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Analysis of a family of strongly commuting self-adjoint
operators with applications to perturbed
Dirac operators
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Abstract. It is shown that a class of unitary transformations of the canonical momen-
tum operator in a direct sum of L? (Rd) is given by a class of operator-valued Lorentz
transformations of perturbed canonical momentum operators. As an application, analysis
of the quantum theory of spin-% charged particles in an external electromagnetic field is
given.
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1. Introduction

In , we have developed an operator theory concerning a family of
strongly commuting self-adjoint operators in L?(R?) which are associated
with some objects in the d-dimentional Minkowski space M¢. We have
constructed a class of self-adjoint operators in L2(R%) (Section V of [A-T])
which may be regarded as perturbed d’Alembertians in the sense of unitary
groups and whose unitary groups have integral-kernel representations in ex-
plicit forms. We have applied the theory to the external field problem of
a charged spinless particle. Moreover, we clarified algebraic-analytic struc-
tures of the proper-time method which Schwinger had presented ([Sch}) for
a class of vector potentials.

The construction of a class of strongly commuting self-adjoint opera-
tors on L?(R?) in can be extended to the case of @™ L?(RY) (m =
2,3,...). In this paper, we do it and show that results of can be
generalized. We apply the obtained results to the external field problem of
a charged spin—% particle.

We use the same symbols as in [A-T]. We denote a vector in M? as

r = (20,2,... 297 = (x“)Z;% and the metric tensor of M? by ¢ =
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(g,uu),u,uzo,...,d—l-
The indefinite inner product of M¢ is given by

d—1
zy = guay” =2y = ) a2ty
j=1

We obey the Einstein’s rule as to summation. We write zz = 2.

We define
T, =guwx’, p=0,1,...,d-1.

Then we can write xy = zty,.

Let 0, be the generalized partial differential operator in z* acting in
L*(RY) and p, = i8,. We set p = (po,...,pd_1).

It is known that a Green’s function S(z,y) for a relativistic Spin—%
charged particle with charge e in an electromagnetic field satisfies

(Y (pp — eAp) + m)S(z,y) = 6(x —y), (1.1)

where m > 0 is the mass of the particle, A = (Ay,..., Ag_1) is the vector
potential of the electromagnetic field and v#’s are matrices satisfying the
following relations:

T+ =2¢" (nv=0,1,...,d-1). (1.2)

The operator v#(p, — eA,) + m is called a Dirac operator.
We can see that, formally,

(v (pp — 6Au) +m) (=" (py — eAy) +m)

= —(pu — eAu)(p" — eA") + -g%wF‘“’ +m?, (1.3)
where
T = gl ) Fow = 40— A, (14)
and [, ] is the commutator:

[A, B] := AB — BA.
Thus if Sy (z,y) is a Green’s function of the operator (1.3), then

S(2,9) = (1" (b — eAy) +m)S1(z.y) (15)
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is a Green’s function of the Dirac operator. Considering the first term of
(1.3) as a perturbed d’Alembertian, Vaidya and Hott ([V-H]) reduced the
problem of finding S(x,y) to the problem of the spinless case in
and they calculated algebraically a Green’s function satisfying for a
special class of vector potentials by using the above idea.

In this paper, we extend results of operator calculus in to a direct
sum of L2(R?) (Section IT) and give more general results (Section III).

In [A-T], we showed that an operator-valued Lorentz transformation
of a perturbed momentum operator is unitarily equivalent to p on a dence
domain. In the case of the direct sum of L?(R%), we can obtain a uni-
tary equivalence between p and an operator-valued Lorentz transformation
of a more generally perturbed momentum operator, that is, a momentum
operator perturbed by a matrix operator.

We can compute the integral kernels of the unitary groups generated
by d’Alembertians perturbed by the matrix operator (Section IV).

In the last section, we apply the results in Sections III and IV to the
external field problem. We compute a Green’s function for a spin—%— charged
particle.

2. Operator calculus in the Minkowski space

We introduce a subset of M% x M¢
My = {(a,b) € M? x M% | a # 0,b # 0,ab = 0}. (2.1)

Let (a,b) € Mp. We introduce a partial differential operator p, on
@™ [2(RY)

Py (Vi(x),. .., ¥vm(x)) — (put1(),. .., putm(z)). (2.2)

Its domain D(p,) is the following. (We denote operator domain by D(-).)

D(p.) = D D(py).
We define a multiplication operator x,, on @™ L?(R%)

X, (P1(x), .. vm(x)) = (zpn (), ... 2pdm () (2.3)

m

D(x,) = @ D(z,,)
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Two operators p,, and x,, are self-adjoint.
We introduce two operators atx, and b*p, on @™ L*(R?):

a,uxu (@), () (aﬂxuwl (), ,a”ﬂﬁuwm(ﬂﬂ))a 2.4)

Ypu: (Vi(z), ..., ¥m(z)) — (Hpuhi(z),... . 0Mpudm(z)), (2.5)

with
D(a"x,) = GB D(ax),
D(az) = {¢ € L*(RY) | azy € LE(RY)}

m

D(vp,.) = P D(bp),

Ditp) = {v € LARY) | | bei(e)de < oo}

where 9)(€) := (2r)~ %2 Jra ¥(x)e®*dzx is the Fourier transform of ¢ with
€x (&x is the Minkowski inner product of £ and z.). For convenience, we
denote a#x, by ax and b#p, by bp.

We have for all (1, ...,%m) € @™ L*(RY)

eSX(hy (), ..., Ym(z)) = (€% (z), ..., e, (z)) (2.6)
P (), .. Ym(x)) = (Pr(z —tb),. .., hm(x — tb)) (2.7)

where s,t € R.

Two (not necessarily bounded) self-adjoint operators A and B in a
Hilbert space are said to strongly commute if their spectral projections
commute.

The following characterization is well known. (See, [R-S1], Theorem
VIIIL.13.)

Lemma 2.1 Let A and B be self-adjoint operators on a Hilbert space.
Then the following (1)—(3) are equivalent.

(1) A and B strongly commute.

(2) For all s,t € R, etdeisB = ¢isBeitA,

(3) Forallt € R, ¢ B C BeA.

18aX

We can easily show that e and P commute. Hence, by Lemma

2.1, we have the following lemma.
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Lemma 2.2 ax and bp strongly commute.

Let Breal(Rd) be the set of real-valued Borel measurable functions on
R? which are almost everywhere finite with respect to the d-dimentional
Lebesgue measure. Let Eqx(-) and Epp(-) be the spectral measures of ax
and bp, respectively. Then there exists a unique two-dimentional spectral
measure Eqx pp(-) such that Eqx pp(B1 X By) = Eux(B1)Epp(Ba), (By and
Bj are Borel sets in R.)

