A hypergraph rewriting language and its semantics*

Akira Higuchi
(Received December 26, 2002; Revised August 4, 2004)

Abstract

A resource conscious functional language is introduced based a hypergraph rewriting scheme described by higher dimensional hypergraphs. Its operational and denotational semantics are given.

Key words: hypergraph rewriting, hypercategory, functional programming.

1. Introduction

1.1. Hypergraphs

Higher dimensional hypergraphs [7] are generalization of directed graphs and multigraphs. Hypergraphs allow us to use cells of more general shapes in describing processes than trees. For example, consider the rewrite

$$
s(x)+y \rightarrow x+s(y)
$$

which is a part of the rewriting rules of the system of natural numbers and their basic functions. The both sides of the above rule consist of 1 -cells s and + . To represent the rewrite as a 1-pasting diagram directly, we need non-restricted forms of hypergraphs.

The data of a 2 -hypergraph defines a rewriting system, where 0 -cells are types, 1 -cells are operators, and 2 -cells are rewriting rules. Since hypergraphs allow multiple targets (or codomains), the operators in the rewriting system can have multiple inputs, and multiple outputs. Another remarkable property of the rewriting system is its resource consciousness, an important aspect which is shared by linear term rewriting systems and Lafont's interaction net. For example, copying must be done explicitly, by using an operator such as

[^0]$$
\text { copy }: X \rightarrow X, X
$$
which takes an object of type X, and returns two copies of it.

1.2. Computer programs and noncopyable objects

Resource conscious languages are known to be useful for representing computer programs. Computer programs must have ability to manipulate noncopyable objects, so that it can interact with the outside of the process. On the other hand, mathematical objects (e.g., numbers) are stored on memory when they are represented on a computer program, and therefore they are copyable because we think as if a computer has virtually infinite amount of memory. Resource conscious languages can treat both noncopyable and copyable objects uniformly, and have ability to represent common algorithms that can be applied for both sorts of objects, without losing referential transparency.

1.3. Overview

The rest of the paper is organized as follows. In section two, we review basic concepts of higher dimensional hypergraphs [7], used to formulate our rewriting systems in section three. In section four, we introduce a set theoretical semantics for 1-hypergraphs and define the concept of models of 2 -hypergraphs. Finally we single out a certain class of 2 -hypergraphs, called functional, and prove the main result that functional 2-hypergraphs have set theoretical models. In the last section, we give a sketch of a resource conscious language based on the class of functional 2-hypergraphs developed here.

2. Hypergraphs

Higher dimensional hypergraphs [7] is a generalization of multigraphs. In this paper, we use those of dimension less than or equal to 2 . The following definition of n-hypergraphs differs from that of [7] a little, so that we can introduce set-theoretic semantics for them easily.

2.1. Preliminaries

A list over a set X is either the empty list \rangle or a finite ordered sequence $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ where $x_{i} \in X(i=1, \ldots, n)(n \geq 1)$.
$\operatorname{List}(X)$ denotes the set of the lists over X. length is the function returning the length of a list, i.e., length $\left(\rangle)=0\right.$ and length $\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=n$. We sometimes write x_{i} as $x(i)$ for $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle$.

2.2. 1-hypergraphs

(1-hypergraphs) A 1-hypergraph is a quadruple $\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$, where

- Σ_{0} is a set of 0 -cells,
- Σ_{1} is a set of 1 -cells,
- $\quad *: \Sigma_{0} \sqcup \Sigma_{1} \rightarrow \Sigma_{0} \sqcup \Sigma_{1}$ is a bijection satisfying $*\left(\Sigma_{i}\right) \subset \Sigma_{i}(i=0,1)$ and $x^{* *}=x(\forall x)$,
- $\delta: \Sigma_{1} \rightarrow \boldsymbol{\operatorname { L i s t }}\left(\Sigma_{0}\right)$ is a map compatible with $*$, namely $\delta\left(x^{*}\right)=\left\langle x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right\rangle$ when $\delta(x)=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$.
(1-pasting diagrams) A 1-pasting diagram x over a 1-hypergraph $\mathcal{H}=$ $\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$ is a pair $\left(\delta_{x}, \ell_{x}\right)$, where δ_{x} is a member of $\operatorname{List}\left(\Sigma_{1}\right)$, and $\ell_{x}: \mathcal{N}_{x}^{0} \rightarrow \mathcal{N}_{x}^{0}$ is an bijection satisfying

$$
\ell_{x}\left(\ell_{x}(i)\right)=i \quad\left(\forall i \in \mathcal{N}_{x}^{0}\right)
$$

and

$$
\ell_{x}(i) \neq i \Longrightarrow \lambda\left(x, \ell_{x}(i)\right)=\lambda(x, i)^{*} \quad\left(\forall i \in \mathcal{N}_{x}^{0}\right)
$$

where we use the following notations. \mathcal{N}_{x}^{0} denotes the set of 0 -node indexes of x. A 0 -node index is a pair of natural numbers $\left\langle i_{1}, i_{2}\right\rangle$ satisfying $1 \leq$ $i_{1} \leq \operatorname{length}\left(\delta_{x}\right)$ and $1 \leq i_{2} \leq \operatorname{length}\left(\delta_{x}\left(i_{1}\right)\right)$. We denote by \mathcal{N}_{x}^{1} the set of 1-node indexes of x. A 1-node index is a natural number i satisfying $1 \leq i \leq \operatorname{length}\left(\delta_{x}\right)$. We define $\lambda(x, i)=\delta_{x}(i)$ for $i \in \mathcal{N}_{x}^{1}$, and $\lambda(x, i)=$ $\delta\left(\delta_{x}\left(i_{1}\right)\right)\left(i_{2}\right)$ for $i=\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{N}_{x}^{0}$. For simplicity, we call a 1-pasting diagram as a diagram. A diagram x is said to be closed if ℓ_{x} has no fixed point.

