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On the Schur indices of the irreducible characters
of SL(n, q)
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Abstract. We shall give some sufficient conditions subject for that the Schur indices
of irreducible characters of the special linear groups over finite fields are equal to one.
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Introduction

Let S denote the special linear group SL(n, q) of degree n\geqq 2 over a
finite field F_{q} with q elements of characteristic p. If \chi is a complex irreducible
character of a finite group and K is a field of characteristic 0, then m_{K}(\chi)

denotes the Schur index of \chi with respect to K. where we consider \chi as a
character over some algebraically closed extension of K . Then the following
results are known:

Theorem A (R. Gow [3]) For any (complex) irreducible character \chi of
S, we have m_{\mathbb{Q}}(\chi)\leqq 2 .

Theorem B (A.V . Zelevinsky [15]) Assume that p=2 . Then, for any
irreducible character \chi of S, m_{\mathbb{Q}}(\chi)=1 .

Theorem C (Z. Ohmori [9]) Assume that p\neq 2 and n is odd. Then, for
any irreducible character \chi of S, m_{\mathbb{Q}}(\chi)=1 .

Theorem D (Gow [3]) Assume that p\neq 2 , n is even, and ord_{2}n>

ord_{2}(p-1) . Then, for any irreducible character \chi of S, m_{\mathbb{Q}}(\chi)=1 .

Theorem E (Gow [3]) Assume that p\neq 2 , n is even, ord_{2}n\leqq ord_{2}(p-

1) , and q is an even power of p . Let \chi be any irreducible character of S .
Then, if \chi(-1_{n})=\chi(1_{n}) , we have m_{\mathbb{Q}}(\chi)=1 . If \chi(-1_{n})=-\chi(1_{n}) , then,

for any prime number r\neq p , we have m_{\mathbb{Q}_{r}}(\chi)=1 .

Theorem F (Gow [3]) Assume that p\neq 2 and n=4m for some positive
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integer m . Then, for any irreducible character \chi of S, m_{\mathbb{R}}(\chi)=1 .

The purpose of this paper is to give some more sufficient conditions
subject for that m_{\mathbb{Q}}(\chi)=1 for irreducible characters \chi of S (Propositions
2, 3).

In \S 1 we shall review Zelevinsky’s result which states that, for any
irreducible character \eta of G=GL(n, q) , there is a linear character \phi of
a Sylow p-subgroup U of G such that (\phi^{G}, \eta)_{G}=1 (see Theorem 1). In
\S \S 2, 3 we shall show that Theorems A , B , C , D , E , F are easy cosequences
of Theorem 1; the idea of our proofs is originally due to Gow ([2]). In \S 3 we
shall give some more detailed results concerning Theorem E. The contents
of \S \S 4, 5 are our main results.

1. A Zelevinsky’s theorem

The purpose of this section is to review a result of A.V . Zelevinsky
which is proved in [15, 12.5, p.141] (see Theorem 1 below).

Let m be a non-negative integer. If m_{1} , \ldots , m_{s} are non-negative
integers such that m=m_{1}+ +m_{s} , then the symbol [m_{1}, \ldots, m_{s}] will
be called a partition of m ; if m_{1}’ , . , m_{s}’ is any permutation of m_{1} , \ldots , m_{s} ,
then we should have [m_{1}’, \ldots, m_{s}’]=[m_{1}, \ldots , m_{s}] ; we also have

[m_{1}, . , m_{s}, 0, 0, \ldots, 0]=[m_{1}, \ldots, m_{s}] .

If a partition \mu of m has r_{1} parts equal to 1, r_{2} parts equal to 2, r_{3} parts
equal to 3, . ., then we shall often write \mu=[1^{r_{1}}2^{r_{2}}e^{r_{3}}\cdot\cdot] . If m=0,0 will
denote the partition of the number 0. P_{m} will denote the set of all partitions
of m;P_{m} has a lexicographical ordering: for \mu=[m_{1}, . , m_{s}]\in P_{m} with
m_{1}\geqq , . \geqq m_{s}\geqq 0 and \mathfrak{l}J=[n_{1}, . , n_{s}]\in P_{m} with n_{1}\geqq \geqq n_{s}\geqq 0 , we
have \mu>\nu either if m_{1}>n_{1} or if m_{1}=n_{1} , . , m_{i}=n_{i} and m_{i+1}>n_{i+1}

for some i\geqq 1 . If \mu\in P_{m} , then we write |\mu|=m . Let \mu\in P_{m} , and arrange
its parts in descending order: \mu=[m_{1}, \ldots, m_{s}] with m_{1}\geqq \geqq m_{s}>0 ;
then we define \overline{\mu}=[s^{m_{s}}(s-1)^{m_{s-1}-m_{s}}(s-2)^{m_{s-2}-m_{s-1}}, . . 1^{m_{1}-m_{2}}];\overline{\mu} is
called the conjugate partition of \mu . We put P= \bigcup_{m\geqq 0}P_{m} .

Let m , m’ be non-negative integers. Let \mu=[m_{1}, \ldots, m_{s}]\in P_{m} with
m_{1}\geqq \geqq m_{s}\geqq 0 , and \mu’=[m_{1}’, . . ’ m_{s}’,]\in P_{m’} with m_{1}’\geqq \cdot 1\geqq m_{s}’, \geqq

0 . Assume that s\geqq s’ Then we define \mu \mu’=[m_{1}+m_{1}’ , . , m_{s’}+

m_{s}’, , m_{s’+1} , . . ’ m_{s} ]. For example, if \mu=[3,1,2] and \mu’=[2,4,1,5] , then
\mu\mu’=[3,2,1,0] [5, 4, 2, 1]=[3+5,2+4,1+2,0+1]=[8,6, 3, 1] .
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We also define \mu+\mu’=[m_{1}, , m_{s}, m_{1}’, \ldots, m_{s}’,] . We note that \mu \mu’ ,
\mu+\mu’\in P_{m+m’} .