Let u € Bea(R%). By functional calculus, we can define a self-adjoint
operator u(ax,bp) on @™ L*(RY) by

U(GX, bp) = Ld u()\l, AZ)dEax,bp()\la /\2)
We have for all (¢1,...,%,) € @™ L*(R?)

u(ax, bp)(Y1(z), ..., Ym(x))
= (u(az, bp)i1(x), . .., u(az, bp) Y (z))

Definition Let Nog = {0,1,2,---}. For r € Ny, we define the following

sets of functions (cf. Section II of [A-T)).

(1) Let C"_,(R?) be the set of r times continuously differentiable real-
valued functions on RY.

(2) Let 8" (R%) be the set of bounded functions u such that u € cr ,(RY)

and the partial derivatives of u of order j (j = 0,1,...,r) is bounded
on RY.

(3) A real-valued function u = wu(z1,z2) on R? is in the set B"® (r ¢
No) if u(-,x2) € B"(R?) for almost everywhere x5 and the function
fﬁ'u(xl,xg) = 8j/8x{u(:zc1,a:2) is bounded on R? for all j = 0,...,r;
u € B> if the function u(zq,z2) := u(xy,x1) is in B>, We write
8%11,(1:1,3:2) = 8j/8x%u(ac1,:c2)

We denote by C$°(R4) the set of infinitely differentiable functions on R¢
with compact support. We denote by L>(R%) the set of essentially bounded
Borel measurable functions on R?. The subset of real-valued functions in

L*(RY) is denoted by L2 (R%).

real
Lemma 2.3 Let u € BY°(R?) Then, for each p = 0,1,...,d — 1,
u(ax, bp) leaves D(p,) invariant and

[P, u(ax, bp)| = ia,01u(ax, bp) (2.8)



570 N. Tominaga

on D(p,).
If uw € B (R?), then, u(ax,bp) leaves D(x,) invariant and

[x,, u(ax, bp)] = —ib,0ru(ax, bp)
on D(x,).

Proof. We have only to show that applied to each component of
any vector in D(p,,) holds. This follows from Lemmas 2.3 and 2.4 in [A-T].

[]

By functional caluculus, we get a unitary operator et*(ax:bp) (t € R):

@ bP) . (y (2), ... P (2))

. (eitu(ax,bp)¢1 (x), o 7eitu(aa:,bp)wm(aj))

We denote (¢1(x),...,¥m(x)) by ¢¥(x).
We say that a function u € Biea(R?) is in the set ¢ (R?) if u(-,x2) €

Cr.(R) for almost everywhere 5 € R and there exists a sequence {uy}
(ug, € B"°(R?)) such that
suplaiuk(xl,xgﬂ < C’I&lju(azl,xz)} (C is a constant), (2.9)
k>1
lim Hup(zy,9) = Hu(zy,z) (2.10)
— 00
for 7 =0,...,r.

Theorem 2.4 Let u € ¢ (R?) and ¥ € D(p,) N D(8,u(ax,bp)). Then
for each p=0,1,...,d— 1, e~ "axbP)q)y ¢ D(p,), and

ei“(ax’bp)pue_m(ax’bp)’lb — [p,u + aualu(a)g bp)]'tp7 (2.11)

where

D(p,) N D(01u(ax,bp)) = EmBD(pu) N D(01u(ax, bp)).

Proof.  In the same way as in the proof of [Theorem 2.5 of [A-T|, for each
component ¥; of ¥, we can show that the following equation holds,
) p TPy = [p, 4,y u(az, bp)y
(j=1,...,m). (2.12)
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To prove [2.12), for u € ¢}(R), we first show that for u € BL>°(R),
holds. Then, using the fact that for all u € ¢}(R) there exists a
sequence {ug}r (up € B (R)) convergeing to u and satisfying (2.9) and

(2.10), we obtain the result. ]

Theorem 2.5 Let u € B4 (R?). Then, for each u = 0,1,...,d — 1,
e~(ax8P) Jeques D(p,?) = @™ D(p,?) invariant and the following equa-
tions holds on D(p,?) :

eiu(ax,bp)pie—iu(ax,bp)w — [pﬂ + aualu(ax’ bp)]qu (2.13)

Proof. Let ¢, ¢ € D(pi), by Theorem 2.4, we have

(P, e Plyp) = (pm,pue—m‘“’bpw
= (pug, e M@ P)p 4h)
+ (Pugp, e P a, 0yu(ax, bp)ep)

Since p,¥ € D(p,), we obtain e~ iu(ax,bp) p.¥ € D(p,). Using that
u(ax,bp) and Oyu(ax,bp) commute and Au € BL°(R?), we obtain
e~ MaxP)q §u(ax,bp)yp € D(p,). Hence e xRy ¢ D(p?). Using

(2.11), we have (2.13). ]
Now let
(= —p% = 0009 — 0101 — -+ — 04_104_1, (2.14)
m d—1
D(Om) =P () Dpu®),
u=0
where
8jd) = (8jw1 (.’E), ce ,8j¢m($)). (2.15)

The operator [,, is a free d’Alembertian on @™ L?(R?). Since it is es-
sentially self-adjoint, we denote its closure by Hg. For u € ¢}(R?), we
define

Dmu = —[p+a81u(ax bp)]2

= [60 — za081u CLX bp Z[a 'lajalu ax bp)]
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m d—1

D(Umu) = @ ) Dipy + apdiu(ax, bp)]?).

u=0
Using [I'heorem 2.5, we obtain the following theorem.

Theorem 2.6  Let u € B2°°(R?) Then, [, is essentially self-adjoint
on D([m ), and the following equation holds:

eiu(ax,dp)Hoe—iu(ax,bp) =[]

m,u:.

