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Classification of exotic circles of PL,(S")

Hiroyuki MINAKAWA
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Abstract. Let G be a subgroup of the group Homeo, (S!) of orientation preserving
homeomorphisms of the circle. An exotic circle of G is a subgroup of G which is topolog-
ically conjugate to SO(2) but not conjugate to SO(2) in G. The existence of an exotic
circle shows us the fact that the subgroup G is far from being a Lie group. We previously
proved that the group PLy(S') of orientation preserving piecewise linear homeomor-
phisms of the circle has exotic circles. We give a more explicit construction of exotic

circles of PL,(S') and classify all exotic circles up to PL conjugacy.

Key words: topological circle, exotic circle, PL4(S'), topologically conjugate, PL con-
jugate, total derivative, half total derivative.

Introduction

Let G be a Lie group and M an oriented manifold of class C* (1 < k <
oo). Let Diff* (M) denote the group of all C* diffeomorphisms of M. A
topological action is a continuous map ¢ : G x M — M such that

1) @e(x) ==,

2)  pgn(z) = @g(pn(z)).
where e is the unit of G and p4(x) = ¢(g,x). D. Montgomery and L. Zippin
proved the following theorem ([4]).

Theorem 0.1 Let ¢ be a topological action. If every o4 belongs to
Diff® (M) then ¢ is a map of class C*.

In the case where G = M = S!, this theorem implies the following
corollary.

Corollary 0.2 If every h o R, o h™! is contained in Diﬂ?i(Sl), then h
belongs to Diff’i(Sl). Here, R, : St — S! is the rotation of S' by z, i.e.,
R.(y) =z +y.

Indeed, for p(z,y) = ho Ryoh™1(y). ¢ : St x ST — S! is a topological
action with ¢, € Diffﬁ(Sl). Then ¢ is of class C* by Mheorem 0.1. Fix
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a point yo and define the C* diffeomorphism ¢ of S by o(z) = p(z,yo).
Then we can easily see ¢ 1 op, 00 = R,;. So ¢~ oh = R, for some z € S!.
This implies h belongs to Diff’i(Sl).

Let SO(2) = {R, | z € S'} be the group of all rotations of S?.
0.2 says that Diffi(S 1) has no exotic circle in the following sense.

Let G be a subgroup of Homeo, (S!).

Definition 0.3 1) A subgroup S C Homeoy (S?!) is called a topological
circle if S =ho SO(2) o h™! for some h € Homeo, (S!).

2) A topological circle S C G is an exotic circle of G if h does not
belong to G.

Contrary to this phenomenon, we proved that PL, (S!) has exotic cir-
cles in [5]. This fact gives one of the reasons why the topological group
PL,(S') is very far from being a Lie group.

In this paper, we give a more explicit construction of exotic circles of
PL,(S') and a perfect classification of all exotic circles up to PL conjugacy.

1. Piecewise linear homeomorphisms of S'!

Let Homeo[ (S 1) be the group of all orientation preserving homeomor-
phisms of R which commutes with the translation T;. Here Ty(x) = = + b
(z,b € R) is the translation by b. Every F € Homeo(S') induces a home-
omorphism f: S' — S1 (S! = R/Z). So we define

p : Homeo? (S') — Homeo, (S1)

by p(F) = f. Conversely for any f € Homeo, (S'), there exists a f €

Homeo7 (S') such that p(f) = f. Such f is called a lift of f. We can easily
check that

p(f)={Tnof|neiZ}

Let PLY(S') be the group of Homeo(S!) defined as follows. F €
Homeo[ (S') belongs to PLY(S') if F is piecewise linear and bending
points of F' have no accumulation points in R. Then we define PL(S!) =
p(PL7(SY)).

Let 7 : R — S! = R/Z denote the quotient map. A point £ € R with
m(Z) = x is called a lift of z. We may use the notation 7(%) = [#].

