}(-\sigma+sh\sigma)dG=\frac{1}{2}F^{2}

PROOF. Let P_{1} and P_{2} be two points of K and G the branch of
geodesic determined by them. Let u_{1} and u_{2} be these abscisas on G of P_{1}

and P_{2} varying on [\alpha, \beta] with \alpha>0 . It is well know that

\int dP_{1}\Lambda dP_{2}=F^{2} .
P_{1} , P_{2}\in K

From (18) we get

\int_{G\cap K=\phi}\int_{a}^{\beta}\int_{a}^{\beta}\frac{chu_{1}-chu_{2}}{sh^{2}u_{1}sh^{2}u_{2}}du_{1}\Lambda du_{2}\Lambda dG=F^{2}

First, we will compute

\frac{1}{2}\int_{a}^{\beta}\int_{a}^{\beta}\frac{chu_{1}-chu_{2}}{sh^{2}u_{1}sh^{2}u_{2}}du_{1}\Lambda du_{2}

= \int_{a}^{\beta}du_{1}(\int_{a}^{u_{1}}\frac{chu_{1}du_{2}}{sh^{2}u_{1}sh^{2}u_{2}}-\int_{a}^{u_{1}}\frac{chu_{2}du_{2}}{sh^{2}u_{1}sh^{2}u_{2}})
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= \int_{a}^{\beta}(\frac{chu_{1}}{sh^{2}u}(-cothu_{2}|_{a}^{u_{1}})-\frac{1}{sh^{2}u_{1}}(-\frac{1}{shu_{2}}|_{a}^{u_{1}}))du_{1}

= \int_{a}^{\beta}( \frac{chu_{1}}{sh^{2}u_{1}}(coth \alpha-coth u_{1} ) - \frac{1}{sh^{2}u_{1}}(\frac{1}{sh\alpha}-\frac{1}{shu_{1}}) ) du_{1}

=coth \alpha(-\frac{1}{shu_{1}}|_{a}^{\beta})-\int_{a}^{\beta}\frac{chu_{1}}{sh^{3}u_{1}}du_{1}-\frac{1}{sh\alpha}(-coth u_{1}|_{a}^{\beta})+ \int_{a}^{\beta}\frac{du_{1}}{sh^{3}u_{1}}

=coth \alpha(\frac{1}{sh\alpha}-\frac{1}{sh\beta})-\int_{a}^{\beta}\frac{ch^{2}u_{1}}{sh^{3}u_{1}}du_{1}+\frac{coth\beta}{sh\alpha}+\frac{coth\alpha}{sh\alpha}+\frac{du_{1}}{sh^{3}u_{1}}

= \frac{coth\alpha}{sh\beta}-\frac{coth\beta}{sh\alpha}+\int_{a}^{\beta}\frac{1-ch^{2}u_{1}}{sh^{3}u_{1}}du_{1}

= \frac{coth\beta\cdot sh\beta-sh\alpha coth\alpha}{sh\beta\cdot sh\alpha}-\int_{a}^{\beta}\frac{sh^{2}u_{1}}{sh^{3}u_{1}}du_{1}=\frac{ch\beta-ch\alpha}{sh\beta sh\alpha}-\int_{a}^{\beta}\frac{du_{1}}{shu}

= \frac{ch\beta-ch\alpha}{sh\beta\cdot sh\alpha}-ln th\frac{u_{1}}{2}|_{a}^{\beta}=\frac{ch\beta-ch\alpha}{sh\beta\cdot sh\alpha}+ln(\frac{th\alpha/2}{th\beta/2}) .

Replacing this in (19) we have

\int_{G\cap K\neq\phi}(\frac{ch\beta-ch\alpha}{sh\alpha sh\beta}+ln(\frac{th\alpha/2}{th\beta/2}))dG=\frac{1}{2}F^{2} .

As \sigma is the geodesic distance, we have

\int_{a}^{\beta}ds=\sigma=ln th \frac{\beta}{2}-ln th \frac{\alpha}{2}

we want to express \frac{ch\beta-ch\alpha}{sh\beta\cdot sh\alpha} in terms of \sigma .

Since

e^{\sigma}= \frac{th\beta/2}{th\alpha/2}=\frac{(ch\beta-1)(ch\alpha+1)}{sh\alpha\cdot sh\beta}

we obtain

\frac{ch\beta-ch\alpha}{sh\beta\cdot sh\alpha}=e^{\sigma}+\frac{1-ch\alpha\cdot ch\beta}{sh\alpha\cdot sh\beta}

and

\frac{ch\beta-ch\alpha}{sh\beta\cdot sh\alpha}=e^{\sigma}-\frac{1}{2}(e^{\sigma}+e^{-\sigma})=sh\sigma .

Coming back to (20) we find the thesis.

REMARKS. 1) Under the above hypothesis and fixing the radio of G
we have

\int_{G\cap K\neq\phi}\sigma db=F
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but we can say nothing about \int\sigma dG because the integral \int_{G\cap K\neq\phi}\frac{da}{a^{2}}

depends on the positions of the convex set K.
2) This integral formula looks like a Santal\’o’s one, [5] pag . 317, but

the difference should be noted: The curvature of the L-P plane is 1.

Acknowledgment: The author is indebted to the referee and Prof. Jorge Hounie for their
useful remarks.
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