Let MP(R) be the set of d x d real anti-symmetric matrices. For
f € M#»(R) and q € M? we define the following operator

Qu(x) = fuu(xu - q”)- (2.17)
That is,
Qu(x) : (Y1(x), ..., Ym(x))
= (fw/(xy - qu)wl('r)? ce f;u/('ry - qy)wm(x))'

We denote Q,(x) by Q. We can easily show that Q,, is essentially self-
adjoint on @™ C5°(RY). Q, leaves @™ S(RY) invariant, and for u,v =
0,1,....d—1,

P, Qul =ifu, w,v=0,1,...,d—1.
For Q, we define an operator L; as follows,
Ly =Qup", (2.18)
m d—1

L) = P N D@
u=0

By the above commutation relations, the equation

P'Q, = Qup*
holds on D(Ly). Hence, Ly is a symmetric operator on @™ L?(R%).
Proposition 2.7 Ly is essentially self-adjoint on @™ C3°(R?).
Proof.  Let

ol = @0 + @2t @, = (a0 at ),
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d—1
-2
u=0
Let N be the Hamiltonian of the harmonic oscilator operating on
@™ L*(RY);
N: (¢Y1(x),...,Ynm(x))
= (A [2)r(), o (A + [)im(2)),

@D )N D(|z|?).
We can see that N is essentially self-adjoint on @™ C§°(R%). We get for
P € @™ C5°(RY),
ILs9)” < Gl (N + D)9)?, (2.19)

(Lyp, Nap) — (Nap, Lyap)| < Cof|(N + 1) 39p|2. (2.20)

where C; and Cy are positive constants. Hence, by Nelson’s commutator
theorem (for example, see [R-S2], Theorem X.37), we obtain the desired
result. L]

For each a € M¢

Fo:={f € MFP®R)|a'f, =0, v=0,1,...,d—1}. (2.21)

Proposition 2.8 Let a € M¢.
(1) If f € Fq, then each Q, and ap strongly commute.
(2) If f e Fg,, then L—f strongly commutes with ax and ap.

Proof.  Similar to the proof of Proposition 3.2 in [A-T]. Ul

3. Lorentz transformations and operator calculus

Let (a,b) € My, f € Fu N Fp and u € Biea(R?). Then, by
2.8, u(ax,bp) and L—f strongly commute. Putting

DF, = ﬂ D(u(ax, bp JLf ). (3.1)
J,k€No

The following operator

M(u,Ly) := [u(ax, bp)Ly] [D??u (3.2)
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is self-adjoint. For f € M}*(R) and u € L2 (R?), we define the following
bounded operator on the Hilbert space @Mzé[@m L?(R%)]

~ o0 ¢ 1\k rk k
A(f, u) = e—fu(ax,bp) — Z ( 1) f u(ax, bp) : (3'3)
k!
k=0
where
f = (ful/),u,l/:o,...,d—la f'uu = QHAf/\y- (34)

Note that each component of (A(f,u)) is given as follows;

i fk Z]u(ax bp)*

k=0

(1,j=1,...,m). (3.5)

Lemma3 1 A(f,u) is a bounded Lorentz transformation on

o[ @™ L*(RY)),.

Remark. A linear operator T represented as a matrix operator 7' = (TH",)
on H = EBZ;}) H, (each H, is a complex Hilbert space and T*, is an oper-
ator from H, to H,.) is called an operator-valued Lorentz transformation

if
(T)\M)*g/\prl/ C g
wehre g = (g,,) : H — H is defined by

(9v)° =v" (gp) ==/ (j=1,....,d=1)
To prove Lemma 3.1, we use the following proposition.

Proposition 3.2 Let S be a symmetric operator on a Hilbert space K
and f € MFP(R). If S is bounded, then e/® is a bounded operator-valued
Lorentz transformation on Z;%)IC.

(For proof, see Proposition 4.4 of [A-T].)

Proof of Since u(ax, bp) is a bounded symmetric operator on

@™ L?(R%), by Proposition 3.2, e—fulaxbp) is a bounded operator-valued
Lorentz transformation on @” o™ L2(RY). []
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Lemma 3.3

(1) If f e F,, then
A(f,u)f,a” =ad' , p=0,1,...,d—1 (3.6)

on @™ L*(R%).
(2) Let u € BLY>(R?). Then each component of A(f,u) leaves D(py)
(A=0,1,...,d — 1) invariant and for all ¥ € D(py),

p)\A(f7 U)NV¢

= —ia)O1u(ax, bp)A(f, u) o fPrd + A(f,u)" ' pat. (3.7)
Proof.  Similar to the proof of in [A-T]. []

Theorem 3.4 Let f € F,NFy and u € BH>°(R?). Then for all ¢ €
D(N), e-™M@Ls)y, € D(p,) (n=0,1,...,d — 1) and

€iM(u’Lf)p‘u€_iM(u’Lf)’¢

= A(f,w),(p” + a"B1u(ax, bp)Ly)ip. (3.8)

Proof.  Similar to the proof of Theorem 5.2 in [A-T]. ]

Let u,v € Biea(R?) and f € F, N F,. Then, by [Proposition 2.8,
u(ax,bp) and M(v,Ly) strongly commute. Thus u(ax,bp) + M(v,Ly) is
essentially self-adjoint. We denote its closure by M(u;v,Ly).

Theorem 3.5 Let u,v€ BY°(R?) and f € FyNFy. Then e ™MuvLiqyc
D(p*) for ally € D(N) and p=0,1,...,d — 1. Moreover,

eiM(u;v,Lf)pp,e—iM(u;v,Lf)lp

= A(f,v)".{p" + a’(1v(ax, bp)L; + Oru(ax,bp)}yp.  (3.9)

Proof.  Similar to the proof of [Theorem 5.5 in [A-T]. ]
For u,v € ¢'(R?), we define
O fuw = —[p + a(@1v(ax, bp)Ly + d1u(ax, bp))?
= [8o — iag(81v(ax,bp)Ly + 81u(ax, bp))?
d—1

— Z[aj — ta;(01v(ax, bp)L—f + Ou(ax, bp)]Z, (3.10)

j=1
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m d—1

D(Cn, i) = D () D[Py + au(dr0(ax, bp) Ly + dru(ax, bp)]*.

pn=0

Let r,s € No. We say that a function u on R? is in the set B™*(R?)
if, for all 3 € R, u(-,z2) € Cp;(R) and &ju € B°*(R?) N C(R?) for

j=0,...,r with 858{14 = 3o5u, j=0,...,m, k=0,...,s, where C(R?)
denotes the space of continuous functions on R2.

