Classification of exotic circles of $PL_{+}(S^{1})$

Hiroyuki MINAKAWA

(Received August 30, 1996; Revised February 28, 1997)

Abstract. Let G be a subgroup of the group $\operatorname{Homeo}_+(S^1)$ of orientation preserving homeomorphisms of the circle. An exotic circle of G is a subgroup of G which is topologically conjugate to SO(2) but not conjugate to SO(2) in G. The existence of an exotic circle shows us the fact that the subgroup G is far from being a Lie group. We previously proved that the group $PL_+(S^1)$ of orientation preserving piecewise linear homeomorphisms of the circle has exotic circles. We give a more explicit construction of exotic circles of $PL_+(S^1)$ and classify all exotic circles up to PL conjugacy.

Key words: topological circle, exotic circle, $PL_{+}(S^{1})$, topologically conjugate, PL conjugate, total derivative, half total derivative.

Introduction

Let G be a Lie group and M an oriented manifold of class C^k $(1 \le k \le \infty)$. Let $\mathrm{Diff}_+^k(M)$ denote the group of all C^k diffeomorphisms of M. A topological action is a continuous map $\varphi: G \times M \to M$ such that

- 1) $\varphi_e(x) = x$,
- $2) \quad \varphi_{qh}(x) = \varphi_q(\varphi_h(x)).$

where e is the unit of G and $\varphi_g(x) = \varphi(g, x)$. D. Montgomery and L. Zippin proved the following theorem ([4]).

Theorem 0.1 Let φ be a topological action. If every φ_g belongs to $\operatorname{Diff}_+^k(M)$ then φ is a map of class C^k .

In the case where $G=M=S^1,$ this theorem implies the following corollary.

Corollary 0.2 If every $h \circ R_x \circ h^{-1}$ is contained in $\mathrm{Diff}_+^k(S^1)$, then h belongs to $\mathrm{Diff}_+^k(S^1)$. Here, $R_x : S^1 \to S^1$ is the rotation of S^1 by x, i.e., $R_x(y) = x + y$.

Indeed, for $\varphi(x,y) = h \circ R_x \circ h^{-1}(y)$. $\varphi: S^1 \times S^1 \to S^1$ is a topological action with $\varphi_x \in \text{Diff}_+^k(S^1)$. Then φ is of class C^k by Theorem 0.1. Fix

¹⁹⁹¹ Mathematics Subject Classification: 58E40 Group actions, 58F03 One dimensional dynamics.

a point y_0 and define the C^k diffeomorphism ϕ of S^1 by $\phi(x) = \varphi(x, y_0)$. Then we can easily see $\phi^{-1} \circ \varphi_x \circ \phi = R_x$. So $\phi^{-1} \circ h = R_z$ for some $z \in S^1$. This implies h belongs to Diff $_+^k(S^1)$.

Let $SO(2) = \{R_x \mid x \in S^1\}$ be the group of all rotations of S^1 . Corollary 0.2 says that $\text{Diff}_+^k(S^1)$ has no exotic circle in the following sense.

Let G be a subgroup of $Homeo_+(S^1)$.

Definition 0.3 1) A subgroup $S \subset \text{Homeo}_+(S^1)$ is called a topological circle if $S = h \circ SO(2) \circ h^{-1}$ for some $h \in \text{Homeo}_+(S^1)$.

2) A topological circle $S \subset G$ is an exotic circle of G if h does not belong to G.

Contrary to this phenomenon, we proved that $PL_{+}(S^{1})$ has exotic circles in [5]. This fact gives one of the reasons why the topological group $PL_{+}(S^{1})$ is very far from being a Lie group.

In this paper, we give a more explicit construction of exotic circles of $PL_{+}(S^{1})$ and a perfect classification of all exotic circles up to PL conjugacy.