An important construction of PL homeomorphisms of S! is given by
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PL interval exchange maps. A pair of maps (f,g) is called an interval
exchange map of [a,a + 1] if there exist x,y € (a,a + 1) such that both
f:la,z] = [y,a+1] and ¢ : [x,a + 1] — [a,y] are homeomorphisms with
f(a) = vy, g(x) = a. Moreover if f and g are both piecewise linear or
affine, (f,g) is respectively called a PL or an affine interval exchange map
of [a,a + 1]. We identify [a,a + 1]/a ~ a + 1 with S! by the inclusion
map [a,a + 1] — R. Then every interval exchange map (f, g) induces a
homeomorphism F' of [a,a + 1]/a ~ a + 1, so of S'. We can easily check
that if (f,g) is PL, then F is contained in PL(S1).

2. Examples
First we define intervals I4 (A € Ry — {1}) b

; 1/(A-1),A/(A—-1)] if A>1,

YTl A/(A- D), 1/(A-1)] if 0< A<,
Let hy: St — St (A > 1) be the orientation preserving piecewise C* diffeo-
morphism whose lift h 4 is defined by hy | 4 =h | Ia, h | L4 : 14 — [0,1],
h(z) = log((A — 1)z)/logA. Let h : S1 — S! be the orientation revers-
ing homeomorphism defined by h(z) = —z. Here the homeomorphism
h 4 is well-defined, because the length of the interval I, is equal to 1 and
h|lsg:[1/(A-=1),A/(A—1)]— [0,1]is an orientation preserving homeo-
morphism. Then we define, for any A > 1,

Sa=h;'08S0(2)ohs Sy 1=hoSsoh.

We can easily check that S4 (A > 1) is contained in PL(S?!), since h™1 o
Tooh = Mja holds for any a € R. Here, Ty(z) = = + a and M,(z) = ax.
Indeed, we can explicitly represent any element h;ll oRgoha (0<a<1)
by an affine interval exchange map (r(4 q),{(4,0)) Of 14;

r(ae) = Mae | [1/(A=1),A17%/(A - 1)]
and
l(a,0) = Maa—t | [AT7/(A = 1), A/(A - 1)].
Since h 4 is not contained in PL(S!), then every Sy is exotic.

Remark. In [1], they studied about the following class of affine interval
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exchange maps A*. For any u,v € (0,1), we define

1—u

xr

f(u,v) : [O,’U] - [U, 1] by f(u,v)(x) =u-+

and

u

I(uw) - [’U, 1] - [O,U] by g(u,v)(x) = 1_ v<x - U)'

Then A* is the set of all interval exchange maps of form (fuw)s Iuw)) (u,v €
(0,1)). We remark that

* -1 *
AT = U R[l/(a—l)] © 55 0 Rpyyga—1y),
CLER+—{1}
where, 57 = S, — {id} (see Lemma 4.9). They proved that every element

of A* has an absolutely continuous invariant probability measure in their
paper. By the constructions of S,, now we can get a very simple proof of
this fact. Indeed, for any f € S,, an invariant measure u for f is equal to

(he)*m if 1< a, and
(hohgoh)*m if 0<a<1.

Here, m is the Lebesgue measure of S! with m(S') = 1.

3. Total derivative

Let f be any element of PL,(S'). For any = € S', we define the right
derwative dg f(x) and the left derivative dy f(z) at x by

dnf(z) = lim f(@+e) - f(2)

Y

e—0,e>0 £
and
. @9 - f(@)
de(x) N 6—!%)1,’15:‘1>0 € .

This is well-defined, because each right-hand side does not depend on the
choices of lifts f, £. We put

Auf = log dpf(z) —log dpf(z).

For given f € PL,(S'), a point = of S! is a bending point of f if A, f # 0.
We denote all the bending points of f by BP(f). It is trivially a finite
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set by the definition of PL, (S!). Since A,f = 0 except for the points of
BP(f), we can define the total derivative Af(zx) of f at x by

Af(@)=) Apmf= Y A

neZ y€Os(x)

Here we denote the orbit of f through z by Of(x). That is, Of(z) =
{f"(z) | n € Z}.
Lemma 3.1 Forany f,g € PL.(S'), and x € S', the following formulas
(1), (2) and (3) hold.

(1) Aw(f Og) = Ag(a:)f + Agzg,

(2) Af(:z:)f_l = —A.f,

(3) Ag(:c)(g ofo g_l) = Af(ac)g + Arf — Azg.