Theorem 3.6  Let u,v € B>2(R?) and f € F, N Fy. Then, for each
w=0,1,...,d—1,e ™MuvLs) maps D(N?) into D(p“z), and, for all ¥ €
D(N?),

eiM(u;v,Lf)(puz)e—iM(u;v,Lf),Lp
= [A(f,v)" {P” + a”(d1v(ax,bp)L; + Oru(ax,bp)}?eh. (3.11)

In particular, D(N?) C D([p, fuw) and for ¢ € D(N?)

eiM(u;’u,Lf)Dme-iM(u;v,Lf)¢ — Dnl,f,u,v¢- (312)
Proof.  Similar to the proof of [Theorem 5.10 in [A-T]. L]

Let w € Biea(R?). Then we can define a self-adjoint operator w(ax, bp).
Let K be an m x m Hermitian matrix. We can define a self-adjoint operator

Kw(ax,bp) on @™ L*(RY) by

(Kw(ax,bp)y); = > Kjrw(ax,bp)vy, ¢ € D(w(ax,bp))
k=1

Theorem 3.7 Let w € ¢'(R?) and ¢ € D(p,) N D(61w(ax, bp)). Then,
for each p=0,1,... d—1, e Ewlaxbply, ¢ D(p,) and

ein(ax,bp) pue_in(aX’bp)'l,b — p#¢ + a“Kalw(a)g bp)lb (3.13)

Proof.  The proof of this theorem is similar to that of [Theorem 3.4.
[

Let u,v,w € Bya(R?) and f € F, N Fy,. Then, by
2.8, u(ax,bp) and M(w;v,Ly¢) strongly commute. Thus, Ku(ax,bp) +
M(w;v,Lys) is essentially self-adjoint. We denote its closure by
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M(u, K;w;v,Ly). That is

M(u, K;w;v,Ly) := Ku(ax, bp) + M(w; v, Ly). (3.14)
In particular, for t € R

eitM(u,K;w;v,Lf) eitM(w;v,Lf)eitKu(ax,bp) eitKu(ax,bp) eitM(w;v,Lf).

Theorem 3.8  Let u,v,w € BL®°(R?) and f € F, N Fy. Then
e~ M(uwKwivLs)yy ¢ D(pH) for allp € D(N) and p=0,1,...,d — 1. More-
over,

eiM(u,K;w;v,Lf) ,ue—iM(u,K;w;v,Lf)¢

p
= A0 + o (Oro(ax, bp)E;
+ Oyw(ax,bp) + Kdyu(ax, bp))} . (3.15)

Proof. On D(N) the following equation holds;

eth(w;v,Lf)ethu(ax,bp) ,ue—thu(ax,bp)e—'LtM(w;mLf)

p
— 6itM(w;v,Lf) [pu + CLMKalu(CLX, bp)}e_itM(ww’Lf)

_ €itM(W;U’Lf)pue—itM(w;v’Lf) + auKalu(ax, bp)

Then by [Theorem 3.5 we can prove this theorem. []
For u,v,w € ¢! (R?) and an m x m Hermitian matrix K, we define
U K f 0.

= —[p + a(d1v(ax, bp)Ls + d1w(ax, bp) + Kdiu(ax,bp))]*
= [8o — iap(d1v(ax, bp)L; + dyw(ax, bp) + Kdu(ax, bp))]’

d—1
— Z[(’?j —ia;(81v(ax,bp)Ly
j=1
+ dyw(ax, bp) + K u(ax, bp)))?, (3.16)
D(Dm,K,f,u,v,w>
m d—1 L
= @ ﬂ D([py + au(01v(ax,bp)Ly
©u=0

+ rw(ax, bp) + K u(ax, bp))]?).
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Theorem 3.9  Let u,v,w € B3*(R?) and f € F, N Fy. Then, for each
p=01,...,d—1, e ™MuKwuvlLs) g D(N?) into D(p“2)7 and for all
P € D(N?),

eiM(u,K;w;v,Lf)( —iM(u,K;w;v,Lf)¢

p*)e
= [A(f,v)" {p" + a”(01v(ax, bp)—_f
+ Ow(ax, bp) + KO u(ax, bp))}|%ep. (3.17)

In particular, D(N?) € D({Cp i fuww) and for ¢ € D(N?)

eiM(u,K;w;v,Lf)Dme—iM(u,K;w;v,Lf)¢ = Dm K, fu,v wlp- (318)

The proof of of this theorem is similar to that of [Theorem 3.6l.
Let

Hf(u’ K; w, U) _ eiM(u,K;w;v,Lf)Hoe—iM(u,K;w;v,Lf)

Corollary 3.10  Let u,v,w € B>?(R?) and f € F, N F,. Then
Hy(u, K;w,v) is a self-adjoint extention of [ k. fuvw [D(Nz)

4. Integral kernels of the unitary groups generated by perturbed
d’Alembertians
Let ¢ € @™ L'(R?) N L?2(R?). Then, for each v; € L'(R%) N L?(RY)
(7=1,2,...,m),

(o) @) = [ Al )i 0y, (1)
R

ie(s)m(d—2)/4
ST e yas (4.2)
2d,n—d/2lsld/2 ?

Ag(z,y)

where €(s) is the sign function.

Let Ny be the set of null vectors in M¢?, that is, each z € N satisfies
2% = 0. Let H(u,v) := eMWuivLy) fe=iM(uw,Ly) (M (u;v, Ly) and Hy are
M(u; v, Ly) and Hy respectively in the case of m = 1.) and ®, ¢(z,y;s) be
a function on R? x R% x R\ {0} defined by

Dy, 1(z, 3 8) (4.3)

1 —|ulax — 00X Ss)—ula —ox S 174 v
= é.s.(yu — g")(1 — e~ [wlaz:(by=bx)/25) ~u(ay,(by—br) /2 )]f)w/(m —¢).
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Note that e~ [u(az,(by—bz)/2s)~u(ay,(by—bz)/25)If ig 4 d x d matrix whose com-

ponents are operators. Then we have the following theorem. (see Theorem
6.7 of [A-T].)

Theorem 4.1 For each ¢1,...,0m, u,v € Breal(R?), f € Fu,NFy, s €
R\ {0} and a,b € Ny, we obtain

(eiSHf(u’U)i/Jj)($) (4.4)
_ /Rd 6,z'[u(a:v,(by—bac)/Zs)——u(ay,(by—bx)/Qs)]+2'<I>v’f(:r,y;s)As(x’ y)lbj (y)dy,

Let u, v, w € Breal(R?). Now we can write

eist(u,K;w,v) _ eiM(u,K;w;v,Lf)eisHoe—iM(u,K;w;v,Lf)

_ 6iM(u,K;w;v,Lf)eisHoe—il\/[(u,K;w;'v,Lf)e—isHo eiSHo_

Since the following equation hold on @™ S(R%),
etsHoxhe=isHo — w4 ogpt
and ax + 2sap is essentially self-adjoint on @™ C5°(R%), by functional cal-
culus, we obtain

)e——iSHo _

e""Hoy(ax, bp = u(ax + 2sap, bp)

)e—iSHQ

e*Hoy (ax, bp = w(ax + 2sap, bp).