We call \mathcal{N}_{x}^{1} and \mathcal{N}_{x}^{0} node indexes because a 1-pasting diagram can be represented as a labeled tree.

Fig. 1 shows the tree representation [7] of a diagram $x=\left(\delta_{x}, \ell_{x}\right)$ over the 1-hypergraph $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$, where $\Sigma_{0}=\left\{A, A^{*}, B, B^{*}, C, C^{*}\right\}$ with the obvious involution $*, \Sigma_{1}=\{$ foo, bar $\}, \delta(f o o)=\left\langle A^{*}, C\right\rangle, \delta($ bar $)=\left\langle A, B^{*}, A\right\rangle$, $\delta_{x}=\langle$ foo, bar $\rangle, \ell_{x}(\langle 1,1\rangle)=\langle 2,1\rangle, \ell_{x}(\langle 1,2\rangle)=\langle 1,2\rangle$, and $\ell_{x}(\langle 2,2\rangle)=\langle 2,3\rangle$.

2.3. 2-hypergraphs

(2-Hypergraphs) A 2-hypergraph \mathcal{H} is a 6-tuple $\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, *, \delta, \ell\right)$ satisfying the following conditions.

- Σ_{i} is a set of i-cells $(i=0,1,2)$.
- $*$ is an bijection satisfying $x \in \Sigma_{i} \Rightarrow x^{*} \in \Sigma_{i}(i=0,1,2)$ and $x^{* *}=x$.

Fig. 1. tree representation of $x=\left(\delta_{x}, \ell_{x}\right)$ and its node indexes

- For $x \in \Sigma_{i}(i=1,2), \delta(x)$ is a finite list over the set Σ_{i-1}, and the map δ is compatible with $*$.
- For $x \in \Sigma_{2}, \quad(\delta(x), \ell(x))$ is a closed 1-pasting diagram over $\left(\Sigma_{0}, \Sigma_{1}, *,\left.\delta\right|_{\Sigma_{1}}\right)$.

The diagram $(\delta(x), \ell(x))$ is called the boundary for x. We sometimes identify a 2-cell x with its diagram $(\delta(x), \ell(x))$, and write $\delta(x)$ and $\ell(x)$ by δ_{x} and ℓ_{x} respectively. This identification will not cause confusion when 2-cells with the same boundary coincide. We will hereafter assume that this condition is satisfied, so that a 2-hypergraph is just a collection of closed diagrams over a 1-hypergraph.

A 1-hypergraph $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$ is said to be with parity if $\Sigma_{i}(i=0,1)$ is the disjoint union of two sets Σ_{i}^{+}and Σ_{i}^{-}with $*\left(\Sigma_{i}^{ \pm}\right) \subset \Sigma_{i}^{\mp}$. The elements of Σ_{i}^{+}and Σ_{i}^{-}are called positive and negative respectively. A 2-hypergraph $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, *, \delta, \ell\right)$ is said to be with parity if the above condition holds for Σ_{0}, Σ_{1}, and Σ_{2}. For a 1-pasting diagram x over a 1-hypergraph $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$, we use the following notations.

- $\mathcal{N}_{x}^{1 \pm}=\left\{i \in \mathcal{N}_{x}^{1} \mid \lambda(x, i) \in \Sigma_{1}^{ \pm}\right\}$.
- $\mathcal{N}_{x}^{0 \alpha \beta}=\left\{\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{N}_{x}^{0} \mid i_{1} \in \mathcal{N}_{x}^{1 \alpha}, \ell_{x}\left(\left\langle i_{1}, i_{2}\right\rangle\right)(1) \in \mathcal{N}_{x}^{1 \beta}\right\}$

$$
(\alpha, \beta=+ \text { or }-) .
$$

3. Rewriting logics

In this section, we define a rewriting system based on a 2-hypergraph with parity. Rules are the set of 2-cells of a 2-hypergraph. Rewritings are 1 -pasting diagrams derived from the set of 2-cells. The main concern in this section is to define the rewritings derived from a given set of rules.
(Identity diagrams) Let $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$ be a 1-hypergraph. A closed diagram $x=\left(\delta_{x}, \ell_{x}\right)$ over \mathcal{H} is called an identity diagram if the following conditions are met.