1. Piecewise linear homeomorphisms of S^1

Let $\operatorname{Homeo}_+^{\sim}(S^1)$ be the group of all orientation preserving homeomorphisms of \mathbf{R} which commutes with the translation T_1 . Here $T_b(x) = x + b$ $(x, b \in \mathbf{R})$ is the translation by b. Every $F \in \operatorname{Homeo}_+^{\sim}(S^1)$ induces a homeomorphism $f: S^1 \to S^1$ $(S^1 = \mathbf{R}/\mathbf{Z})$. So we define

$$p: \operatorname{Homeo}_+^{\sim}(S^1) \to \operatorname{Homeo}_+(S^1)$$

by p(F)=f. Conversely for any $f\in \operatorname{Homeo}_+(S^1)$, there exists a $\tilde{f}\in \operatorname{Homeo}_+^\sim(S^1)$ such that $p(\tilde{f})=f$. Such \tilde{f} is called a *lift* of f. We can easily check that

$$p^{-1}(f) = \{ T_n \circ \tilde{f} \mid n \in \mathbf{Z} \}.$$

Let $PL_+^{\sim}(S^1)$ be the group of $\operatorname{Homeo}_+^{\sim}(S^1)$ defined as follows. $F \in \operatorname{Homeo}_+^{\sim}(S^1)$ belongs to $PL_+^{\sim}(S^1)$ if F is piecewise linear and bending points of F have no accumulation points in \mathbf{R} . Then we define $PL_+(S^1) = p(PL_+^{\sim}(S^1))$.

Let $\pi: \mathbf{R} \to S^1 = \mathbf{R}/\mathbf{Z}$ denote the quotient map. A point $\tilde{x} \in \mathbf{R}$ with $\pi(\tilde{x}) = x$ is called a *lift* of x. We may use the notation $\pi(\tilde{x}) = [\tilde{x}]$.

An important construction of PL homeomorphisms of S^1 is given by

PL interval exchange maps. A pair of maps (f,g) is called an interval exchange map of [a,a+1] if there exist $x,y\in(a,a+1)$ such that both $f:[a,x]\to[y,a+1]$ and $g:[x,a+1]\to[a,y]$ are homeomorphisms with $f(a)=y,\ g(x)=a$. Moreover if f and g are both piecewise linear or affine, (f,g) is respectively called a PL or an affine interval exchange map of [a,a+1]. We identify $[a,a+1]/a\sim a+1$ with S^1 by the inclusion map $[a,a+1]\to \mathbf{R}$. Then every interval exchange map (f,g) induces a homeomorphism F of $[a,a+1]/a\sim a+1$, so of S^1 . We can easily check that if (f,g) is PL, then F is contained in $PL_+(S^1)$.

2. Examples

First we define intervals I_A $(A \in \mathbf{R}_+ - \{1\})$ by

$$I_A = \begin{cases} [1/(A-1), A/(A-1)] & \text{if } A > 1, \\ [A/(A-1), 1/(A-1)] & \text{if } 0 < A < 1. \end{cases}$$

Let $h_A: S^1 \to S^1$ (A > 1) be the orientation preserving piecewise C^{ω} diffeomorphism whose lift \tilde{h}_A is defined by $\tilde{h}_A \mid I_A = h \mid I_A, h \mid I_A : I_A \to [0, 1],$ $h(x) = \log((A-1)x)/\log A$. Let $\underline{h}: S^1 \to S^1$ be the orientation reversing homeomorphism defined by $\underline{h}(x) = -x$. Here the homeomorphism h_A is well-defined, because the length of the interval I_A is equal to 1 and $h \mid I_A: [1/(A-1), A/(A-1)] \to [0, 1]$ is an orientation preserving homeomorphism. Then we define, for any A > 1,

$$S_A = h_A^{-1} \circ SO(2) \circ h_A \quad S_{A^{-1}} = \underline{h} \circ S_A \circ \underline{h}.$$

We can easily check that S_A (A > 1) is contained in $PL_+(S^1)$, since $h^{-1} \circ T_a \circ h = M_{A^a}$ holds for any $a \in R$. Here, $T_a(x) = x + a$ and $M_a(x) = ax$. Indeed, we can explicitly represent any element $h_A^{-1} \circ R_{[a]} \circ h_A$ (0 < a < 1) by an affine interval exchange map $(r_{(A,a)}, l_{(A,a)})$ of I_A ;

$$r_{(A,a)} = M_{A^a} \mid [1/(A-1), A^{1-a}/(A-1)]$$

and

$$l_{(A,a)} = M_{A^{a-1}} \mid [A^{1-a}/(A-1), A/(A-1)].$$

Since h_A is not contained in $PL_+(S^1)$, then every S_A is exotic.