Using the fact that L strongly commute with Hy (see Lemma 6.6 in [A-T])
eiSHOU(aX, bp)L_fe—isHo — v(ax + 2sap, bp)L—f
Hence,

eiSHOM(u, K:w;v, Lf)e_iSH0 (4.5)
= w(ax + 2sap, bp) + Ku(ax + 2sap, bp) + v(ax + 2sap, bp)Ly,

so that
eist (u,K;w,v)

_ eiM(u,K;w;v,Lf)e——z'[w(ax—+—23(1p,bp)+Ku(ax+25ap,bp)+v(ax+23ap,bp)L—f] eisHo

. eiK[u(ax,bp)-—u(ax+25ap,bp)] eist(w,v) , (4.6)
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where
eist(w,v)

_ ei[w(ax,bp)—w(ax+25ap,bp)}ez'[v(ax,bp)—v(ax+25ap,bp)L_f] eisHo

Thus for all ¥ € @™ L(R?),

eist(u,K;w,U),lp (47)
_ 6iK[u(a,x,bp)—u(ax—}—Qsap,bp)](eist (w,v)wl(aj)’ L eist (w,v)wm(m))
Let A1,..., An(A1 < -+ < A\p) be eigenvalues of the Hermitian matrix
K and V be a unitary matrix satisfying
A1 0
K=V VL (4.8)
0 Am

We denote the above diagonal matrix by K,;. Then

eiK(u(ax,bp)—u(ax—}—2sap,bp)) _ Vein(u(ax,bp)—u(ax—{—?sap,bp))V—l -

(4.9)
Since
¢ Ka(u(ax,bp)~u(@x+25ap,bp) .
1(z) eix\l(U(amvbp)—U(M»bp))@bl(m)
— : :
wm‘(:c) eiAm (u(az,bp)—u(az+25ap,bp)) ), ()

we can write

6stf(u,K;w,v),lp

eist (w,v)¢1 (1.)
_ Vez’Kd(u(ax,bp)—u(ax+2sap,bp))V—l

esHi(wv)y, (z)
ei)\l (u(az,bp)—u(az+2sap,bp)) (V—leist(w,v)tp)l (;p)

=V -
et (ulazbp)—ulaz+2sap.bp)) (7 ~1eisHy (wo)p) ()
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ei/\1(u(am,bp)—u(am+2sap,bp)) isHy wv)( ,(p) ( )

—V : (4.10)
ei/\m(u(a:r:,bp)—u(aa:—f—?sap,bp)) isHy(w,v ( 1’(/)) ( )

By Theorem 4.1, if w,v € Brea(R?), f € Foa N Fy and a,b € Ny, we

obtain

(eist(w,v)¢) (m)
— /Rd ei[w(aw,(by—bw)/Qs)—w(ay,(by—bw)/25)]+i<1>1,’f(:c,y;s)AS(a:’y)qs(y)dy’

for all ¢ € LY(R?) N L2(RY) and s € R\ {0}. Now we set

k(iL‘, y) _ ei[w(ax,(by——bz)/23—w(ay,(by—bx)/?s)]—{—i@vyf(;r:,y;s)AS(I’ y)
(4.11)

It is easy to show that |k(x,y)| is bounded and for all £1,&, € R,
bz — €10 — Eob,y) = i (mwan)/2erialty=bo) 2ep )
(z,y) € R* x R".
We set
Fj(xh T2,73) = €' iXj(u(z1,x3)—u(z1+2572,73) G=12... ,m).

Since F; € L*(R?), by Lemma 6.2 of [A-T], we obtain for all ¢ € L}(R%)N
L*(R%) and

(Fj (ax7 ap, bp)K0¢)(:L')
—az by—b
= [ (o 2 ) kot

S 2s

where K is the operator of which kernel is given by k(z,y). Hence

(e (ulaz bp) —u(az-+2sap bp)) gisH  (wyv) ;) (z)
_ / oiAj[u(az,(by—bz)/2s) ~u(ay,(by~bz) /25)] (4.12)
Rd
« ei[w(az,(by—bm)/QS)—w(aya(by—b$)/2$)]+i¢“’f(x’y;s) AS (;p, y)qﬁ(y)dg

Since obviously V =1y € @™ L}(RY)NL2(RY) for ¢ € @™ L' (RY)NL2(RY),

we obtain
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ei)\j(u(a:r,bp)—u(a$+2sap’bp))€iSHf(w’v) (V—lw)j (SU)

. / dei)\j[u(aa:,(by—bﬂ?)/%)—u(ay»(by"bm)/zs)] (413)
R

v ei[w(az,(by—bsc)/23)-w(ay,(by——bm)/25)]+i<I>v,f(:c,y;s)As(x’ y)(V_ldJ)(y)dy.

By the previous arguments, we obtain the following theorem.

Theorem 4.2 Let u,v,w € Byea(R?), f € FuNFy and a,b € Ny. Let K
be an m x m-Hermite matriz and V = (v;j) be a unitary matriz satisfying

M 0
K=V 7
0 A

where {\j}i=1,. . .m(A < - < \,) are eigenvalues of K. Then for all ¥ €
@™ L' (RY) N L2(RY), and s € R\ {0}.

(eist (u,K;w,v),lp)j (x>

_ Z Zvjkm /Rd ei/\k[u(a:z:,(by—ba:)/2s)—u(ay,(by—bw)/?s)] (414)

5. Application to the external field problem for a spin—% particle

In this section, we apply the operator theory in the preceding sections
to the external field problem for a spin-+ charged particle.

Let a € Ny, W € C2_|(R), u. = ue(zt) (€ is a parameter) be a function
in Crleal R) satisfying the following properties.
(1) tu € BY(R).
(2) supseg |tue(t)] < C  (C'is a constant independent of ¢).
(3) limeouc(t) =1, teR\{0}.
Let K be an m x m Hermitian matrix.
Let F = (Fu)uw=0,..d-1 be a tensor field on M?. Physically, F,,

is an electromagnetic field. A vector potential A = (Ay,...,Ag—1) of the
electromagnetic field is a vector field on M? such that

Fo, = 8,A, — 8,A,,. (5.1)
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We assume that the vector potential A is the form
Au(z) = Qu(z)W'(az), p=0,...,d—1, (5.2)

where Q,(z) = fu (¥ —¢") (g € M?is a constant vector) with f € M3(R)).
For A,, we define

Ay (1), (@) = (Au(e)di (@), .o Ap(e)Pm ()  (5.3)
on @™ S(RY). We define

Al = apuc(ap)A,
1

+ iauue(ap)[l — apuc(ap)](ax — aq)*W'(azx)? (5.4)
and

AL (i), Ym(z) = (AL (@)1 (), . . Ay(z)Ym(2)).
(5.5)

For all ¥ € @™ Z;%)D(Au)] N D((ap)~(azx — aq)?*W'(ax)?), we can
see that

lim Aftp = Autp, p=0,1,....d—1.