- There is a natural number m such that $\delta_{x}=\left\langle a_{1}, \ldots, a_{m}, a_{m+1}, \ldots, a_{2 m}\right\rangle$.
- $\lambda(x, i) \in \Sigma_{1}^{-} \quad(\forall i \in\{1, \ldots, m\})$.
- $\lambda(x, m+i)=\lambda(x, i)^{*} \quad(\forall i \in\{1, \ldots, m\})$.
- For $\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{N}_{x}^{0}$ satisfying $i_{1} \in\{1, \ldots, m\}, \ell_{x}\left(\left\langle i_{1}, i_{2}\right\rangle\right)=\left\langle i_{1}+m, i_{2}\right\rangle$.
(Disjoint sum) Let x, y be closed diagrams over a 1-hypergraph $\mathcal{H}=$ $\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$, and $\delta_{x}=\left\langle a_{1}, \ldots, a_{m}\right\rangle, \delta_{y}=\left\langle b_{1}, \ldots, b_{n}\right\rangle$. We define a closed diagram $x \oplus y$, called the disjoint sum of x and y, as follows.
- $\delta_{x \oplus y}=\left\langle a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right\rangle$.
- $\ell_{x \oplus y}\left(\left\langle i_{1}, i_{2}\right\rangle\right)=\left\langle j_{1}, j_{2}\right\rangle$ holds iff $\left(i_{1} \leq m\right)$ and $\left(\ell_{x}\left(\left\langle i_{1}, i_{2}\right\rangle\right)=\left\langle j_{1}, j_{2}\right\rangle\right)$, or $\left(i_{1}>m\right)$ and $\left(\ell_{y}\left(\left\langle i_{1}-m, i_{2}\right\rangle\right)=\left\langle j_{1}-m, j_{2}\right\rangle\right)$ holds.
(Pasting maps, embeddings) Let x, y be closed diagrams over a 1-hypergraph $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$, and $\delta_{x}=\left\langle a_{1}, \ldots, a_{m}\right\rangle, \delta_{y}=\left\langle b_{1}, \ldots, b_{n}\right\rangle$. A pasting map over $x \oplus y$ is a bijection $f: \mathcal{N}_{x \oplus y}^{1} \rightarrow \mathcal{N}_{x \oplus y}^{1}$ satisfying the following conditions.
(PM-1) $\quad f(f(i))=i \quad\left(\forall i \in \mathcal{N}_{x \oplus y}^{1}\right)$.
(PM-2) $\quad \lambda(x \oplus y, f(i))=\lambda(x \oplus y, i)^{*} \quad\left(\forall i \in \mathcal{N}_{x \oplus y}^{1}\right)$.
(PM-3) If $i \in \mathcal{N}_{x \oplus y}^{1}$ and $f(i) \neq i$, then $(i \leq m) \wedge(f(i)>m)$ or $(i>m) \wedge$ $(f(i) \leq m)$ holds.
$\mathbf{(P M - 4)} \quad$ If $\left\langle i_{1}, i_{2}\right\rangle,\left\langle j_{1}, j_{2}\right\rangle \in \mathcal{N}_{x \oplus y}^{0}, f\left(i_{1}\right) \neq i_{1}, f\left(j_{1}\right) \neq j_{1}$, and $\ell_{x \oplus y}\left(\left\langle i_{1}, i_{2}\right\rangle\right)=$ $\left\langle j_{1}, j_{2}\right\rangle$, then $\ell_{x \oplus y}\left(\left\langle f\left(i_{1}\right), i_{2}\right\rangle\right)=\left\langle f\left(j_{1}\right), j_{2}\right\rangle$ holds.
A pasting map f over $x \oplus y$ is called an embedding if it satisfies the following conditions.
(E-1) $\quad f(i)=i \quad\left(\forall i \in \mathcal{N}_{x}^{1-}\right)$.
(E-2) $\quad f(m+i)=m+i \quad\left(\forall i \in \mathcal{N}_{y}^{1+}\right)$.
(E-3) $\quad \forall i \in \mathcal{N}_{x}^{1+}(f(i) \neq i)$ or $\forall i \in \mathcal{N}_{y}^{1-}(f(m+i) \neq m+i)$ holds.

Fig. 2. disjoint sum
(Binary composition) Let x, y be closed diagrams over a 1-hypergraph $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$, and f be a pasting map over $x \oplus y$. Let $f_{0}: \mathcal{N}_{x \oplus y}^{0} \rightarrow$ $\mathcal{N}_{x \oplus y}^{0}$ be the bijection defined by

$$
f_{0}\left(\left\langle i_{1}, i_{2}\right\rangle\right)=\left\langle f\left(i_{1}\right), i_{2}\right\rangle
$$

Let $\mathbf{f i x}\left(f_{0}\right)$ be the set of fixed points of f_{0}, and $\ell_{x \oplus y}^{f}: \mathbf{f i x}\left(f_{0}\right) \rightarrow \boldsymbol{f i x}\left(f_{0}\right)$ a map defined as

$$
\ell_{x \oplus y}^{f}(i)=\left\{\begin{array}{ll}
\ell_{x \oplus y}(i) & \text { if } \ell_{x \oplus y}(i) \in \mathbf{f i x}\left(f_{0}\right) \\
\ell_{x \oplus y}^{f}\left(f_{0}\left(\ell_{x \oplus y}(i)\right)\right) & \text { otherwise }
\end{array} .\right.
$$

Fig. 3. binary composition

Note that $\ell_{x \oplus y}^{f}$ is well-defined. Let $h_{f}:\{1, \ldots, k\} \rightarrow \mathbf{f i x}(f)$ be the monotone bijection, where $\mathbf{f i x}(f)$ is the set of fixed points of f and $k=|\mathbf{f i x}(f)|$. Then, we define the binary composition z of x and y with the pasting map f as the following closed diagram:

- $\delta_{z}=\left\langle\lambda\left(x \oplus y, h_{f}(1)\right), \ldots, \lambda\left(x \oplus y, h_{f}(k)\right)\right\rangle$.
- $\quad \ell_{z}\left(\left\langle i_{1}, i_{2}\right\rangle\right)=\left\langle j_{1}, j_{2}\right\rangle$ iff $\ell_{x \oplus y}^{f}\left(\left\langle h_{f}\left(i_{1}\right), i_{2}\right\rangle\right)=\left\langle h_{f}\left(j_{1}\right), j_{2}\right\rangle$.
(Isomorphic diagrams) Closed diagrams x and y over a 1-hypergraph \mathcal{H} are said to be isomorphic if there is a pasting map over $x \oplus y$ which has no fixed point.
(Rewrites) Let \mathcal{H} be a 2 -hypergraph with parity. The rewrites of \mathcal{H} are the 1-pasting diagrams defined as follows.
- The boundary of a positive 2 -cell of \mathcal{H} is a rewrite of \mathcal{H}.
- An identity diagram of \mathcal{H} is a rewrite of \mathcal{H}.
- If x, y are rewrites of \mathcal{H}, and f is a embedding over $x \oplus y$, then the binary composition of x and y with pasting map f is also a rewrite of \mathcal{H}.
- If x is a rewrite of \mathcal{H}, y is a closed diagram over \mathcal{H}, and y is isomorphic to x, then y is also a rewrite of \mathcal{H}.

4. Set theoretic interpretations of 1-Hypergraphs

(Set theoretic interpretation) Let $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$ be a 1-hypergraph with parity. A map $\llbracket \rrbracket$ which assigns a family of sets $\left\{\llbracket x \rrbracket \mid x \in \Sigma_{0} \cup \Sigma_{1}\right\}$ is called a set theoretic interpretation of $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$ if it satisfies $\llbracket x \rrbracket \subset \llbracket x_{1} \rrbracket \times \cdots \times \llbracket x_{m} \rrbracket$ with $\delta_{x}=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ for $x \in \Sigma_{1}$, and $\llbracket x^{*} \rrbracket=\llbracket x \rrbracket$ for $x \in \Sigma_{0} \cup \Sigma_{1}$.
(Assignment) Let $\llbracket \cdot \rrbracket$ be a set theoretic interpretation of $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right)$, y a closed diagram over \mathcal{H}, and N a subset of \mathcal{N}_{y}^{0}. An assignment to y over N with respect to $\llbracket . \rrbracket$ is a map $s: N \rightarrow \bigcup_{x \in \Sigma_{0}} \llbracket x \rrbracket$ satisfying $s(i) \in \llbracket \lambda(y, i) \rrbracket(\forall i \in N)$, and $s(i)=s\left(\ell_{y}(i)\right)$ if both sides are defined. $\operatorname{Asgn}(y, \llbracket \cdot \rrbracket, N)$ denotes the set of assignments to y over N with respect to $\llbracket . \rrbracket$.
(Valid assignment) Let N be a subset of \mathcal{N}_{y}^{0}, and M a subset of \mathcal{N}_{y}^{1}. An assignment s to y over N with respect to $\llbracket \cdot \rrbracket$ is said to be valid over M if it satisfies, for $k \in M,\langle s(\langle k, 1\rangle), \ldots, s(\langle k, m\rangle)\rangle \in \llbracket \lambda(y, k) \rrbracket$ if all the compo-
nents are defined. $\operatorname{VAsgn}(y, \llbracket \cdot \rrbracket, N, M)$ denotes the set of assignments to y over N with respect to $\llbracket \cdot \rrbracket$ which are valid over M.
(Union of assignments) Let $N_{1}, N_{2} \subset \mathcal{N}_{y}^{0}$, and s_{1}, s_{2} be assignments to y over N_{1}, N_{2} respectively, with respect to $\llbracket \cdot \rrbracket$. Assume $s_{1}(i)=s_{2}(i)$ for $\forall i \in N_{1} \cap N_{2}$. Then we define a map $s_{1} \cup s_{2}$, the union of s_{1} and s_{2}, as

$$
\left(s_{1} \cup s_{2}\right)(i)= \begin{cases}s_{1}(i) & \text { if } i \in N_{1} \\ s_{2}(i) & \text { if } i \in N_{2}\end{cases}
$$

Note that if both N_{1} and N_{2} are closed with respected to the map ℓ_{y}, the map $s_{1} \cup s_{2}$ is an assignment to y over $N_{1} \cup N_{2}$ with respect to $\llbracket \rrbracket \rrbracket$.
(Interpretation satisfying an equation) Let $\llbracket \rrbracket$ be a set theoretic interpretation of $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right), y$ a closed diagram over \mathcal{H}. The interpretation $\llbracket \rrbracket$ is said to satisfy the equation y if, for any assignment s to y over $\mathcal{N}_{y}^{0-+} \cup \mathcal{N}_{y}^{0+-}$ with respect to $\llbracket \cdot \rrbracket$,

$$
\begin{aligned}
& \exists t_{1} \in \operatorname{Asgn}\left(y, \llbracket \cdot \rrbracket, \mathcal{N}_{y}^{0--}\right)\left(\left(s \cup t_{1}\right) \in \mathbf{V A} \operatorname{sgn}\left(y, \llbracket \cdot \rrbracket, N_{1}, \mathcal{N}_{y}^{1-}\right)\right) \\
& \Longleftrightarrow \\
& \exists t_{2} \in \operatorname{Asgn}\left(y, \llbracket \cdot \rrbracket, \mathcal{N}_{y}^{0++}\right)\left(\left(s \cup t_{2}\right) \in \mathbf{V A s g n}\left(y, \llbracket \rrbracket \rrbracket, N_{2}, \mathcal{N}_{y}^{1+}\right)\right)
\end{aligned}
$$