Remark. In [1], they studied about the following class of affine interval

exchange maps A^* . For any $u, v \in (0, 1)$, we define

$$f_{(u,v)}: [0,v] \to [u,1]$$
 by $f_{(u,v)}(x) = u + \frac{1-u}{v}x$

and

$$g_{(u,v)}: [v,1] \to [0,u]$$
 by $g_{(u,v)}(x) = \frac{u}{1-v}(x-v)$.

Then A^* is the set of all interval exchange maps of form $(f_{(u,v)}, g_{(u,v)})$ $(u, v \in (0,1))$. We remark that

$$A^* = \bigcup_{a \in \mathbf{R}_+ - \{1\}} R_{[1/(a-1)]}^{-1} \circ S_a^* \circ R_{[1/(a-1)]},$$

where, $S_a^* = S_a - \{id\}$ (see Lemma 4.9). They proved that every element of A^* has an absolutely continuous invariant probability measure in their paper. By the constructions of S_a , now we can get a very simple proof of this fact. Indeed, for any $f \in S_a$, an invariant measure μ for f is equal to

$$(h_a)^* m$$
 if $1 < a$, and $(\underline{h} \circ h_a \circ \underline{h})^* m$ if $0 < a < 1$.

Here, m is the Lebesgue measure of S^1 with $m(S^1) = 1$.

3. Total derivative

Let f be any element of $PL_+(S^1)$. For any $x \in S^1$, we define the right derivative $d_R f(x)$ and the left derivative $d_L f(x)$ at x by

$$d_R f(x) = \lim_{\varepsilon \to 0, \varepsilon > 0} \frac{\tilde{f}(\tilde{x} + \varepsilon) - \tilde{f}(\tilde{x})}{\varepsilon},$$

and

$$d_L f(x) = \lim_{\varepsilon \to 0, \varepsilon > 0} \frac{\tilde{f}(\tilde{x} - \varepsilon) - \tilde{f}(\tilde{x})}{\varepsilon}.$$

This is well-defined, because each right-hand side does not depend on the choices of lifts \tilde{f} , \tilde{x} . We put

$$\Delta_x f = \log d_R f(x) - \log d_L f(x).$$

For given $f \in PL_+(S^1)$, a point x of S^1 is a bending point of f if $\Delta_x f \neq 0$. We denote all the bending points of f by BP(f). It is trivially a finite set by the definition of $PL_+(S^1)$. Since $\Delta_x f = 0$ except for the points of BP(f), we can define the total derivative $\Delta f(x)$ of f at x by

$$\Delta f(x) = \sum_{n \in \mathbf{Z}} \Delta_{f^n(x)} f = \sum_{y \in O_f(x)} \Delta_y f.$$

Here we denote the orbit of f through x by $O_f(x)$. That is, $O_f(x) = \{f^n(x) \mid n \in \mathbf{Z}\}.$

Lemma 3.1 For any $f, g \in PL_+(S^1)$, and $x \in S^1$, the following formulas (1), (2) and (3) hold.

- (1) $\Delta_x(f \circ g) = \Delta_{g(x)}f + \Delta_x g$,
- $(2) \quad \Delta_{f(x)} f^{-1} = -\tilde{\Delta}_x f,$
- (3) $\Delta_{g(x)}(g \circ f \circ g^{-1}) = \Delta_{f(x)}g + \Delta_x f \Delta_x g.$

These are shown by the chain rules for d_R and d_L . The next lemma says that $\Delta f(x)$ is a PL conjugacy invariant.