Let d be a positive integer and v a non-negative integer; if \pi=

[p_{1}, \ldots,p_{s}]\in P_{v} , then we define d\pi=[dp_{1}, \ldots, dp5]\in P_{dv} .
Let x be a variable over F_{q} . Let F be the set of all irreducible poly-

nomials f=f(x) over F_{q} other than the polynomial x ; we write d(f) for
the degree of f . Call C the set of all functions lJ : Farrow P such that
\sum_{f\in F}|\nu(f)|d(f)=n ; for \nu\in C , set (symbolically)

c=c_{\nu}= (\cdot f^{I/(f)}\cdot\cdot)=(f_{1}^{\nu_{1}} . . f_{N}^{l\nearrow N}) ,

where f_{1} , \ldots , f_{N} are all the f\in F such that \nu(f)\neq 0 , and, for 1\leqq i\leqq N ,
lJ_{i}=\mathfrak{l}J(f_{i}) . Then, by the theory of Jordan canonical forms over F_{q} , we
know that the symbols c_{\iota/} , lJ \in C , parametrize the conjugacy classes of
G=GL(n, q) . We identify c_{\nu} with the corresponding conjugacy class of G .
In particular, the classes ((x-1)^{\lambda}) , \lambda\in P_{n} , are the unipotent classes of G ;
if a unipotent element u of G belongs to a class ((x-1)^{\lambda}) , then we shall say
that u is a unipotent element of G of type \lambda ; if \lambda=[d_{1}, . , d_{s}] with d_{i}\neq 0

for all i , then u is conjugate in G to the element of the form:

1
1

1 1

0

11{?}
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Let s be a positive integer. Then a set g=\{h, hq, h^{2}q, . , hq\}s-1 of in-
tegers will be called an s-simplex with the roots h , hq , hq2 , \ldots , hq^{s-1} if they
are distinct modulo q^{s}-1 ; we identify g with qg=\{hq, h^{23}q, hq, . . ’ hq\}s ;
we write d(g)=s . Call \Sigma the set of all s-simplexes for s\geqq 1 . Let X be the
set of all functions \nu : \Sigma – P such that \sum_{g\in\Sigma}|\nu(g)|d(g)=n ; for \nu\in X ,
set (symbolically)

\eta_{\nu}=
(\cdots g^{\nu(g)} \cdot)=(g_{1}^{\nu_{1}} . . g_{N}^{\nu_{N}}) ,

where g_{1} , \ldots , g_{N} are all the g\in\Sigma such that \nu(g)\neq 0 , and, for 1\leqq i\leqq N ,
\nu_{i}=\nu(g_{i}) . Then the symbols \eta_{\nu} , \nu\in X , parametrize the irreducible
characters of G (see J.A . Green [4]). We identify \eta_{\nu} with the corresponding
irreducible character of G .

Let U be the upper-triangular maximal unipotent subgroup of G;U
is a Sylow p-subgroup of G . Let \psi : F_{q}^{+}arrow \mathbb{C}^{\cross} be a fixed non-trivial
additive character of the additive group F_{q}^{+} of F_{q} . For a\in F_{q} , we define
\psi_{a}\in Hom(F_{q}^{+}, \mathbb{C}^{\cross}) by \psi_{a}(y)=\psi(ay) , y\in F_{q} . Then \{\psi_{a}|a\in F_{q}\}=

Hom(F_{q}^{+}, \mathbb{C}^{x}) . Let U’ be the derived group (i.e. the commutator subgroup)
of U ; for u=(u_{ij})\in U , u\in U’ if and only if u_{12}=u_{23}=’\cdot=u_{n-1,n}=0 ;
so U/U’= \prod^{n-1}F_{q}^{+} Thus, for any linear character \phi of U , there are
a_{1} , \ldots , a_{n-1}\in F_{q} such that \phi(u)=\psi(a_{1}u_{12}+a_{2}u_{23}+\cdot\tau+a_{n-1}u_{n-1,n}) ,
u=(u_{ij})\in U ; for such \phi , define u_{\phi}=(u_{ij})\in U by u_{i,i+1}=a_{i} , 1\leqq i\leqq n-1 ,
and u_{ij}=0,1\leqq i<j-1<n ; then we shall say that \phi is of type \lambda if u_{\phi}

is of type \lambda .
Now we can state Zelevinsky’s result:

Theorem 1 (Zelevinsky [15, 12.5]) Let \eta be any irreducible character of
G=GL(n, q) , and suppose that \eta=(g_{1}^{\nu_{1}} \cdot g_{N}^{\nu_{N}}) . Let \mu=(d(g_{1})\cdot\overline{\nu}_{1})1

(d(g_{N}) \overline{\nu}_{N}) . Let \phi be a linear character of U of type \lambda . Then we have
(\phi^{G}, \eta)_{G}=1 if \lambda=\mu , and 0 if \lambda>\mu .

We should compare the statement in Theorem 1 with that of Theorem 1
of [10]. In fact, if we use the character-theory of G by Green [4], we can
prove Theorem 1 by a method similar to that in the proof of Theorem 1 of
[10].
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2. Some remarks

In this and next sections, we shall show that Theorems A , B , C , D , E ,
F are easy consequences of Theorem 1.

Proof of Theorem B. Assume that p=2. Then U/U’ is an elementary
abelian 2-group, so that any linear character of U is realizable in \mathbb{Q} . Thus,
for any linear character \phi of U , \phi^{S} is also realizable in \mathbb{Q} . Let \chi be any
irreducible character of S . Then, by Clifford theory, there is an irreducible
character \eta of G such that \eta|S=\chi_{1}+\cdot\cdot+\chi_{h} , where \chi_{1} , \ldots , \chi_{h} are the G-
conjugates of \chi (cf. G/S is a cyclic group). By Theorem 1, there is a linear
character \phi of U such that (\phi^{G}, \eta)c=1 , so that, by Frobenius reciprocity
law, we have (\phi^{S}, \eta|S)_{S}=(\phi^{S}, \chi_{1}+, +\chi_{h})_{S}=1 , and (\phi^{S}, \chi_{i})_{S}=1 for
some i .

The following property of the Schur index is well known, and is proved,
for instance, in Feit’s book [1] ([1, (11.4), p.62]).