holds, where $N_{1}=\mathcal{N}_{y}^{0--} \cup \mathcal{N}_{y}^{0-+} \cup \mathcal{N}_{y}^{0+-}, N_{2}=\mathcal{N}_{y}^{0++} \cup \mathcal{N}_{y}^{0-+} \cup \mathcal{N}_{y}^{0+-}$.
(Models) Let $\mathcal{H}_{2}=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, *, \delta, \ell\right)$ be a 2-hypergraph. A set theoretic interpretation $\llbracket \cdot \rrbracket$ is said to be a model of \mathcal{H}_{2} if $\llbracket \cdot \rrbracket$ satisfies all the equations $\left\{\left(\delta_{x}, \ell_{x}\right) \mid x \in \Sigma_{2}\right\}$.

Lemma 1 Let x, y be closed diagrams over a 1-hypergraph $\mathcal{H}=$ $\left(\Sigma_{0}, \Sigma_{1}, *, \delta\right), f$ an embedding over $x \oplus y$, and z the binary composition of x and y with pasting map f. If $\llbracket \cdot \rrbracket$ is a set theoretic interpretation of \mathcal{H} satisfying equations x and y, then $\llbracket \rrbracket$ satisfies the equation z also.

Proof. We prove the lemma in the case that the latter condition of (E-3) holds. Let $M_{A}=\mathcal{N}_{x}^{1-}, M_{B}=\mathcal{N}_{x}^{1+} \cap \operatorname{fix}(f), M_{C}=\mathcal{N}_{x}^{1+} \backslash M_{B}, M_{C}^{\prime}=$ $f\left(M_{C}\right)$, and $M_{D}=\left\{i+m \mid i \in \mathcal{N}_{y}^{1+}\right\}$. Because we assume that the latter condition of (E-3) holds, $M_{C}^{\prime}=\left\{i+m \mid i \in \mathcal{N}_{y}^{1-}\right\}, M_{A} \subseteq \mathbf{f i x}(f)$, and $M_{D} \subseteq \mathbf{f i x}(f)$ holds (Fig. 4). Let

$$
I_{1}=\left\{\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{N}_{x}^{0+-} \mid i_{1} \in M_{B}\right\}
$$

$$
\begin{aligned}
& I_{2}=\left\{\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{N}_{x}^{0+-} \mid i_{1} \in M_{C}\right\} \\
& I_{3}=\left\{\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{N}_{x}^{0++} \mid i_{1} \in M_{C}, \ell_{x \oplus y}\left(\left\langle i_{1}, i_{2}\right\rangle\right)(1) \in M_{B}\right\} \\
& N_{A}=\mathcal{N}_{x}^{0--} \\
& N_{B}=\left\{\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{N}_{x}^{0++} \mid i_{1} \in M_{B}, \ell_{x \oplus y}\left(\left\langle i_{1}, i_{2}\right\rangle\right)(1) \in M_{B}\right\} \\
& N_{C}=\left\{\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{N}_{x}^{0++} \mid i_{1} \in M_{C}, \ell_{x \oplus y}\left(\left\langle i_{1}, i_{2}\right\rangle\right)(1) \in M_{C}\right\} .
\end{aligned}
$$

Fig. 4. binary composition, when the latter condition of (E-3) holds
Let $P_{A}, P_{B}, P_{C}, P_{D}$, and P_{C}^{\prime} be predicates defined as follows. Let $V=\prod_{i \in I_{1}} \llbracket \lambda(x \oplus y, i) \rrbracket, W=\prod_{i \in I_{2}} \llbracket \lambda(x \oplus y, i) \rrbracket$, and $U=\prod_{i \in I_{3}} \llbracket \lambda(x \oplus y, i) \rrbracket$. For $v \in V, w \in W, u \in U$,

$$
\begin{aligned}
& P_{A}(v, w) \\
& \quad \Longleftrightarrow \exists t_{1} \in \mathbf{A} \operatorname{sgn}\left(x, \llbracket \cdot \rrbracket, N_{A}\right)\left(\left(s_{1} \cup t_{1}\right) \in \mathbf{V A} \operatorname{sgn}\left(x, \llbracket \cdot \rrbracket, N_{1}, M_{A}\right)\right)
\end{aligned}
$$

where $N_{1}=\mathcal{N}_{x}^{0--} \cup \mathcal{N}_{x}^{0-+} \cup \mathcal{N}_{x}^{0+-}$, and s_{1} is defined by $\left\langle s_{1}(i)\right\rangle_{i \in I_{1}}=$ $\left\langle s_{1}\left(\ell_{x \oplus y}(i)\right)\right\rangle_{i \in I_{1}}=v,\left\langle s_{1}(i)\right\rangle_{i \in I_{2}}=\left\langle s_{1}\left(\ell_{x \oplus y}(i)\right)\right\rangle_{i \in I_{2}}=w$.