Lemma 3.2 For any $f, g \in PL_{+}(S^{1})$ and $x \in S^{1}$, we have

$$\Delta(g \circ f \circ g^{-1})(g(x)) = \Delta f(x).$$

Proof. We use the following notations.

$$y = g(x),$$

 $x_n = f^n(x),$ and
 $y_n = g(x_n) = (g \circ f \circ g^{-1})^n(g(x)).$

Case 1: Suppose that $\sharp O_f(x) = n$ for some $n \in N$. That is, $O_f(x) = \{x_1, x_2, \dots, x_n = x\}$. Then we have

$$\Delta(g \circ f \circ g^{-1})(g(x)) = \sum_{i=1}^{n} \Delta_{y_i}(g \circ f \circ g^{-1})$$

$$= \sum_{i=1}^{n} (\Delta_{x_{i+1}}g + \Delta_{x_i}f - \Delta_{x_i}g)$$

$$= \sum_{i=1}^{n} \Delta_{x_i}f$$

$$= \Delta f(x).$$

Case 2: Suppose that $\sharp O_f(x) = \infty$. Since both BP(f) and BP(g) are finite sets, there exists an integer M such that $\Delta_{x_n} f = \Delta_{x_n} g = 0$ for any

 $|n| \geq M$. This implies that $\Delta_{y_n}(g \circ f \circ g^{-1}) = 0$ for any $|n| \geq M + 1$. So we have

$$\Delta(g \circ f \circ g^{-1})(g(x)) = \sum_{i=-M}^{M} \Delta_{y_i}(g \circ f \circ g^{-1})$$

$$= \sum_{i=-M}^{M} (\Delta_{x_{i+1}}g + \Delta_{x_i}f - \Delta_{x_i}g)$$

$$= \Delta_{x_{M+1}}g + \sum_{i=-M}^{M} \Delta_{x_i}f - \Delta_{x_{-M}}g$$

$$= \Delta f(x)$$

Lemma 3.3 Let f, g be elements of $PL_{+}(S^{1})$ such that $f \circ g = g \circ f$. If $\langle f, g \rangle$ is isomorphic to $\mathbf{Z} + \mathbf{Z}$ and acts on an orbit $\langle f, g \rangle(x)$ freely, then we have that $\Delta(f^{m} \circ g^{n})(x) = 0$ for any $n, m \in \mathbf{Z}$.

Proof. If m = n = 0, then it is trivial. Suppose that $m \neq 0$ or $n \neq 0$. Take integers p, q such that mp + nq = 0 and $(p,q) \neq (0,0)$. Then $\langle f^m \circ g^n, f^p \circ g^q \rangle$ is also isomorphic to $\mathbf{Z} + \mathbf{Z}$ and acts on $\langle f^m \circ g^n, f^p \circ g^q \rangle(x)$ freely. So it suffices to prove that $\Delta f(x) = 0$. Since the action of $\langle f, g \rangle$ on its orbit $\langle f, g \rangle(x)$ is free, then $\langle f, g \rangle(x)$ is divided into infinitely many orbits of f. That is,

$$\langle f, g \rangle(x) = \bigcup_{n \in \mathbf{Z}} O_f(g^n(x))$$
 (disjoint union)

So there exists an integer n such that $O_f(g^n(x)) \cap BP(f) = \emptyset$, because BP(f) is a finite set. By Lemma 3.2, we have that

$$\Delta f(x) = \Delta(g^n \circ f \circ g^{-n})(g^n(x)) = \Delta f(g^n(x)) = 0.$$

The following corollary is very important to characterize the elements of a topological circle of $PL_+(S^1)$. Before stating it, we recall the notion of the rotation number. The rotation number ρ : Homeo₊ $(S^1) \to S^1$ is a well-known semi-conjugacy invariant which has the following properties ([1], [7], [8]);

1)
$$\rho(R_a) = a \text{ for any } a \in S^1.$$

- 2) $\rho(f \circ g) = \rho(f) + \rho(g)$ if $f \circ g = g \circ f$.
- 3) If $\rho(f) = a$, then $R_a^{-1} \circ f$ has a fixed point.
- 4) Suppose that $\rho(f)$ is irrational, that is, $\rho(f) \notin \mathbf{Q}/\mathbf{Z}$. If $\rho(f) = \rho(g)$, then $f^{-1} \circ g$ has a fixed point.
 - 5) If f^n has no fixed points for any $n \in \mathbf{Z} \{0\}$, then $\rho(f)$ is irrational.

Corollary 3.4 Let S be a topological circle of $PL_{+}(S^{1})$. Then $\Delta f(x) = 0$ for any $f \in S$ and any $x \in S^{1}$.