Lemma 1 Let H be a finite group, and let K be a field of characteristic
0. Let \theta be an irreducible character of H and \xi a character of H which is
realizable in K. Then m_{K}(\theta) divides (\xi, \theta)_{H} .

By Lemma 1, we have m_{\mathbb{Q}}(\chi_{i})=1 . As \chi is G-conjugate to \chi_{i} , we
therefore have m_{\mathbb{Q}}(\chi)=1 .

Remark Let H be a finite group, N a normal subgroup of H , and K
a field of characteristic 0. Let \theta be an irreducible character of H . Then,
by Clifford theory, there are irreducible characters \rho_{1} , \ldots , \rho_{h} of N and a
positive integer e such that \theta|N=e(\rho_{1}+\cdot\cdot+\rho_{n}) (see, e.g., Feit [1, (9.10),
p.53]). For 1\leqq i\leqq h , there is an element x_{i} of H such that \rho_{i}=\rho^{x_{i}}

(\rho=\rho_{1}, \rho^{x_{i}}(y)=\rho(x_{i}yx_{i}^{-1}) , y\in N) . Set K_{i}=K(\rho_{i})=K(\rho_{i}(y), y\in N) ,
1\leqq i\leqq h . Then we clearly have K_{1}= =K_{h} . For 1\leqq i\leqq h , let A_{i} be
the simple component of the group algebra K_{i}[N] of N over K_{i} associated
with \rho_{i} ; there is a finite dimensional central simple division algebra D_{i} over
K_{i} and a positive integer r_{i} such that A_{i} is isomorphic over K_{i} to the total
matrix algebra M_{r_{i}}(D_{i}) over D_{i} ; we have [D_{i} : K_{i}]=m_{K_{i}}(\rho_{i})^{2}=m_{K}(\rho_{i})^{2} ;
the mapping yarrow x_{i}yx_{i}^{-1} . y\in N , induces an isomorphism of K_{1}[N] onto
K_{i}[N] , which clearly maps A_{1} onto A_{i} , so that A_{1} is isomorphic to A_{i} as
rings; thus we must have m_{K}(\rho)=m_{K_{1}}(\rho)=m_{K_{i}}(\rho_{i})=m_{K}(\rho_{i}) .

Proof of Theorem C. Assume that p\neq 2 and n is odd. We fix a primitive
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element \nu of the prime field F_{p} of F_{q} . Let \overline{\nu} be a fixed integer such that
\overline{\nu} mod p\mathbb{Z}=\nu in F_{p}=\mathbb{Z}/p\mathbb{Z} , let \zeta_{p} be a fixed primitive p-th root of unity
in \mathbb{C} , and let \alpha be the automorphism of \mathbb{Q}((_{p}) over \mathbb{Q} given by (_{p}^{\alpha}=(_{p}^{\overline{\nu}} .
Suppose that n=2m+1 with m\geqq 1 , and let

t=diag(\nu^{m}, \nu^{m-1}, , \nu, 1, \nu^{-1}, \nu^{-2}, . , \nu^{-m}) .

Then t\in S , t^{p-1}=1 , and, for u\in U , tut^{-1}\equiv u^{\overline{\nu}} (mod U’).
Let \phi be any linear character of U . We show that \phi^{S} is realizable in \mathbb{Q} .

In fact, if \phi=1_{U} , then \phi^{S} is clearly realizable in \mathbb{Q} . Suppose therefore that
\phi\neq 1_{U} . Then, for u\in U , \phi^{t}(u)=\phi(tut^{-1})=\phi(u^{\overline{\nu}})=\phi(u)^{\overline{\nu}}=\phi(u)^{\alpha} . Let
M=U\langle t\rangle . Then, as U is a normal subgroup of M, \phi^{M}=0 outside of U ,
and \sum_{i=1}^{p-1}\phi^{\alpha^{i}} on U . It follows that \phi^{M} is a \mathbb{Q}-valued irreducible character
of M . Moreover, by Propositions 3.4, 3.5 of T. Yamada [14], we see that
the simple component A of \mathbb{Q}[M] associated with \phi^{M} is isomorphic over \mathbb{Q}

to the cyclic algebra (1, \mathbb{Q}(\zeta_{p}) , \alpha) over \mathbb{Q} . The latter cyclic algebra clearly
splits in \mathbb{Q} , so that we have m_{\mathbb{Q}}(\phi^{M})=1 . Therefore \phi^{M} is realizable in \mathbb{Q} ,
hence \phi^{S}=(\phi^{M})^{S} is realizable in \mathbb{Q} .

Thus we have proved that \phi^{S} is realizable in \mathbb{Q} for any linear character
\phi of U . Therefore, by the argument in the proof of Theorem B , we can
prove that m_{\mathbb{Q}}(\chi)=1 for any irreducible character \chi of S .

Proof of Theorem D. Assume that p\neq 2 and n is even. Let

t=diag(\nu^{n-1}\xi, \nu^{n-2}\xi , . ,^{\nu\xi} , \xi\in F_{p}^{\cross} .

Then t is an element of G , of order p-1 , such that \phi^{t}=\phi^{\alpha} for any linear
character \phi of U . As Gow has observed in [3, p.140], we have t\in S if
and only if ord_{2}n>ord_{2}(p-1) . Suppose that this is the case, and put
M=U\langle t\rangle . Then, as in the proof of Theorem C , we see that \phi^{M} is realizable
in \mathbb{Q} for any linear character \phi of U . Thus the argument goes as in the proof
of Theorem C.

Proof of Theorem F. Assume that p\neq 2 and n=4m for some positive
integer m . Let

t=diag(1, -1, 1, -1, \ldots, 1, -1) .

Then t is an element of S , of order 2, such that, for u\in U , tut^{-1}\equiv u^{-1}

(mod U’ ). Let \phi be any non-principal linear character of U . Then we see
that \phi^{t}=\phi^{-1} . Let M=U\langle t\rangle . Then we see easily that \phi^{M} is a real-valued
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irreducible character of M . Moreover we see that the simple component of
\mathbb{R}[M] associated with \phi^{M} is isomorphic over \mathbb{R} to the cyclic algebra (1, \mathbb{C}, \iota)

over \mathbb{R} where Gal(\mathbb{C}/\mathbb{R})=\langle\iota\rangle . Thus m_{\mathbb{R}}(\phi^{M})=1 , and \phi^{M} is realizable in
\mathbb{R} . Thus, for any linear character \phi of U. \phi^{S} is realizable in \mathbb{R} . Therefore,
by an argument similar to that in the proof of Theorem B , we can prove
that m_{\mathbb{R}}(\chi)=1 for any irreducible character \chi of S .