These are shown by the chain rules for dgp and d;. The next lemma

says that Af(z) is a PL conjugacy invariant.

Lemma 3.2 For any f,g € PL_(S') and x € S*, we have
A(go fogh)(g(x)) = Af(x).

Proof.  We use the following notations.

y = g(z),
zn, = f*(x), and

Yn = g(zn) = (g0 fog )™ (g(2)).

Case 1: Suppose that §O(x) = n for some n € N. That is, Og(z) =
{z1,x2,...,2, = z}. Then we have

Algofog™gl@) = S Ap(go fog)
1=1

= Z(A$i+1g + Az, f — Dg,9)
1=1

1=1
= Af(z).

Case 2: Suppose that §O(x) = oo. Since both BP(f) and BP(g) are
finite sets, there exists an integer M such that A, f = A, g = 0 for any
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In| > M. This implies that Ay, (go fog™!) =0 for any |n| > M + 1. So
we have

M

Algofog ')(g(z)) = Y Aylgofog™)
i=—M
M

= Z (Aa?H_lg + AIL‘Zf - Amlg)
i=—M

M
- Azju_Hg_'_ Z A:Eif—Aw_ng
i=—M
= Af(z)

]

Lemma 3.3 Let f, g be elements of PL,(S') such that fog=go f. If
(f,g) is isomorphic to Z+ Z and acts on an orbit (f, g)(x) freely, then we
have that A(f™ o g")(x) =0 for any n,m € Z.

Proof. If m =n =0, then it is trivial. Suppose that m # 0 or n # 0. Take
integers p, g such that mp+nq = 0 and (p, ¢) # (0,0). Then (f™og™, fPog?)
is also isomorphic to Z + Z and acts on (f™ o g", fP o g9)(z) freely. So it
suffices to prove that Af(z) = 0. Since the action of (f,g) on its orbit

(f,g)(x) is free, then (f,g)(z) is divided into infinitely many orbits of f.
That is,

(f,g)(z) = U Of(g"(x)) (disjoint union)
ned

So there exists an integer n such that Of(¢"(z)) N BP(f) = 0, because
BP(f) is a finite set. By Lemma 3.2, we have that

Af(z)=A(g" o fog ")(g"(z)) = Af(9"(x)) = 0.
[]

The following corollary is very important to characterize the elements
of a topological circle of PL,(S!). Before stating it, we recall the notion
of the rotation number. The rotation number p : Homeo, (S!) — S! is
a well-known semi-conjugacy invariant which has the following properties

(L], [7]. [8D):
1

) p(Ry) = a for any a € S'.
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2) p(fog)=p(f)+plg)if fog=gof.
3) If p(f) = a, then R;! o f has a fixed point.

4) Suppose that p(f) is irrational, that is, p(f) € Q/Z. If p(f) = p(g),
then f~! o ¢ has a fixed point.

5) If f™ has no fixed points for any n € Z—{0}, then p(f) is irrational.

Corollary 3.4 Let S be a topological circle of PL(S'). Then Af(z) =0
for any f € S and any x € S'.

Proof. 1If f has a finite orbit, then f must be finite order.

n—1

Af(z) = ) A f
1=0

= A, f"=0

Here, the integer n is the order of f and z; = fi(z).

Next, if f has no finite orbit, then f has an irrational rotation number
p(f). Take any g € S which has no finite orbit and with p(g) # p(f). Then
(f,g) is isomorphic to Z + Z and acts on its orbit (f,g)(z) freely for any
z € S1. So we have Af(z) =0 for any = € S* by Lemma 3.3. ]

Remark. 1t is well known that every element f € PL,(S!) of finite order
is PL conjugate to R, f).

4. Half total derivative

Definition 4.1 Let f be an element of PL,(S!). A point z € S! is called
a center of f, if §O0s(x) = oo and there exist a non-negative integer m and
a positive integer n such that both f™(z) and f~"(z) are bending points.
A symbol C(f) denotes the set of all centers of f.

We can easily see that every f € PLy(S!) has at most finite number
of centers. We prepare another terminology.

Definition 4.2 An element f € PL,(S?) is good if it satisfies the follow-
ing two conditions.