Proof. If f has a finite orbit, then f must be finite order.

$$\Delta f(x) = \sum_{i=0}^{n-1} \Delta_{x_i} f$$
$$= \Delta_x f^n = 0$$

Here, the integer n is the order of f and $x_i = f^i(x)$.

Next, if f has no finite orbit, then f has an irrational rotation number $\rho(f)$. Take any $g \in S$ which has no finite orbit and with $\rho(g) \neq \rho(f)$. Then $\langle f, g \rangle$ is isomorphic to $\mathbf{Z} + \mathbf{Z}$ and acts on its orbit $\langle f, g \rangle(x)$ freely for any $x \in S^1$. So we have $\Delta f(x) = 0$ for any $x \in S^1$ by Lemma 3.3.

Remark. It is well known that every element $f \in PL_+(S^1)$ of finite order is PL conjugate to $R_{\rho(f)}$.

4. Half total derivative

Definition 4.1 Let f be an element of $PL_+(S^1)$. A point $x \in S^1$ is called a *center* of f, if $\sharp O_f(x) = \infty$ and there exist a non-negative integer m and a positive integer n such that both $f^m(x)$ and $f^{-n}(x)$ are bending points. A symbol C(f) denotes the set of all centers of f.

We can easily see that every $f \in PL_+(S^1)$ has at most finite number of centers. We prepare another terminology.

Definition 4.2 An element $f \in PL_+(S^1)$ is good if it satisfies the following two conditions.

- (1) f has no finite orbit.
- (2) $\Delta f(x) = 0$ for any $x \in S^1$.

Moreover we define $\Delta^{\omega} f(x) = \sum_{i \geq 0} \Delta_{x_i} f$, where $x_i = f^i(x)$.

Lemma 4.3 Let f be a good element of $PL_+(S^1)$. Then $\Delta^{\omega} f(x) = 0$ for any $x \notin C(f)$.

Proof. Since $x \notin C(f)$, there are two possibilities 1) $f^m(x) \notin BP(f)$ for any $m \geq 0$, or 2) $f^{-n}(x) \notin BP(f)$ for any $n \geq 1$. So 1) implies that $\Delta^{\omega} f(x) = 0$, since $\Delta_{x_i} f = 0$ for any integer $i \geq 0$. Next 2) implies that $\Delta^{\omega} f(x) = \Delta f(x)$, since $\Delta_{x_{-i}} f = 0$ for any positive integer i. This right-hand side is equal to zero, because f is good.

Definition 4.4 Let $f \in PL_+(S^1)$ be a good element. We define the half total derivative $\Sigma^{\omega} f$ of f by

$$\Sigma^{\omega} f = \sum_{x \in S^1} \Delta^{\omega} f(x).$$

In the right-hand side, $\Delta^{\omega} f(x)$ vanishes outside of C(f) by Lemma 3.4. So this is well-defined.

Lemma 4.5 Let f, g be elements of $PL_{+}(S^{1})$. Suppose f is good. Then we have that

$$\Delta^{\omega}(g \circ f \circ g^{-1})(g(x)) = \Delta^{\omega}f(x) - \Delta_x g.$$

The proof of this lemma is almost same as that of the case 2 of Lemma 3.2. So we omit the proof.

Corollary 4.6 Let $f \in PL_+(S^1)$ be a good element. Then we have that

$$\Sigma^{\omega}(g \circ f \circ g^{-1}) = \Sigma^{\omega} f$$

for any $g \in PL_+(S^1)$.

Proof. There exists a finite subset F of S^1 such that $\Delta^{\omega}(g \circ f \circ g^{-1})(x) = \Delta^{\omega} f = \Delta_x g = 0$ for any $x \notin F$. Then we have that

$$\Sigma^{\omega}(g \circ f \circ g^{-1}) = \sum_{x \in F} \Delta^{\omega}(g \circ f \circ g^{-1})(x)$$

$$= \sum_{x \in F} (\Delta^{\omega} f(x) - \Delta_x g)$$

$$= \sum_{x \in F} \Delta^{\omega} f(x) - \sum_{x \in F} \Delta_x g$$

$$= \Sigma^{\omega} f$$

The last equality is due to the fact that $\sum_{x \in BP(g)} \Delta_x g = 0$ holds for any $g \in PL_+(S^1)$.