Proof of Theorem A. Assume that p\neq 2 , n=2m is even, and ord_{2}n\leqq

ord_{2}(p-1) . Let

t=diag(\nu^{2m-1}, \nu^{2m-3}, \ldots, \nu, \nu^{-1}, \nu^{-3}, , _{\nu^{-(2m-1)}})

Then t\in S , t^{(p-1)/2}=-1_{n} , and, for u\in U , tut^{-1}=u^{\overline{\nu}^{2}} (mod U’ ). Let
M=U\langle t\rangle , and let \phi be any non-principal linear character of U . Then
\phi^{M}=0 outside of U , and 2 \sum_{i=1}^{(p-1)/2}\phi^{\alpha^{2i}} on U . Let k=\mathbb{Q}(\sqrt{(-1)^{(p-1)/2}p}) .
For j=0,1 , call \phi_{j} the linear character of U\langle-1_{n}\rangle defined by \phi_{j}|U=\phi

and \phi_{j} (-1_{n})=(-1)^{j} . Then we see that (\phi_{0})^{M} and (\phi_{1})^{M} are fc-valued
irreducible characters of M , and \phi^{M}=(\phi_{0})^{M}+(\phi_{1})^{M} Moreover we see
that, for j=0,1 , the simple component of k[M] associated with (\phi_{j})^{M} is
isomorphic over k to the cyclic algebra ((-1)^{j}, k((_{p}), \alpha^{2}) over k .

Lemma 2 (G.J . Janusz [5, Proposition 3]) m_{k}((\phi_{0})^{M})=1 , so that (\phi_{0})^{M}

is realizable in k . Assume that p\equiv 1 (mod 4). Then m_{\mathbb{R}}((\phi_{1})^{M})=2 , and,

for any finite place v of k , m_{k_{v}}((\phi_{1})^{M})=1 ( k_{v} is the completion of k at v).

If p\equiv-1 (mod 4), then m_{k}((\phi_{1})^{M})=1 , and (\phi_{1})^{M} is realizable in k .

Let \chi be any irreducible character of S . Let \chi_{1} , \ldots , \chi_{h} be the G-
conjugates of \chi , and let \eta be an irreducible character of G such that \eta|S=

\chi_{1}+ , . +\chi_{h} . Let \phi be a linear character of U such that (\phi^{G}, \eta)_{G}=1

(Theorem 1). Then (\phi^{S}, \chi_{i})_{S}=1 for some i . If \phi=1_{U} , then \phi^{S} is
realizable in \mathbb{Q} , so that m_{\mathbb{Q}}(\chi_{i})=1 , and m_{\mathbb{Q}}(\chi)=1 . Assume therefore that
\phi\neq 1_{U} . Then ((\phi_{0})^{S}+(\phi_{1})^{S}, \chi_{i})_{S}=1 , so ((\phi_{0})^{S}, \chi_{i})_{S}=1 or ((\phi_{1})^{S}, \chi_{i})s=

1 ; in view of Schur’s lemma, as -1_{n} is a central element of S , we have
((\phi_{j})^{S}, \chi_{i})_{S}=1 if and only if \chi_{i}

(-1_{n})=(-1)^{j}\chi_{i}(1_{n}) . Suppose that j=0.
Thus as (\phi_{0})^{S} is realizable in k (Lemma 2), by Lemma 1, we have m_{k}(\chi_{i})=

1 . Let k(\chi_{i})=k(\chi_{i}(y), y\in S) . Then, as [k : \mathbb{Q}]=2 , [k(\chi_{i}) : \mathbb{Q}(\chi_{i})]\leqq 2 .
Thus m_{\mathbb{Q}}(\chi_{i})=m_{\mathbb{Q}(\chi_{i})}(\chi_{i})\leqq 2 . Suppose that j=1 . Then m_{\mathbb{R}}(\chi_{i})\leqq 2 (of
course). Let r be any prime number, and let v be a place of k lying above r .
Then, by Lemma 2, (\phi_{1})^{S} is realizable in k_{v} , so that m_{k_{v}}(\chi_{i})=1 . But, as
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[k_{v} : \mathbb{Q}_{r}]\leqq 2 , we have k_{\mathbb{Q}_{r}}(\chi_{i})\leqq 2 . As m_{\mathbb{Q}}(\chi_{i}) is equal to the least common
multiple of the m_{\mathbb{Q}_{S}}(\chi_{i}) , where s runs over all places of \mathbb{Q} , we must have
m_{\mathbb{Q}}(\chi_{i})\leqq 2 . Thus, in any case, we have m_{\mathbb{Q}}(\chi)\leqq 2 . This completes the
proof of Theorem A.

We make here some comments about Theorem A. Let the notation be
as in the proof of Theorem A. We assume that \eta=(g_{1}^{\nu_{1}}\cdot\cdot g_{N}^{\nu_{N}}) , and that
\phi is of type (d(g_{1}) \overline{\nu}_{1})\cdots(d(g_{N}) \overline{\nu}_{N}) (see Theorem 1). As to the local
index m_{\mathbb{R}}(\chi) of \chi , if \chi is not real, then m_{\mathbb{R}}(\chi)=1 . This is a consequence
of the fact that the Brauer group of \mathbb{C} is trivial. Suppose that \chi is real,

If \chi is linear, then m_{\mathbb{Q}}(\chi)=1 . Therefore we may assume that \chi is not
linear, which forces that \phi\neq 1_{U} . [In fact, suppose that \phi=1_{U} . Then \phi

is of type [1^{n}] , so that N=1 , d(g_{1})=1 , and \nu_{1}=[n] , i.e., \eta=(g_{1}^{[n]}) .
Then, by Remark (3) of Green [4, p.444], \eta must be linear.] By Schur’s
lemma, we must have \chi(-1_{n})=\chi(1_{n}) or -\chi(1_{n}) . Assume that p\equiv 1