(1) f has no finite orbit.

(2) Af(x) =0 for any x € S

Moreover we define A“ f(x) = 3,50 Ay, f, where z; = fi(z).
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Lemma 4.3 Let f be a good element of PL,(S'). Then A% f(x) =0 for
any x & C(f).

Proof.  Since x ¢ C(f), there are two possibilities 1) f™(z) ¢ BP(f)
for any m > 0, or 2) f™"(z) ¢ BP(f) for any n > 1. So 1) implies that
A¥f(x) = 0, since A, f = 0 for any integer ¢ > 0. Next 2) implies that
A% f(x) = Af(z), since A,_,f = 0 for any positive integer 7. This right-
hand side is equal to zero, because f is good. []

Definition 4.4 Let f € PL.(S!) be a good element. We define the half
total derivative ¥ f of f by

SOf =) A¥f(x).

zeS!

In the right-hand side, A% f(z) vanishes outside of C(f) by Lemma 3.4.
So this is well-defined.

Lemma 4.5 Let f, g be elements of PL,(S'). Suppose f is good. Then
we have that

A%(go fog )(g(z)) = A¥f(2) — Aqg.
The proof of this lemma is almost same as that of the case 2 of Lemma
3.2. So we omit the proof.
Corollary 4.6 Let f € PL,(S!) be a good element. Then we have that
(g0 fogl) =
for any g € PL,(S1).

Proof.  There exists a finite subset F' of ST such that A“(go fog™!)(z) =
A¥f =A,g =0 for any x € F. Then we have that

Y(gofog™h) = Y A“gofog ) (z)

zeF

= > (AYf(z) - Azg)
zeF

= Y Af(z) =) Aug
z€F zeF

= Yf
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The last equality is due to the fact that 3 cpp(y) Azg = 0 holds for any

Lemma 4.7 Let f € PL,(S") be a good element. For any zo € St —
C(f), there exists a unique element h € PL4(S!) such that

1) h(xzo) = xo,

2) Ay h=AYf(x) if x # xp.

Proof. If C(f) is an empty set, then h must be equal to the identity.
Suppose that C(f) = {x1,...,x,} for some positive integer n. We can
assume that there exist a set of lifts zg,Z1,...,Z, such that g < 77 <

- < Ty < ZTg + 1. For any real number A\, we define a step function
Hy :[Zo,Zo+1) — R by

H)\(g) = >\z if 3} - [fi,i‘ﬂ_l).

Here, Z,41 =9+ 1, Ag =X and A\; = A+ Z§'=1 A¥f(xz;) (n>1>1). Then
we put that

J
ha(g) = / e dt 4 7.

Zo

We can easily see that h) is piecewise linear and monotone increasing. Fur-
thermore hy(g) > h,(7) for any g € [Zo,Z0 + 1) if A > p, because A\; > p;
(it =0,1,...,n) if A > pu. So it follows that the map ¢ : R — (&g, o0),
#(A) = hy(Zo+1) is an orientation preserving homeomorphism. Then there
exists a unique real number A such that hy(Zo+1) = £o+1. This h) induces
the element h € PL,(S!) which is required. []

Lemma 4.8 Let f, h, x¢ be as in Lemma 4.7. Then we have
1) BP(ho foh 1) C {h(zo),ho f(z0)}
2) Ay (o foh) =5,

Proof. ~ We have that Ay (ho fo h1) = Afzyh+ Az f — Azh by Lemma
3.1. If {z, f(x)} does not contain zg, then A, h = A¥f(f(z)) and Azh =
AY f(z) by Lemma 4.7 2). So we have

Angey(ho foh™h) = A“F(f(x)) + Auf — A f(z)
— A¥f(x) - A% f(2)
= 0.

This shows 1).
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In order to prove 2), we calculate Ap(,,y(ho foh™!). Since zg is not
contained in C(f), A¥ f(zo) = 0. Moreover A, .yh = AYf(f(20)), because
f(xo) # xo and f2(xg) # x¢ by the goodness of f. This implies that

Ap(zg)(ho fo ) = Afzoyh + Dgo fAz R
= AYf(x0) — Agyh
= —Agh.