Lemma 4.7 Let $f \in PL_+(S^1)$ be a good element. For any $x_0 \in S^1 - C(f)$, there exists a unique element $h \in PL_+(S^1)$ such that

- 1) $h(x_0) = x_0$,
- 2) $\Delta_x h = \Delta^{\omega} f(x)$ if $x \neq x_0$.

Proof. If C(f) is an empty set, then h must be equal to the identity. Suppose that $C(f) = \{x_1, \ldots, x_n\}$ for some positive integer n. We can assume that there exist a set of lifts $\tilde{x}_0, \tilde{x}_1, \ldots, \tilde{x}_n$ such that $\tilde{x}_0 < \tilde{x}_1 < \cdots < \tilde{x}_n < \tilde{x}_0 + 1$. For any real number λ , we define a step function $H_{\lambda}: [\tilde{x}_0, \tilde{x}_0 + 1) \to \mathbf{R}$ by

$$H_{\lambda}(\tilde{y}) = \lambda_i \quad \text{if} \quad \tilde{y} \in [\tilde{x}_i, \tilde{x}_{i+1}).$$

Here, $\tilde{x}_{n+1} = \tilde{x}_0 + 1$, $\lambda_0 = \lambda$ and $\lambda_i = \lambda + \sum_{j=1}^i \Delta^{\omega} f(x_i)$ $(n \ge i \ge 1)$. Then we put that

$$h_{\lambda}(\tilde{y}) = \int_{\tilde{x}_0}^{\tilde{y}} e^{H_{\lambda}(t)} dt + \tilde{x}_0.$$

We can easily see that h_{λ} is piecewise linear and monotone increasing. Furthermore $h_{\lambda}(\tilde{y}) > h_{\mu}(\tilde{y})$ for any $\tilde{y} \in [\tilde{x}_0, \tilde{x}_0 + 1)$ if $\lambda > \mu$, because $\lambda_i > \mu_i$ (i = 0, 1, ..., n) if $\lambda > \mu$. So it follows that the map $\phi : \mathbf{R} \to (\tilde{x}_0, \infty)$, $\phi(\lambda) = h_{\lambda}(\tilde{x}_0 + 1)$ is an orientation preserving homeomorphism. Then there exists a unique real number λ such that $h_{\lambda}(\tilde{x}_0 + 1) = \tilde{x}_0 + 1$. This h_{λ} induces the element $h \in PL_+(S^1)$ which is required.

Lemma 4.8 Let f, h, x_0 be as in Lemma 4.7. Then we have

- 1) $BP(h \circ f \circ h^{-1}) \subset \{h(x_0), h \circ f^{-1}(x_0)\}$
- 2) $\Delta_{h(x_0)}(h \circ f \circ h^{-1}) = \Sigma^{\omega} f.$

Proof. We have that $\Delta_{h(x)}(h \circ f \circ h^{-1}) = \Delta_{f(x)}h + \Delta_x f - \Delta_x h$ by Lemma 3.1. If $\{x, f(x)\}$ does not contain x_0 , then $\Delta_{f(x)}h = \Delta^{\omega}f(f(x))$ and $\Delta_x h = \Delta^{\omega}f(x)$ by Lemma 4.7 2). So we have

$$\Delta_{h(x)}(h \circ f \circ h^{-1}) = \Delta^{\omega} f(f(x)) + \Delta_x f - \Delta^{\omega} f(x)$$
$$= \Delta^{\omega} f(x) - \Delta^{\omega} f(x)$$
$$= 0.$$

This shows 1).

In order to prove 2), we calculate $\Delta_{h(x_0)}(h \circ f \circ h^{-1})$. Since x_0 is not contained in C(f), $\Delta^{\omega} f(x_0) = 0$. Moreover $\Delta_{f(x_0)} h = \Delta^{\omega} f(f(x_0))$, because $f(x_0) \neq x_0$ and $f^2(x_0) \neq x_0$ by the goodness of f. This implies that

$$\Delta_{h(x_0)}(h \circ f \circ h^{-1}) = \Delta_{f(x_0)}h + \Delta_{x_0}f\Delta_{x_0}h$$
$$= \Delta^{\omega}f(x_0) - \Delta_{x_0}h$$
$$= -\Delta_{x_0}h.$$