(mod 4). Then, if \chi(-1_{n})=\chi(1_{n}) , we must have ((\phi_{0})^{S}, \chi_{i})s=1 , so
that, as (\phi_{0})^{S} is realizable in \mathbb{R} , we have m_{\mathbb{R}}(\chi_{i})=1 , and m_{\mathbb{R}}(\chi)=1 .
Suppose that \chi(-1_{n})=-\chi(1_{n}) . Then we must have ((\phi_{1})^{S}, \chi_{i})s=1 and
m_{\mathbb{R}}((\phi_{1})^{M})=2 . As \mathbb{R}(\chi_{i})=\mathbb{R}((\phi_{1})^{M})=\mathbb{R} , by Proposition 3.8 of [14, p.29],
we have m_{\mathbb{R}}(\chi_{i})=2 , and m_{\mathbb{R}}(\chi)=2 . When p\equiv-1 (mod 4), if q is an even
power of p , then the same results hold as we shall see in the next section.
These results have been already observed by Gow ([3, Theorem 3.4(d)]).

However, as far as the author knows, the character table of S is not
obtained if n\geqq 4 , so that to know whether \chi is real or not is generally a
difficult problem (but, cf. \S 3 below).

We next consider other local indices of \chi . Suppose that p\equiv 1 (mod 4).
Then k=\mathbb{Q}(\sqrt{p}) . If \mathbb{Q}(\chi)\supset k , then we have m_{\mathbb{Q}_{r}}(\chi)=1 for any prime
number r (cf. G.I . Lehrer [8]). Generally, let r be any prime number, and
let v be a place of k that lies above r . Then we see that, for r\neq p , k_{v}=\mathbb{Q}_{r}

if and only if the Legendre symbol ( \frac{p}{r})=1 , and if this is the case, then
we have m_{\mathbb{Q}_{r}}(\chi)=1 . Suppose that p\equiv-1 (mod 4). Then k=\mathbb{Q}(\sqrt{-p}) .
Then, if \mathbb{Q}(\chi)\supset k , we have m_{\mathbb{Q}}(\chi)=1 . Generally, for a prime number
r\neq p , and for a place v of k that lies above r , we have k_{v}=\mathbb{Q}_{r} if and only
if ( \frac{-p}{r})=1 , and if this is the case, we have m_{\mathbb{Q}_{r}}(\chi)=1 .
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3. Proof of Theorem E and some comments

We assume that p\neq 2 , n=2m is even, ord_{2}n\leqq ord_{2}(p-1) , and q is
an even power of p . Then there is an element \epsilon of F_{q} such that \epsilon^{2}=\nu . Let

t=diag(\epsilon^{2m-1}, \epsilon^{2m-3}, \ldots, \epsilon, \epsilon^{-1}, \epsilon^{-3}, \ldots, \epsilon^{-(2m-1)}) .

Then t\in S , t^{p-1}=-1_{n} , and, for u\in U , tut^{-1}\equiv u^{\overline{\nu}} (mod U’). Let
M=U\langle t\rangle . Let \phi be any non-principal linear character of U ; for j=0,1 , let
\phi_{j} be as in the proof of Theorem A. Then we see that (\phi_{0})^{M} and (\phi_{1})^{M} are
\mathbb{Q}-valued irreducible characters of M, and \phi^{M}=(\phi_{0})^{M}+(\phi_{1})^{M} . Moreover
we see that, for J=0,1 , the simple component of \mathbb{Q}[M] assiciated with
(\phi_{j})^{M} is isomorphic over \mathbb{Q} to the cyclic algebra ((-1)^{j}, \mathbb{Q}(\zeta_{p}), \alpha) over \mathbb{Q} .

Lemma 3 (Janusz [5, Proposition 2]) We have m_{\mathbb{Q}}((\phi_{0})^{M})=1 . And, we
have m_{\mathbb{R}}((\phi_{1})^{M})=m_{\mathbb{Q}_{p}}((\phi_{1})^{M})=2 and m_{\mathbb{Q}_{r}}((\phi_{1})^{M})=1 for any prime
number r\neq p .

Thus by using the argument similar to that in the proof of Theorem A,
we can prove Theorem E.

As far as we are concerned with the proof of Theorem E, the above
argument is sufficient. But in our case we can get more detailed results.

Let the assumption be as above. Let \chi be any irreducible character of
S , let \chi_{1} , \ldots , \chi_{h} be the G-conjugates of \chi , let \eta be an irreducible character
of G such that \eta|S=\chi_{1}+\cdot\cdot+\chi_{h} , and let \phi be a linear character of U

such that (\phi^{G}, \eta)_{G}=1 ; we may assume that \eta=(g_{1}^{\nu_{1}} \cdot g_{N}^{\nu_{N}}) and \phi is of
type (d(g_{1}) \overline{\nu}_{1}) \cdot . (d(g_{N}) \overline{\nu}_{N}) (see Theorem 1). Call Z the centre of
S , let z be a generator of Z , call c the order of Z , i.e. c=(n, q-1) , and let
\zeta_{c} be a fixed primitive c-th root of unity in \mathbb{C} . Let t be as above, and let
L=UZ\langle t\rangle . For j=1 , \ldots , c , let \eta_{j} be the linear character of Z=\langle z\rangle given
by \eta_{j}(z)=\zeta_{c}^{j} , and let \mu_{j}=Ind_{UZ}^{L}(\phi\eta_{j}) . We may assume that \chi is not linear,
so that \phi\neq 1_{U} . For j=1 , \ldots , c , let k_{j}=\mathbb{Q}((_{c}^{j}) . We see that \mu_{1} , . , \mu_{c} are
different irreducible characters of L and \phi^{L}=\mu_{1}+ +\mu_{c} . Moreover, we
see that, for j=1 , , c , the simple component B_{j} of k_{j}[L] associated with
\mu_{j} is isomorphic over k_{j} to the cyclic algebra ((-1)^{j}, k_{j}(\zeta_{p}) , \alpha_{j}) over k_{j} ,
where k_{j} is the extension of \alpha to k_{j}(\zeta_{p}) over k_{j} (note that \mu_{j} is k_{j} -valued).