$$
\begin{aligned}
& P_{B}(v, u) \\
& \quad \Longleftrightarrow \exists t_{2} \in \operatorname{Asgn}\left(x, \llbracket \cdot \rrbracket, N_{B}\right)\left(\left(s_{2} \cup t_{2}\right) \in \operatorname{VA} \operatorname{sgn}\left(x, \llbracket \cdot \rrbracket, N_{2}, M_{B}\right)\right)
\end{aligned}
$$

where $N_{2}=N_{B} \cup I_{1} \cup \ell_{x \oplus y}\left(I_{1}\right) \cup I_{3} \cup \ell_{x \oplus y}\left(I_{3}\right)$, and s_{2} is defined by $\left\langle s_{2}(i)\right\rangle_{i \in I_{1}}=$ $\left\langle s_{2}\left(\ell_{x \oplus y}(i)\right)\right\rangle_{i \in I_{1}}=v,\left\langle s_{2}(i)\right\rangle_{i \in I_{3}}=\left\langle s_{2}\left(\ell_{x \oplus y}(i)\right)\right\rangle_{i \in I_{3}}=u$.

$$
\begin{aligned}
& P_{C}(w, u) \\
& \quad \Longleftrightarrow \exists t_{3} \in \mathbf{A} \boldsymbol{\operatorname { s g n }}\left(x, \llbracket \cdot \rrbracket, N_{C}\right)\left(\left(s_{3} \cup t_{3}\right) \in \mathbf{V A} \operatorname{sgn}\left(x, \llbracket \cdot \rrbracket, N_{3}, M_{C}\right)\right)
\end{aligned}
$$

where $N_{3}=N_{C} \cup I_{2} \cup \ell_{x \oplus y}\left(I_{2}\right) \cup I_{3} \cup \ell_{x \oplus y}\left(I_{3}\right)$, and s_{3} is defined by $\left\langle s_{3}(i)\right\rangle_{i \in I_{2}}=$ $\left\langle s_{3}\left(\ell_{x \oplus y}(i)\right)\right\rangle_{i \in I_{2}}=w,\left\langle s_{3}(i)\right\rangle_{i \in I_{3}}=\left\langle s_{3}\left(\ell_{x \oplus y}(i)\right)\right\rangle_{i \in I_{3}}=u$.

$$
\begin{aligned}
& P_{D}(w, u) \\
& \quad \Longleftrightarrow \exists t_{4} \in \operatorname{Asgn}\left(y, \llbracket \cdot \rrbracket, \mathcal{N}_{y}^{0++}\right)\left(\left(s_{4} \cup t_{4}\right) \in \mathbf{V A} \operatorname{sgn}\left(y, \llbracket \cdot \rrbracket, N_{4}, \mathcal{N}_{y}^{1+}\right)\right)
\end{aligned}
$$

where $N_{4}=\mathcal{N}_{y}^{0++} \cup \mathcal{N}_{y}^{0-+} \cup \mathcal{N}_{y}^{0+-}$, and s_{4} is defined by $\left\langle s_{4}\left(\left\langle f\left(i_{1}\right)-m, i_{2}\right\rangle\right)\right\rangle_{\left\langle i_{1}, i_{2}\right\rangle \in I_{2}}=\left\langle s_{4}\left(\ell_{y}\left(\left\langle f\left(i_{1}\right)-m, i_{2}\right\rangle\right)\right)\right\rangle_{\left\langle i_{1}, i_{2}\right\rangle \in I_{2}}=w$, $\left\langle s_{4}\left(\left\langle f\left(i_{1}\right)-m, i_{2}\right\rangle\right)\right\rangle_{\left\langle i_{1}, i_{2}\right\rangle \in I_{3}}=\left\langle s_{4}\left(\ell_{y}\left(\left\langle f\left(i_{1}\right)-m, i_{2}\right\rangle\right)\right)\right\rangle_{\left\langle i_{1}, i_{2}\right\rangle \in I_{3}}=u$.

$$
\begin{aligned}
& P_{C}^{\prime}(w, u) \\
& \quad \Longleftrightarrow \exists t_{5} \in \mathbf{A} \boldsymbol{\operatorname { s g n }}\left(y, \llbracket \cdot \rrbracket, \mathcal{N}_{y}^{0--}\right)\left(\left(s_{5} \cup t_{5}\right) \in \mathbf{V A s g n}\left(y, \llbracket \cdot \rrbracket, N_{5}, \mathcal{N}_{y}^{1-}\right)\right)
\end{aligned}
$$

where $N_{5}=\mathcal{N}_{y}^{0--} \cup \mathcal{N}_{y}^{0-+} \cup \mathcal{N}_{y}^{0+-}$, and s_{5} is defined by $\left\langle s_{5}\left(\left\langle f\left(i_{1}\right)-m, i_{2}\right\rangle\right)\right\rangle_{\left\langle i_{1}, i_{2}\right\rangle \in I_{2}}=\left\langle s_{5}\left(\ell_{y}\left(\left\langle f\left(i_{1}\right)-m, i_{2}\right\rangle\right)\right)\right\rangle_{\left\langle i_{1}, i_{2}\right\rangle \in I_{2}}=w$, $\left\langle s_{5}\left(\left\langle f\left(i_{1}\right)-m, i_{2}\right\rangle\right)\right\rangle_{\left\langle i_{1}, i_{2}\right\rangle \in I_{3}}=\left\langle s_{5}\left(\ell_{y}\left(\left\langle f\left(i_{1}\right)-m, i_{2}\right\rangle\right)\right)\right\rangle_{\left\langle i_{1}, i_{2}\right\rangle \in I_{3}}=u$.