Since BP(h) is contained in $C(f) \cup \{x_0\} = \{x_0, x_1, \dots, x_n\}, \sum_{i=0}^n \Delta_{x_i} h = \sum_{x \in S^1} \Delta_x h = 0$. So we have

$$-\Delta_{x_0} h = \sum_{i=1}^n \Delta_{x_i} h$$

$$= \sum_{i=1}^n \Delta^{\omega} f(x_i)$$

$$= \sum_{x \in S^1} \Delta^{\omega} f(x)$$

$$= \sum_{x \in S^1} \Delta^{\omega} f(x)$$

Lemma 4.9 Let f, g be elements of $PL_{+}(S^{1})$. Suppose there exists a point $z \in S^{1}$ such that

- 1) $BP(f) = \{z, f^{-1}(z)\}, f^{-1}(z) \neq z,$
- $2) \quad BP(g)=\{z,g^{-1}(z)\}, \ g^{-1}(z)\neq z,$
- 3) $\Delta_z f = \Delta_z g$.

If $f \circ g^{-1}$ has a fixed point, then f = q.

Proof. By the hypothesis 3), we have that

$$\Delta_{g(z)}(f \circ g^{-1}) = \Delta_z f + \Delta_{g(z)} g^{-1} = \Delta_z f - \Delta_z g = 0.$$

Since $BP(f \circ g^{-1}) \subset g(BP(f)) \cup BP(g^{-1}) = \{g(z), g \circ f^{-1}(z), z\}$, it follows that $BP(f \circ g^{-1}) \subset \{z, g \circ f^{-1}(z)\}$. If $g \circ f^{-1}(z) = z$, then $f \circ g^{-1}$ can not have any bending points. So it has to be an element of SO(2) with fixed point. That is, $f \circ g^{-1} = id_{S^1}$. In order to complete the proof of this lemma, it suffices to show that $g \circ f^{-1}(z) = z$. Suppose not, then we can see that $f^{-1}(z) \not\in BP(g)$. So we have $BP(f \circ g^{-1}) = \{z, g \circ f^{-1}(z)\}$. Since $f \circ g^{-1}(g \circ f^{-1}(z)) = z$, $f \circ g^{-1}$ can have no fixed point. This is contradiction.

We use the notation $S_1 = SO(2)$ from now. The following theorem is the goal of this paper.

Theorem 4.10 Let S be a topological circle of $PL_+(S^1)$. Then the number $\Sigma^{\omega}f$ does not depend on the choice of $f \in S$ with irrational rotation numbers. Furthermore S is PL conjugate to $S_{A(S)}$ (see Section 2), where $\log A(S) = \Sigma^{\omega}f$ ($\rho(f)$: irrational).

Proof. Take any element $f \in S$ with an irrational rotation number α and fix it. By Corollary 3.4, f is a good element. Fix a point $z \in S^1 - C(f)$. There exists $h \in PL_+(S^1)$ such that

$$BP(h \circ f \circ h^{-1}) \subset \{h(z), h \circ f^{-1}(z)\}$$

and

$$\Delta_{h(z)}(h \circ f \circ h^{-1}) = \Sigma^{\omega} f$$

by Lemma 4.8.

Case 1: Suppose that $\Sigma^{\omega} f = 0$. $h \circ f \circ h^{-1}$ has no bending point, that is, $h \circ f \circ h^{-1} = R_{\alpha}$. So we have

$$h \circ S \circ h^{-1} = h \circ \overline{\langle f \rangle} \circ h^{-1} = \overline{\langle h \circ f \circ h^{-1} \rangle} = SO(2).$$

Here, the overline means taking a closure with respect to C^0 -topology in $\operatorname{Homeo}_+(S^1)$.