We have (\phi^{S}, \chi_{i})_{S}=1 for some i , and we assume that \chi=\chi_{i} . Then
((\mu_{1})^{S}+\cdot 1+(\mu_{c})^{S}, \chi)s=1 , and ((\mu_{j})^{S}, \chi)_{S}=1 for some j ; by Schur’s
lemma, we must have \chi(z)=(_{c}^{j}\chi(1_{n}) . (We note that one can calculate
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the value \eta(z) explicitely (cf. [12]), so that \chi(z) can be known.) Assume
that j is even. Then B_{j}\sim (1, k_{j}(\zeta_{p}) , \alpha_{j})\sim k_{j} , so that (\mu_{j})^{S} is realizable
in k_{j} , hence m_{\mathbb{Q}}(\chi)=m_{k_{j}}(\chi)=1 . This case corresponds to the case that
\chi(-1_{n})=\chi(1_{n}) . Suppose that j is odd (i.e. \chi(-1_{n})=-\chi(1_{n}) ). If \chi is
not real, we have m_{\mathbb{R}}(\chi)=1 . In particular, if c>2 , and if j\neq c/2 , then
m_{\mathbb{R}}(\chi)=1 . Suppose that \chi is real. Then we must have j=c/2 . Then
m_{\mathbb{R}}(\mu_{j})=2 , so that we must have m_{\mathbb{R}}(\chi)=2 .

We next investigate the local index m_{\mathbb{Q}_{p}}(\chi) of \chi . As j is odd, B_{j}\simeq

(-1, k_{j}(\zeta_{p}), \alpha_{j})\sim k_{j}\otimes_{\mathbb{Q}}(-1, \mathbb{Q}(\zeta_{p}), \alpha) . Let v be a place of k_{j} that lies above
p, and let f_{j}=[(k_{j})_{v} : \mathbb{Q}_{p}] . Then the Hasse invariant of B_{j} at v is \equiv f_{j}\cross\frac{1}{2}

(mod 1).

Lemma 4 ([11, Lemma 11]) Let q=p^{2^{a}s} with (2, s)=1 . Then f_{j} is odd
if and only if any odd prime divisor of c/(c, j) divides p^{s}-1 .

Thus we get

Proposition 1 Assume that p\neq 2 , n is even, ord_{2}n\leqq ord_{2}(p-1) , and
q is an even power of p ; let q=p^{2^{a}s} with (2, s)=1 . Let \chi be an irreducible
character of S such that \chi(-1_{n})=-\chi(1_{n}) . Let z be a generator of the
centre Z of S, let c be the order of Z , and let \zeta_{c} be a primitive c-th root of
unity. Suppose that \chi(z)=\zeta_{c}^{j}\chi(1_{n}) , and that c>2 . Then:

(i) If j \not\equiv\frac{c}{2} (mod c), we have m_{\mathbb{R}}(\chi)=1 .
(ii) If some odd prime divisor of c/(c, j) does not divides p^{s}-1 , then

m_{\mathbb{Q}_{p}}(\chi)=1 .

Theorem G Assume that p=2, or n is odd, or p\neq 2 and ord_{2}n>

ord_{2}(p-1) , or q is an even power of p . Then, for any irreducible character
\chi of PSL(n, q) , we have m_{\mathbb{Q}}(\chi)=1 .

Remark Let p be an odd prime number such that p\equiv-1 (mod 4) and
(6, p-1) =2 . Then PSL(6,p) has irreducible characters \chi such that
m_{\mathbb{R}}(\chi)=2 (see D. Prasad [13, pp. 309-310]).

4. Some sufficient condition (I)

Assume that p\neq 2 . Let \eta be an irreducible character of G , and suppose
that \eta=(g_{1}^{\nu_{1}}\cdot\cdot g_{N}^{\nu_{N}}) . Let \mu=(d(g_{1})\cdot\overline{\nu}_{1}) . (d(g_{N})\cdot\overline{\nu}_{N})=[m_{1}, . , m_{s}]

with m_{i}\neq 0 for all i . Let \eta|S=\chi_{1}+ \cdot t +\chi_{h} , where \chi_{1} , \ldots , \chi_{h} are
some irreducible characters of S . Let \phi be a linear character of U of type
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\mu . Suppose that \mu\neq[1^{n}] , i.e. \phi\neq 1_{U} . Let, for u=(u_{ij})\in U , \phi(u)=

\psi(a_{1}u_{12}+a_{2}u_{23}+\cdot\cdot+a_{n-1}u_{n-1,n})(a_{1}, , a_{n-1}\in F_{q}) (see \S 1). We assume
that a_{1}\neq 0 , \ldots , a_{m_{1}-1}\neq 0 , a_{m_{1}}=0 , a_{m_{1}+1}\neq 0 , \ldots , a_{m_{1}+m_{2}-1}\neq 0 ,
a_{m_{1}+m_{2}}=0 , \ldots , a_{m_{1}+\cdots+m_{s-1}}=0 , a_{m_{1}+\cdots+m_{s-1}+1\neq 0,\ldots,a_{m_{1}+}}+m_{s-1}+m_{S}-1\neq

0 .

Lemma 5 Let \{1, . , s\}=X_{1}\prod . \square X_{\overline{s}} (disjoint union); by taking a

permutation of m_{1} , . , m_{s} if necessary, we assume that X_{1}=\{1, , s_{1}\} ,
X_{2}=\{s_{1}+1, \ldots, s_{1}+s_{2}\} , . , X_{s}=\{s_{1}+\cdot +s_{\overline{s}-1}+1 , \ldots , s_{1}+ +

s_{\overline{s}-1}+s-}. For 1\leqq j\leqq\overline{s}, put \overline{m}_{j}=\sum_{i\in X_{j}}m_{i} . Assume that

GCD\{\overline{m}_{1} , . . ’
^{\overline{m}_{s},p-1\}}| \sum_{j=1}^{\overline{s}}\frac{\overline{m}_{j}(\overline{m}_{j}-1)}{2} .