For W € C?

real’

Y(t)=W(t)+ (t — aq)W'(2). (5.6)

let

We take W(t) such that Y (¢) is bounded. For Af and Y (),
Y(ax) : (¥1(z), ..., ¥m(x)) — (Y(az)1(z),...,Y (az)m(x))
Y'(ax) : (Y1(2), .., ¥m(2)) = (Y(az)hi(z),..., Y (az)m(z))
and

a
Bj = A} — Z“KY’(ax)ue(ap). (5.7)

That is, for all ¥ = (¢Y1(z),. .., Ym(z)),
Bl : (¥1(z), .- ¥m(z)) = (AL () (), ..., Ay (2)dm(2))

Qu

— K (Y (@w)uclap)in(2), ..., Y (02)uc(ap)im (2).
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For B¢ . we define

u’
o, (€) := pu — By, (5.8)
D(IIp,(€)) = D(pu) N D(B,).
Let
k
2, {W € B (R)| (t~aq) "1 € L¥(R) k=1, ,r},
where r € Np.

Lemma 5.1 Let W € 20y. Then Ily,(€) is essentially self-adjoint on
@™ C5°(RY)
Proof.  p,, essentially self-adjoint on @™ C§°(R9). Since, for € > 0, A
and (a,/4)KY'(ax)uc(ap) is bounded, p,, — B/, is essentially self-adjoint on
P™ Cg°(RY). O
For Y (t), we introduce on operator-valued Lorentz transformation on
o @™ L*(RY):

A(e) = efY(@¥)uc(ap) (5.9)
and set
IT#(e) := A(e)*,TIo" (¢). (5.10)
We define
Go :={f € Ful f"\f') = a*ay, pv=0,...,d—1}. (5.11)

Lemma 5.2 Let W € Wy, a € Ny and f € G,. Then IZI“(E) 15 essentially
self-adjoint on @™ C§°(RY)

Proof. ~ We have for all ¥ € @™ C°(RY),
II#(e)tp = Plap + V Hap,
where
Pt =p* + f,p"Y (ax)uc(ap) — apue(ap) W' (ax)Q*

Ve = %a“apu.s(ar>)2Y(a><)2 — a"apuc(ap)?Y (ax)(ax — aq)W'(ax)
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+ %“”ue(ap)[apue(ap) — 1] (ax — ap)*W'(ax)"

1
+ Za“KY’(ax)ue(ap).
P # is symmetric on @™ C§° (Rd) and we have
[P < CI(N + 1)eb]] (C : constan), (5.12)

(P9, Nep) — (Nop, Pe9p)| < DJ|(N + 1) 29|
(D : constant) (5.13)

for ¥ € @™ CP(RY). Since N is essentially self-adjoint on @™ C$°(RY),
by Nelson’s commutator theorem, we obtain that P is essentially self-
adjoint on @™ C$°(RY). It is easy to show that uc(ap), apuc(ap) and Y (ax)
are bounded. Thus V.* is bounded and self-adjoint. Hence P./* + V * is

essentially self-adjoint on @™ C$°(R). ]
Let
t
Q(t) = / (s — ag)?W'(s)%ds (t € R) (5.14)
aq
for W e CL | (R). Put

K ;W®u6,Lf>, (5.15)

Ue; K) := e_iMe,

where M is given by (3.34).
Let

gg = {f € Gq l fuuaA+quau+fAuau =0, p, v, A\=0,...,d~ 1}-
(5.16)

Theorem 5.3 Let W € %y, a € Ny and f € G°. Assume that
(t —aq)W' € L2(R). Then

Ule; K)pHU(e; K) 71 = TI4(e). (5.17)
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Proof.  For all 9 € @™ S(RY),
U(e; K)p'U(e; K) ™'
- A(e)“V{A( Fi (Y = W) @ u)’sp p — a”uc(ap) W' (ax)Lsep

_ a"“f(ap;m“x)zp + %UKY'(ax)ue(ap)dJ}. (5.18)
Using
A(f,(Y = W) @ uc)”xp™ep
=p"Y — fxue(ap)(Y (ax) — W (ax))p e
4 %a”apue(ap)z(Y(ax) W (ax)) 2 (5.19)
and
0Ly = apQ“y — f*,p*(ax — aq)p,
we obtain
Ule; K)p U6 K)~'p = T (e)p
for 9 € @™ S(R?). By Lemma 5.2, we get the desired result. ]

Now, as an Hermitian matrix K, we take

K = fuuaﬂl/’ (5.20)
y 1
o = Ly, (5.21)
where v# (1 = 0,1,...,d — 1) are m X m-matrices satisfying the following

anti-commutation relations,
’7“’71/ + ,YV,YM — 29/“/]. (5.22)
I is the unit matrix. We denote f,,,0*¥ by f-o. We define

H(c; f-0):=U(s f-o)HoU(e; f-0) (5.23)

By [Corollary 3.10|, we obtain the following result.

Corollary 5.4 Let W € 23, a € Ny and f € GO. Assume that
(t —agq)W' € L% (R) and u. € B%(R). Then H(e; f - 0) is a self-adjoint
extension of —HO(G)Z[D(Nz).
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Let W € 23, a € Ny and f € G°. Assume that (¢t — aq)W’ € L*(R)
and u € B2(R). By Theorem 3.9,

Mo(e) = [A@){p— A+ (/o) (ax)uc(ap) }|”

= (A {pr - A"+ (s 7)Y (ax)ucap) )]
d—1 v
- YA {pr - A+ az(f - U)Y’(aX)Ue(“P)}r

j=1

on D(N?). We can write

A~ A+ 5(F - o)V (@uclap) }|

= [A(©)(p ~ A + (/- 0)Y"(ax)apu (ap)
= TI(e)? + 5 (f - 0)Y"(ax)apuc(ap), (5.24)

where

(5.25)

d—1
= [A()°(p" — A)]? = D [A(eV (P — A%
j=1
Moreover,
fuwY ' (ax)apuc(ap)

= apuc(ap) fu{2W'(ax) + (ax — aq)W"(ax)}
= apuc(ap){(fuw — fu)W'(ax) + (0, Qp — 2, Qu)W" (ax)}.
Since (ax — aq)?y € @™ L?(R?) for all ¥ € D(N?), we get

[Po, au(ax — aq)*W'(ax)?