Because $\llbracket \cdot \rrbracket$ satisfies x and y,

$$
\forall v \in V \forall w \in W\left(P_{A}(v, w) \Leftrightarrow \exists u \in U\left(P_{B}(v, u) \wedge P_{C}(w, u)\right)\right)
$$

and

$$
\forall w \in W \forall u \in U\left(P_{D}(w, u) \Leftrightarrow P_{C}^{\prime}(w, u)\right)
$$

hold. Because f is an embedding, P_{C} is equivalent to P_{C}^{\prime}. Therefore we have

$$
\forall v \in V \forall w \in W\left(P_{A}(v, w) \Leftrightarrow \exists u \in U\left(P_{B}(v, u) \wedge P_{D}(w, u)\right)\right)
$$

which means that $\llbracket \cdot \rrbracket$ satisfies z.
Proposition 1 Let \mathcal{H} be a 2 -hypergraph, and $\llbracket \cdot \rrbracket$ a model of \mathcal{H}. Then $\llbracket \cdot \rrbracket$ satisfies the equation r for any rewrite r of \mathcal{H}.

5. Functional hypergraphs

In general, 2-hypergraphs can not be interpreted as systems of sets and functions. In this section, we introduce some conditions for 2-hypergraphs so that they can be interpreted as systems of sets and functions.
(Functional hypergraphs) A 2-hypergraph $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, *, \delta, \ell\right)$ is called functional if the following conditions are met.
(F-1) $\quad \Sigma_{0}, \Sigma_{1}$, and Σ_{2} are finite.
$(\mathbf{F}-2) \mathcal{H}$ is with parity, and Σ_{1}^{+}is the disjoint union of two sets Σ_{c}^{+} and Σ_{d}^{+}, called positive constructors and destructors. Σ_{1}^{-}likewise, and $\Sigma_{c}^{-}=\left\{x^{*} \mid x \in \Sigma_{c}^{+}\right\}, \Sigma_{d}^{-}=\left\{x^{*} \mid x \in \Sigma_{d}^{+}\right\}$hold.
(F-3) For $x \in \Sigma_{c}^{+}, \delta_{x}(1)$ is positive and $\delta_{x}(i)$ negative for $i \in\{2,3, \ldots\}$. When $\delta_{x}(1)=t, x$ is called a constructor for t.
(F-4) For $x \in \Sigma_{d}^{+}, \delta_{x}(1)$ is negative (but $\delta_{x}(i)$ need not to be positive for $i \in\{2,3, \ldots\})$. When $\delta_{x}(1)=t, x$ is called a destructor for t.
(F-5) If t is a positive 0 -cell, x_{1} a positive constructor for t, and x_{2} a positive destructor for t, then there is exactly one 2 -cell $y \in \Sigma_{2}^{+}$such that $\delta_{y}(1)=x_{1}^{*}, \delta_{y}(2)=x_{2}^{*}, \delta_{y}(k)$ is positive for all $k \in\left\{3, \ldots, \operatorname{length}\left(\delta_{y}\right)\right\}$, $\ell_{y}(\langle 1,1\rangle)=\langle 2,1\rangle$, and $\mathcal{N}_{y}^{0--}=\{\langle 1,1\rangle,\langle 2,1\rangle\}$.
(F-6) all the 2-cells in Σ_{2}^{+}are of the form (F-5).
(F-7) For $x \in \Sigma_{2}^{+}$, the shape graph of x has no cycle. The shape graph of x is a directed graph (E, V) defined as follows.

- V is the set of pairs $\left\langle i_{1}, i_{2}\right\rangle$ of 0 -node indexes of the diagram (δ_{x}, ℓ_{x}), such that i_{1} is positive, i_{2} negative and $\ell_{x}\left(i_{1}\right)=i_{2}$.
- $\left\langle\left\langle i_{1}, i_{2}\right\rangle,\left\langle j_{1}, j_{2}\right\rangle\right\rangle \in E$ iff there is a 1 -node index k such that $k=i_{1}(1)=j_{2}(1)$ and $\delta_{x}(k) \in \Sigma_{1}^{-}$, or $k=i_{2}(1)=j_{1}(1)$ and $\delta_{x}(k) \in \Sigma_{1}^{+}$.

Example 1 The following is a functional 2-hypergraph $\mathcal{H}=$ $\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, *, \delta, \ell\right)$ which expresses the system of natural numbers. Fig. 5 is the tree representations of zeroadd ${ }^{+}$, succadd ${ }^{+}$, zeroid $^{+}$, and succid $^{+}$.

- $\Sigma_{0}^{+}=\left\{N a t^{+}\right\}, \Sigma_{0}^{-}=\left\{N a t^{-}\right\}$.
- $\Sigma_{c}^{+}=\left\{\right.$zero $^{+}$, succ $\left.^{+}\right\}, \Sigma_{c}^{-}=\left\{\right.$zero $^{-}$, succ $\left.^{-}\right\}, \Sigma_{d}^{+}=\left\{\right.$add $\left.^{+}, i d^{+}\right\}$, $\Sigma_{d}^{-}=\left\{a d d^{-}, i d^{-}\right\}$.
- $\Sigma_{2}^{+}=\left\{\right.$zeroadd $^{+}$, succadd $^{+}$, zeroid $^{+}$, succid $\left.^{+}\right\}$, $\Sigma_{2}^{-}=\left\{\right.$zeroadd $^{-}$, succadd $^{-}$, zeroid $^{+}$, succid $\left.^{-}\right\}$.