Then we can find a diagonal element t of S of order p-1 such that \phi^{t}=\phi^{\alpha} .
(For integers c_{1} , \ldots , c_{k} , GCD\{c_{1}, . , c_{k}\} is the greatest common divisor of
c_{1} , \ldots , c_{k}.)

Proo/. Let \xi_{1} , \ldots , \xi_{s}\in F_{p}^{\cross} , and put

t=diag(\nu^{\overline{m}_{1}-1}\xi_{1}, \nu^{\overline{m}_{1}-2}\xi_{1} , \ldots , \nu\xi_{1} , \xi_{1;}

\nu^{\overline{m}_{2}-1}\xi_{2} , \nu^{\overline{m}_{2}-2}\xi_{2} , . , \nu\xi_{2} , \xi_{2;}

;
\nu^{\overline{m}_{\overline{s}}-1}\xi_{\overline{s}} , \nu^{\overline{m}_{\overline{s}}-2}\xi_{\overline{s}} , \ldots , \nu\xi_{\overline{S}} , \xi_{\overline{s}}) .

Then t is an element of G of order p-1 and \phi^{t}=\phi^{\alpha} . For 1\leqq j\leqq\overline{s}, let
\xi_{j}=\nu^{i_{j}} . Then

det (t)= \prod_{j=1}^{\overline{s}}\nu^{\overline{m}_{j}(\overline{m}_{j}-1)/2+i_{j}\overline{m}_{j}} .

Thus t belongs to S if and only if

\sum_{j=1}^{\overline{s}}\frac{\overline{m}_{j}(\overline{m}_{j}-1)}{2}\equiv\sum_{j=1}^{\overline{s}}(-i_{j})\overline{m}_{j} (mod p-1),
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that is, if and only if

GCD\{\overline{m}_{1} , . ,^{\overline{m}_{s},p-1\}}| \sum_{j=1}^{\overline{s}}\frac{\overline{m}_{j}(\overline{m}_{j}-1)}{2}

\square

Proposition 2 Assume that p\neq 2 . Let \eta be an irreducible character
of GL(n, q) , and suppose that \eta=(g_{1}^{\nu_{1}}’\cdot\cdot g_{N}^{\nu_{N}}) . Let (d(g_{1}) \overline{\nu}_{1}) \cdot .
(d(g_{N}) \overline{\nu}_{N})=[m_{1}, \ldots, m_{s}] with m_{i}\neq 0 for all i . Let \chi_{1} , . , \chi_{h} be the
irreducible characters of S such that \eta|S=\chi_{1}+\cdot.+\chi_{h} . Suppose that there
is a decomposition \{1, \ldots, s\}=X_{1}\square \cdot\cdot\prod\chi_{\overline{s}} such that, if we put \overline{m}_{j}=

\sum_{i\in X_{j}}m_{i} , 1\leqq j\leqq\overline{s}, then GCD\{m_{1}, \ldots, m_{s},p-1\} divides \sum_{j=1}^{\overline{s}}\frac{\overline{m}_{j}(\overline{m}_{j}-1)}{2} .
Then m_{\mathbb{Q}}(\chi_{1})= ’ =m_{\mathbb{Q}}(\chi_{h})=1 .

Proof. We may assume that X_{1} , \ldots , X_{\overline{s}} are as in Lemma 5. Let \phi be a
linear character of U as above. Let M=U\langle t\rangle , where t is as in Lemma 5.
Then \phi^{M} is realizable in \mathbb{Q} (see \S 2), and \phi^{S} is realizable in \mathbb{Q} . By Theorem 1,
we have (\phi^{G}, \eta)_{G}=1(G=GL(n, q)) , so that (\phi^{S}, \chi_{1}+\cdots+\chi_{h})_{S}=1 , and
(\phi^{S}, \chi_{i})_{S}=1 for some i . Thus, by Lemma 1, we have m_{\mathbb{Q}}(\chi_{i})=1 , hence
m_{\mathbb{Q}}(\chi_{1})= . \tau=m_{\mathbb{Q}}(\chi_{s})=1 . \square

Remark As to the parametrization of the irreducible characters of S , see
the paper of Lehrer [6].

The condition of Proposition 2 is satisfied if, for instance, (i) some
m_{i}=1 , or (ii) all the m_{i} are odd.

5. Some sufficient condition (II)

Lemma 6 ([9]) Let \eta be an irreducible character of G=GL(n, q) , and
suppose that \eta=(g_{1}^{\nu_{1}}\cdot\cdot g_{N}^{\nu_{N}}) . Let \mu=(d(g_{1}) \nu_{1}) (d(g_{N})\nu_{N}) . Let
u be a unipotent element of G of type \mu . Then \eta(u) is equal to the p-part
of \eta(1) up to\pm 1 .

Proposition 3 Assume that p\neq 2 . Let \eta be an irreducible character of
G=GL(n, q) , and let \chi_{1} , . , \chi_{h} be the irreducible characters of S such
that \eta|S=\chi_{1}+\cdot t+\chi_{h} . Suppose that \eta=(g_{1}^{\nu_{1}} \cdot g_{N}^{\nu_{N}}) , and let \mu=
(d(g_{1})\cdot\nu_{1})\cdot , . . (d(g_{N})\cdot\nu_{N})=[d_{1}, . , d_{s}] with d_{i}\neq 0 for all i . Suppose that
there is a decomposition \{ 1, . , s\}=X_{1}\square \cdot\cdot\square X_{\overline{s}} such that, if we put \overline{d_{i}}=
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\sum_{i\in X_{j}}d_{i} , 1\leqq j\leqq\overline{s}, then GCD\{\overline{d}_{1}, \ldots,\overline{d}_{s}, p-1\} divides \sum_{j=1}^{\overline{s}}\frac{\overline{d_{j}}(\overline{d_{j}}-1)}{2} .
Then m_{\mathbb{Q}}(\chi_{1})= =m_{\mathbb{Q}}(\chi_{h})=1 .