Since BP(h) is contained in C(f) U {zo} = {zo,z1,..., 20}, S0 gArh =
Yozest Azh = 0. So we have

—Agoh =Y Ay h

1=1

:ZA“’ f(x;)
:ZAw

zeS1
_ oy

[]

Lemma 4.9 Let f, g be elements of PL,(S'). Suppose there exists a
point z € S! such that

) BP() = (= /@) ) £

2) BP(g) = 1597 (2)}, g7\(=) # %

3) A.f=A.g.
If fog™! has a fized point, then f = g.

Proof. By the hypothesis 3), we have that
Ag(z)(f © g_l) =A,f+ Ag(z)g—1 =A.f— Azg = 0.

Since BP(fog™!) C g(BP(f)) UBP( 1 ={g(2),g90 f1(2), 2}, it follows
that BP(fog™!) C {z,90 f7}(2)}. If go f71(2) = 2, then fog~! can
not have any bending points. So it has to be an element of SO(2) with
fixed point. That is, f o g7! = idg:. In order to complete the proof of
this lemma, it suffices to show that g o f~!(z) = 2. Suppose not, then we
can see that f~1(z) € BP(g). So we have BP(fog™!) = {z,g0 f~1(2)}.
Since fog !(go f71(z)) = 2z, f o g ! can have no fixed point. This is
contradiction. ]
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We use the notation S; = SO(2) from now. The following theorem is
the goal of this paper.

Theorem 4.10 Let S be a topological circle of PL,(S'). Then the num-
ber ¥¥f does not depend on the choice of f € S with irrational rotation
numbers. Furthermore S is PL conjugate to Sy(sy (see Section 2), where

logA(S) = X“f (p(f) : irrational).

Proof.  Take any element f € S with an irrational rotation number o and
fix it. By Corollary 3.4, f is a good element. Fix a point z € S' — C(f).
There exists h € PL,(S!) such that

BP(ho foh™) C {h(z),ho f71(2)}
and

Apizy(ho foh™ )y =5¢f
by Lemma 4.8.

Case 1: Suppose that ¥ f = 0. ho f o h~! has no bending point, that
is, ho foh™! = R,. So we have

hoSoh ™t =ho(f)oh™ = (ho foh™ 1) =S50(2).

Here, the overline means taking a closure with respect to C°-topology in
Homeo, (S1).

Case 2: Suppose that “f > 0. Put u = [1/(A(S) — 1)] € S, B =
u— h(z) and fi = Rgoho fo(Rgoh)™!. Then we have

BP(fi) = {u, f; ' (u)}

and
Ay f1 = X¥f = logA(S).

By the construction of S,g), each element g € S A(s) has same properties
BP(g) = {u,g™"(u)}

and

A,g = logA(S).
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If g € Sy(s) has the rotation number «, then g has to be equal to f; by
Lemma 4.9, that is, fi € S4(s). So we have

RzohoSo(Rgoh)™t = (Rgoho fo(Rgoh)1)
= (f1) = Sas)-
We can easily check that ¥“g = logA(S) for any g € Sy s) with irra-
tional rotation numbers. Since ¥“f is PL conjugacy invariant, this value
does not depend on the choices of f € S with irrational rotation numbers.

Case 3: Suppose that ¥ f < 0. The proof is reduced to the case above
by Proposition 4.11 stated below. This completes the proof of this theorem.

]

Let h : S — S! be the orientation reversing homeomorphism defined
by h(z) = —z. We note that h? = id.

Proposition 4.11 If S s a topological circle, then S = ho S o Al s
also a topological circle. Moreover, if S is contained in PL,(S'), then
Y“(ho foh™) = —%“f for any f € S with an irrational rotation number.

Proof.  There exists an orientation preserving homeomorphism h : S! —

S! such that S = ho SO(2) o h™L. Since ho SO(2)o ™! = SO(2),
hoSoh ™' =hohohoSO(2)o(hohoh)™!.

This means that ho Soh™! is a topological circle. We can easily check that
the last statement in this lemma by the following formulas

dr(ho foh™)(z) = df(h(z)),
dr(ho foh™!)(z) = drf(h(z))
for any f € PL(Sh). []
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