[Py, av(ax — a,q)QI/V'(ax)2

]

= 2a,a,(ax — aq)W'(ax)? + 2a,a,(ax — aq)*W" (ax)
]

= 2a,a,(ax — aq)W'(ax)? + 2a,a, (ax — aq)*W" (ax).
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Hence

Py, au(ax — aq)QW'(ax)Q] = [py, av(ax — aq)zW'(ax)Q] (5.26)

on D(N?). We can see that

Py, Ay] = ifu W' +ia, Q,W" (ax)
[pu’ A,,] = ifuuW/ + iauQuW”(aX).

on D(N?). Using the above results, we obtain

[prZ] - [pw Azez] (5.27)
= iapue(ap){(f;w - fVu)W/(aX) + (CLVQ;L - CLMQU)W”((IX)}.

Thus,
(e + 5(f - o)V (ax)apuc(ap)
= T1(e)" = 50" {[py, A7) - [P AL}
=(Pu— A )Y (Py — AY). (5.28)

Hence, we can write

H0(6)2 = Vu(p,u - AZ)VU(pV — A7) (5.29)
Thus we obtain the following result.

Theorem 5.5 Let W € W3, a € Ny and f € GY. Assumne that
(t —aq)W' € L*(R) and u. € B2(R). Then the following equation

H(c f- o) +m® = {y"(py — A}) + m}H{—"(p, — A}} +m}
(5.30)
holds on D(N?). Moreover, H(e; f - o) + m? is a self-adjoint extention of
{7 (pu — AL) + mH{—"(py — A}) + m}[ pn2)-
We have the following integral-kernel representation of H(e; f - o)

Theorem 5.6 Let W € C. (R) and a € Ny, f € F,. Assume that

J oo is an m x m Hermitian matriz and Ai,..., A\, (A < --- < \p) are
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eigenvalues of f- o and V = (vy;) is a unitary matriz satisfying

A1 0
fro=V vl
0 Am

Then, for all ¢ € @™ LY(R*) N L?(R%), we have

(eisH(e;f-U),(/))j(x)
=YY [ A iy, (531
k=11=1
Of(z,y;5) = —i\fue (ayZ—Saa:> (Y(az) — Y(ay))
+ %ue (ay;s(m:) (Q(az) — Qay))
- %(y“ - (J“){l — exp lu€<ay2—8aac) (W (az)
- W(ay))f} }W(a:” —-q"), (5.32)

where (eiSH(“f"’)tb)j is the j-th component of e*H(&f0)q).

Proof. ~ We have only to take

u = —%Q@ue, v=-WRu, w= -—%Y@uE
as u, v, w in rem 4.2, []
From the assumption of wu,,
limu(t) =us(t) =5 (t€R\{0)).
Let
M:M<_Y§)u_1,K;Q®2u_1;W®U_1,Lf>
and
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Lemma 5.7 Let W € 20;. And assume that (t — aq)W' € L*(R). Then

s—lirr(l)U(e;K) = U(K),
s-lim U(e; K)™' = U(K)™L.

e—0

Proof.  Using general convergence theorem ([R-S1, Theorems VIII.25 and
VIIIL.21]), we have only to show that M, converges to M on common core
for M, and M.

Let D = @™ [N;%=0 D((ap)_jL—fk)]. Then for all ¥ € D,

My = — Y (ax)uc(ap)

+ %Q(ax)ue(ap)tb + uc(ap)W (ax) L9,
My = ¥ (ax)(ap) ¥
n %Q(ax)(ap)“lzb + (ap) "W (ax) Ly

By functional calculus, lim, oM. = Mt for v» € D. D is a common
core for M and M. Thus by [R-S1, Theorem VIII.25], we can easily show
that M. converges to M in strong resolvent sense. By [R-S1, Theorem
VIIIL.21], this is equivalent to lim._qe"™<qp = ¢?*Maj for all ¢p € L2(RY)
and s € R\ {0}. (]

By Lemma 5.7, we can show the following Lemma.

Lemma 5.8 Let W € 20;,. Assume that (t —aq)W’ € L2(R) and f € GO,
Let

H(e; K) =
H(K)

Ule; K)HoU(e; K) 71,
U(K)HoU(K)™L, (5.34)

Then H(e; K) converges to H(K) in the strong resolvent sense as € — 0.

Since H(e; K') converges to H(K) in the strong resolvent sense as € — 0,
e'sH(GK) strongly converges to e*H(K) for s € R\ {0} as € — 0.

Now we take f-o as an m x m Hermitian matrix K. By [Theorem 5.6,
if WeC,, (R),a€Ny, feF, then, for all p € @™ L'(R?) N L*(R%),

real
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we have
(e M7 ap) s ()
S —i©F(z,y;s
ZZ kvll-c/ OV N (2, y)ihi(y) dy. (5.35)
Since e®H(6f 7)) strongly converges to e**H{/9)qp for s € R\ {0}, we obtain

the following theorem.

Theorem 5.9 Let W € CL (R) and a € Ny, f € F,. Assume that
f o is an m x m Hermitian matriz and Ay,..., Ay (A1 < -+ < Apy) are
eigenvalues of f- o and V = (v) is a unitary matriz satisfying
A1 0
f-o=V VL
0 Am

Then, for all ¥ € @™ L'(RY) N L2(RY), we have

(e By (@) = S v /Rd e O @Y A (a, )i (y)dy,

k=11=1
(5.36)
0" (z, y; s)
_ s (V(aw) = Y(aw) | Roy) - Mas) (5.37)
2 ay — ax ay —ax |
— %(y —q ){1 — exp [—*2SW(CL3; : :j;(am) f:| };w(xu - q"),

where (eiSH(f"’)zp)j is the j-th component of B @)q).
We can prove the following theorem.

Theorem 5.10 Let W € 23, a € Ny and f € 92. Assume that
(t — aq)W' € L?R). Then H(f - o) is a self-adjoint extension of
—Y*(Pu — Ap)Y”(Pv — Av)[pn2). In particular, H(f - o) +m? is a self-
adjoint extension of {v*(p, — Ay) + mH—"(p, — AL) + m}[pN2

Proof.  We showed that H(e; f-0) = —v*(p,— A} )7 (p,—A}) on D(N?).
By Lemma 5.8, H(e; f-0) converges to H(f-o) in the strong resolvent sense
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as € — 0. And

limH(e; f - o) = —+"(py — Ap)V (Py — AL)Y

e—0

on ¥ € D(N?).
For ¢ € D(N?) and ¢ € @™ L?(R%), we have
(H(e; f-0) = 2")¢, (H(e;f-0) —2)7'¢) = (¥,¢) (2 € C\R).

Since D(N?) C D(IIy(€)?) N D(v*(py — A,)7* (P, — A,)), the limit € — 0
gives

(=7*(Pu — Ap)y"(Py — Ay) = 2")%, (H(f-0) —2)"'9)

= (¢, §).