Proof. By permutating d_{1} , \ldots , d_{s} if necessary, we may assume that X_{1}=

\{1, . , s_{1}\} , X_{2}=\{s_{1}+1, \ldots, s_{1}+s_{2}\} , \ldots , X_{s}=\{s_{1}+\cdots+s_{\overline{s}-1}+1 , \ldots , s_{1}+

, . .+s_{\overline{s}-1}+s-}. For 1\leqq i\leqq s , let S_{i}=SL(d_{i}, q) , and let H=S_{1}x \cross S_{s} .
For 1\leqq i\leqq s , let U_{i} be the upper-triangular maximal unipotent subgroup
of S_{i} , and let V=U_{1}\cross , . \cross U_{s} . Call \Lambda the set of all linear characters of
V Take any i , 1\leqq i\leqq h , and set \chi=\chi_{i} . Let

\chi|V=\sum_{\lambda\in\Lambda}a_{\lambda}\lambda+\sum_{\rho\in R}b_{\rho}\rho
,

where R is the set of all non-linear irreducible characters of V By an
argument similar to that in the proof of Lemma 5, we can find a diagonal
element t of S of order p-1 such that \lambda^{t}=\lambda^{\alpha} for all \lambda\in\Lambda . Thus, for
any \lambda\in\Lambda , \lambda^{S} is realizable in \mathbb{Q} , so that, by Lemma 1, m_{\mathbb{Q}}(\chi) divides
a_{\lambda}=(\lambda^{S}, \chi)_{S} .

Let u be an element of V of type \mu . Then u is a regular unipotent
element of H , so that, by a theorem of Lehrer [7], we have \rho(u)=0 for all
\rho\in R . Thus we have the expression

\chi(u)=\sum_{\lambda\in\Lambda}a_{\lambda}\lambda(u)
.

Let \lambda\in\Lambda . Then a_{\lambda^{t}}=(\chi|V, \lambda^{t})_{V}=(\chi^{t}|V, \lambda^{t})_{V}=(\chi|V, \lambda)_{V}=a_{\lambda} . Thus

\chi(u)^{\alpha}=\sum_{\lambda\in\Lambda}a_{\lambda}\lambda(u)^{\alpha}

= \sum_{\lambda\in\Lambda}a_{\lambda}\lambda^{t}(u)

= \sum a_{\lambda^{t}}\lambda^{t}(u)

\lambda\in\Lambda

=\chi(u) ,

so that \chi(u)\in \mathbb{Q} , hence \chi(u)\in \mathbb{Z} . Now in the expression

\chi(u)/m_{\mathbb{Q}}(\chi)=\sum_{\lambda\in\Lambda}(a_{\lambda}/m_{\mathbb{Q}}(\chi))\lambda(u)
,
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the right hand side is an algebraic integer and the left hand side is a rational
number. Hence m_{\mathbb{Q}}(\chi) divides \chi(u) .

Put m=m_{\mathbb{Q}}(\chi_{1})= =m_{\mathbb{Q}}(\chi_{h}) . Then, as we have seen above, m
divides all \chi_{i}(u) , 1\leqq i\leqq h , so that m divides \eta(u)=\chi_{1}(u)+ +\chi_{h}(u) .
By Lemma 6, \eta(u) is a power of p , so that m divides a power of p . On the
other hand, by Theorem A, m divides 2. Therefore, as p is odd, we conclude
that m=1 . \square

References

[1] Feit W., Characters of Finite Groups. W.A. Benjamin, INC., New York, Amsterdam,
1967.

[2] Gow R., Schur indices of some groups of Lie type. J. Algebra 42 (1976), 102-120.
[3] Gow R., On the Schur indices of characters of fifinite classical groups. J. London

Math. Soc. (2), 24 (1981), 135-147.
[4] Green J.A., The characters of fifinite general linear groups. Trans. Amer. Math. Soc.

80 (1955), 402-447.
[5] Janusz G.J., Simple components of Q[SL(2, q)] . Commun. Algebra 1 (1974), 1-22.
[6] Lehrer G.I., The characters of fifinite special linear groups. J. Algebra 26 (1973),

564-583.
[7] Lehrer G.I., Adjoint groups, regular unipotent elements and discrete series charac-

ters. Trans Amer. Math. Soc. 214 (1975), 249-260.
[8] Lehrer G.I., On the values of characters of semisimple groups over fifinite fifields. Osaka

J. Math. 15 (1978), 77-99.
[9] Ohmori Z., On the Schur indices of GL(n,q) and SL(2n+1,q). J. Math. Soc. Japan

29 (1977), 693-707.
[10] Ohmori Z., On a Zelevinsky theorem and the Schur indices of the fifinite unitary

groups. J. Math. Sci. Univ. Tokyo 4 (1997), 417-433.
[11] Ohmori Z., On the Schur indices of certain irreducible characters of fifinite Chevalley

groups. Hokkaido Math. J. 28 (1999), 39-55.
[12] Ohmori Z., On the Schur indices of the irreducible charcters of the fifinite unitary

groups. Tokyo J. Math. 23 (2000), 15-36.
[13] Prasad D., On the self-dual representations of fifinite groups of Lie type. J. Algebra

10 (1998), 298-310.
[14] Yamada T., The Schur subgroups of the Brauer group. Lecture Notes in Mathematics

397, Springer, Berlin-Heidelberg-New York, 1974.
[15] Zelevinsky A.V., Representations offifinite classical groups a Hoph algebra approach.

Lecture Notes in Mathematics 869, Springer, Berlin-Heidelberg-New York, 1981.



On the Schur indices of the irreducible characters of SL(n,q) 521

Department of Mathematics
Hokkaido University of Education
Iwamizawa Campus
2-34 Midorigaoka, Iwamizawa
068-0835, Hokkaido
Japan


	Introduction
	Theorem A ...
	Theorem B ...
	Theorem C ...
	Theorem D ...
	Theorem E ...
	Theorem F ...

	1. A Zelevinsky's theorem
	Theorem 1 ...

	2. Some remarks
	3. Proof of Theorem E ...
	Theorem G ...

	4. Some sufficient condition ...
	5. Some sufficient condition ...
	References