Case 2: Suppose that $\Sigma^{\omega} f > 0$. Put $u = [1/(A(S) - 1)] \in S^1$, $\beta = u - h(z)$ and $f_1 = R_{\beta} \circ h \circ f \circ (R_{\beta} \circ h)^{-1}$. Then we have

$$BP(f_1) = \{u, f_1^{-1}(u)\}$$

and

$$\Delta_u f_1 = \Sigma^{\omega} f = \log A(S).$$

By the construction of $S_{A(S)}$, each element $g \in S_{A(S)}$ has same properties

$$BP(g) = \{u, g^{-1}(u)\}\$$

and

$$\Delta_u g = \log A(S).$$

If $g \in S_{A(S)}$ has the rotation number α , then g has to be equal to f_1 by Lemma 4.9, that is, $f_1 \in S_{A(S)}$. So we have

$$R_{\beta} \circ h \circ S \circ (R_{\beta} \circ h)^{-1} = \overline{\langle R_{\beta} \circ h \circ f \circ (R_{\beta} \circ h)^{-1} \rangle}$$
$$= \overline{\langle f_{1} \rangle} = S_{A(S)}.$$

We can easily check that $\Sigma^{\omega}g = \log A(S)$ for any $g \in S_{A(S)}$ with irrational rotation numbers. Since $\Sigma^{\omega}f$ is PL conjugacy invariant, this value does not depend on the choices of $f \in S$ with irrational rotation numbers.

Case 3: Suppose that $\Sigma^{\omega} f < 0$. The proof is reduced to the case above by Proposition 4.11 stated below. This completes the proof of this theorem.

Let $\underline{h}: S^1 \to S^1$ be the orientation reversing homeomorphism defined by $\underline{h}(x) = -x$. We note that $\underline{h}^2 = \mathrm{id}$.

Proposition 4.11 If S is a topological circle, then $\underline{S} = \underline{h} \circ S \circ \underline{h}^{-1}$ is also a topological circle. Moreover, if S is contained in $PL_{+}(S^{1})$, then $\Sigma^{\omega}(\underline{h} \circ f \circ \underline{h}^{-1}) = -\Sigma^{\omega} f$ for any $f \in S$ with an irrational rotation number.

Proof. There exists an orientation preserving homeomorphism $h: S^1 \to S^1$ such that $S = h \circ SO(2) \circ h^{-1}$. Since $\underline{h} \circ SO(2) \circ \underline{h}^{-1} = SO(2)$,

$$\underline{h} \circ S \circ \underline{h}^{-1} = \underline{h} \circ h \circ \underline{h} \circ SO(2) \circ (\underline{h} \circ h \circ \underline{h})^{-1}.$$

This means that $\underline{h} \circ S \circ \underline{h}^{-1}$ is a topological circle. We can easily check that the last statement in this lemma by the following formulas

$$d_R(\underline{h} \circ f \circ \underline{h}^{-1})(x) = d_L f(\underline{h}(x)),$$

$$d_L(\underline{h} \circ f \circ \underline{h}^{-1})(x) = d_R f(\underline{h}(x))$$

for any $f \in PL_+(S^1)$.

References

- [1] Coelho Z., Lopes A. and Da Rocha L.F., Absolutely continuous invariant measures for a class of affine interval exchange maps. Proc. Amer. Math. Soc. vol. 123 no.11, (1995), 3533–3542.
- [2] Herman M., Sur la conjugasion differéntiable des difféomorphismes du cercle à des rotations. Inst. Hautes Etudes Sci. Publ. Math. 49 (1979), 5–234.
- [3] Herman M., Conjugaison C^{∞} des difféomorphismes du cercle dont le nombre de rotation satisfait une condition arithmétique. C. R. Acad. Sci. Paris **282** (1976),

503 - 506.

- [4] Herman M., Conjugaison C^{∞} difféomorphismes du cercle pour presque tout nombre de rotation. C. R. Acad. Sci. Paris, (1976), 579–582.
- [5] Minakawa H., Exotic circles of $PL_{+}(S^{1})$. Hokkaido Math. J. vol. **24** (1995), 567–573.
- [6] Montgomery D. and Zippin L., *Topological transformation group*. Interscience Tracts in Pure and Applied Math. no.1, (1955).
- [7] Plante J., Foliations with measure preserving holonomy. Ann. of Math. **102** (1975), 327–361.
- [8] Hector G. and Hirsch U., Introduction to the geometry of foliations Part A. Vieweg, Braunschweig, (1981).

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan

E-mail: minakawa@math.sci.hokudai.ac.jp