Thus, for all m € D(H(f - 0)),

(—Y"(Pu — ALY (Py — AV)Y,m) = (P, H(f - o)n).

Hence by self-adjointness of H(f - ¢), ¥ € DMH(f - ¢)) and
*'7/1(1)“ - Au)'yy(pv - AV)¢ = H(f : U)¢- So we get _7M(pu - AM)'Y
A) pwzyC H(S - 0). L]

Since H(e; f - 0) is self-adjoint for € > 0,

S

H(e; f-0) +m” £in]™', n>0,
are bounded operators. By functional calculus
[H(e; f-0) +m? +in]™!

. I +is(m?xin) +isH(e; f-0)
_—_%m(l)q:z/é . o if0) 4 (5.38)

and

(¢, [H(e; f- o) +m?® +in] ')

—lim i [ F0E) (g Ry (5.39)
- )

where ¢, 9 € @™ L?(R?). We can write
(¢’ ej:isH(e;f‘a),lp)

Y / o eTOEEYI A (3 ) (Z %—'kqu(:r)) (Zv—lwl(y)) dy d
k=1 R%xR j:l —
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= f: /Rded eI (2, ) (VF )i () (V4 )i (y)dy d,
so that
(¢, [H(e; f-a) +m® +in~'4)
: Y is(m?4in) —iO®F (z,y;s
:mmg/é /Rdedei (m?+in) ,—i0F (2,y39)
x Ay(@,y)(V*@)i(2) (V)1 (y)dy da ds.

Theorem 5.11 Let W € Cl_(R) and a € Ny, f € F,. Assume that
f o is an m x m Hermitian matriz and Ai,..., Ay (A1 < -+ < Ayp) are
eigenvalues of f- o and V = (v;;) is a unitary matriz satisfying

A1 0
fo=V v
0 Am

Then, for all ¢, € @™ L*(RY) N L2(RY), we have

= lim =4 / (/OO e:i:is(mz:tin)e—i@f(a:,y;s)AS T, dS)
o0 kz::l RIxR* \J§ (#.9)
X (V*@)1(2) (V7 )r(y)dy dz. (5.40)

Corollary 5.12 Let W € CL |(R) and a € Ny, f € F,. Assume that
[ o is an m x m Hermitian matriz and Ay,..., Ay (A1 < -+ < Ay are
ergenvalues of f -0 and V = (v;;) is a unitary matric satisfying

A 0
fo=V VL
0 A

Then, for all ¢, € @™ L*(R?) N L%(R?), we have
(@, [H(f-0) +m® £ in]~'ep)

= lim ¥4 / </oo eiis(m%ime*i@k(m’y;s)As x, ds)
50 kz::l RIxR? \J$§ (@.9)
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X (V*@)r(z) (V)i (y)dy dz. (5.41)
Let
(eI o)) () = /Rd e~ @) A (2, y )k (v)dy. (5.42)

For § > 0, we can write for ¢, € L'(R?) n L%(RY),

)
hr% eiis(inin)(qb*, eiiSH’Y(f'U)’l?b)deS
n—YvJo

6 . .
_ / e:tzst (¢*, eistX(f-G)w)Lz dS, (543)
0

where (-,-);2 is the inner product of L?(R%).
In particular, if d > 3, using ,

/oo leﬂ:is(mQ:tin)(¢*’ 6j:isH,Y(f-a),¢)L2 ldS
)

o0
< (Constant independent of ) x / |s|7%2ds < oo.
6

By the dominated convergence theorem, we have

hn}) 6:|:is(m2:ti77)(¢*’ e:tisHX (f-a)w)L2 ds
n—vJé

:/ eFiom? (x FISHY (10) ) . (5.44)
6
Hence if d > 3, for all ¢,v € L*(R%) N L%(RY), we have

lim > eiis(mzzl:in)((b*, eztisH;/(f-o)wh_/zds

n—0Jo
= [ et (e, ) s (5.45)
Let
SE1(8,0) = /OOO e (g%, XML )y ads (5.46)
and let
TEs1(6,9) = f;eﬂsm (9", =1 U0)) 1ads,
TE 52(0,0) = /:o e (o, eHH ) ds.
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Then we have

SE1(8,0) =TS 51(0,%) + TE 52(0, ). (5.47)

It is easy to show that Ti,6,1(¢>¢) and Ti,6,2(¢’ ) are jointly continuous
bilinear functional on S(R%) x S(R?), so we can see that Si,1(~, -) are jointly
continuous bilinear functionals on S(R?) x S(R%). Hence, by the nuclear
theorem, there exist unique Si,l € S'(R% x R?) respectively, such that, for
all ¢,7 € S(RY)

SE (0@ v) =Sk 1 (s,9), (5.48)

where (¢ @ ¥)(z,y) = ¢(z)i(y).
We can see that for ¢, 9% € @™ L'(R%) N L2(RY)

lim (¢*, [H(f - o) + m? + in] ~14)

—lim [ eRismiEm) (e EHETO) g g

n—0 Jo

(VA eEEHE ) ()
k=1

S (Vi) ® (Vi ule), (5.49)
k=1

where §*(z) = (B1(2),.. ., 6m(@))
Let
Sir(d® ) zisﬂ Vi) ® (V*9)0). (5.50)

S1 1(¢p ® 9) are tempered distributions on R? x R<,
Thus we obtain the following theorem.

Theorem 5.13 Let d > 3. Let W € C’rleal(R) and a € Ny, f € Fo. Then
there exist unique Sy 1 € [B™ S(R? x RY)), respectively such that

S+1(¢®9) = lim(¢", [H(f - 0) +m” +in] '),
for ¢, € @™ S(RY). Moreover

Si,1(¢ ® w) — %%/6 e:i:ismz(d)*’ €ii8H(f'U)’¢)dS.
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Assume that W is slowly increasing C'°°-function. That is, W satisfies

sup |(1+ |.ZU|2)_ZW(CE)| < 00
reR4

for some I € No. Then we can see that Sy 1 ((='"v*(—p, — AL) + m)d® )
(*4* is the transposed matrix of ~#) are jointly continuous bilinear func-
tionals on S(RY) x S(R?). By the nuclear theorem, there exist unique
St € @™ S'(R? x R?) respectively, such that, for all ¢, € @™ S(RY),

Se(@®@ ) = Sei((=""(—pu — Ap) + M) © )
We have

Se((‘"(=Pu — Ap) + m)@ @ ) = 5(p @ 9)

for all ¢, € @™ S(RY). In this sence, S1(¢p @) are Green’s functions of
a Dirac operator v*(p, — A,) + m.
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