Fig. 5. zeroadd $^{+}$, succadd ${ }^{+}$, zeroid $^{+}$, and succid ${ }^{+}$

- $\left(\mathrm{Nat}^{+}\right)^{*}=\mathrm{Nat}^{-},\left(\text {zero }^{+}\right)^{*}=$ zero $^{-},\left(\text {succ }^{+}\right)^{*}=\operatorname{succ}^{-}$, $\left(a d d^{+}\right)^{*}=a d d^{-},\left(i d^{+}\right)^{*}=i d^{-}$.
- $\delta_{z e r 0^{+}}=\left\langle N a t^{+}\right\rangle, \delta_{\text {succ }}{ }^{+}=\left\langle N a t^{+}, N a t^{-}\right\rangle, \delta_{a d d^{+}}=\left\langle N a t^{-}, N a t^{-}, N a t^{+}\right\rangle$, $\delta_{i d^{+}}=\left\langle N a t^{-}, N a t^{+}\right\rangle$.
- $\delta_{\text {zeroadd }^{+}}=\left\langle\right.$zero $\left.^{-}, a d d^{-}, i d^{+}\right\rangle, \delta_{\text {succadd }^{+}}=\left\langle\right.$succ $^{-}, a d d^{-}$, succ $\left.^{+}, a d d^{+}\right\rangle$, $\delta_{\text {zeroid }^{+}}=\left\langle\right.$zero $^{-}$, id $^{-}$, zero $\left.^{+}\right\rangle, \delta_{\text {succid }^{+}}=\left\langle\right.$succ $^{-}$, id $^{-}$, succ $\left.^{+}\right\rangle$.
- $\ell_{\text {zeroadd }^{+}}=\left\{\begin{aligned}\langle 1,1\rangle & \leftrightarrow\langle 2,1\rangle \\ \langle 2,2\rangle & \leftrightarrow\langle 3,1\rangle \\ \langle 2,3\rangle & \leftrightarrow\langle 3,2\rangle\end{aligned}\right.$
- $\ell_{\text {succadd }^{+}}=\left\{\begin{aligned}\langle 1,1\rangle & \leftrightarrow\langle 2,1\rangle \\ \langle 1,2\rangle & \leftrightarrow\langle 4,1\rangle \\ \langle 2,2\rangle & \leftrightarrow\langle 3,2\rangle \\ \langle 2,3\rangle & \leftrightarrow\langle 4,3\rangle \\ \langle 3,1\rangle & \leftrightarrow\langle 4,2\rangle\end{aligned}\right.$
- $\ell_{\text {zeroid }^{+}}= \begin{cases}\langle 1,1\rangle & \leftrightarrow\langle 2,1\rangle \\ \langle 2,2\rangle & \leftrightarrow\langle 3,1\rangle\end{cases}$
- $\ell_{\text {succid }^{+}}=\left\{\begin{aligned}\langle 1,1\rangle & \leftrightarrow\langle 2,1\rangle \\ \langle 1,2\rangle & \leftrightarrow\langle 3,2\rangle \\ \langle 2,2\rangle & \leftrightarrow\langle 3,1\rangle\end{aligned}\right.$

6. Models of functional hypergraphs

In this section, we give a set-theoretic model $\mathcal{D} \llbracket \cdot \rrbracket$ of a functional 2-hypergraph $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, *, \delta, \ell\right)$. At first, we define an interpretation $\mathcal{T} \llbracket \cdot \rrbracket$ for 0-cells and constructors, so that $\left(\mathcal{T} \llbracket \Sigma_{0}^{+} \rrbracket, \mathcal{T} \llbracket \Sigma_{c}^{+} \rrbracket\right)$ forms a term algebra. $\mathcal{D} \llbracket \rrbracket$ is defined as an extension to $\mathcal{T} \llbracket \rrbracket \rrbracket$, and defined for destructors also.
(Definition of $\mathcal{T} \llbracket \rrbracket$ for 0 -cells) We define a sequence of interpretations $\mathcal{T} \llbracket \cdot \rrbracket_{k} \cdot \mathcal{T} \llbracket x \rrbracket_{0}=\emptyset$ for all $x \in \Sigma_{0}$. For $x \in \Sigma_{0}, \mathcal{T} \llbracket x \rrbracket_{k+1}$ is defined by

$$
\begin{aligned}
& \mathcal{T} \llbracket x \rrbracket_{k+1}=\left\{\left\langle c_{i}, v_{1}, \ldots, v_{m(i)}\right\rangle \mid i \in\{1, \ldots, n\},\right. \\
& \left.\quad v_{j} \in \mathcal{T} \llbracket\left(y_{i}^{j}\right)^{*} \rrbracket_{k} \quad(\forall j \in\{1, \ldots, m(i)\})\right\}
\end{aligned}
$$

where c_{1}, \ldots, c_{n} are the constructors for x, and the natural number $m(i)$ and the sequence $\left\{y_{i}^{j}\right\}$ are defined by $\left\langle x, y_{i}^{1}, \ldots, y_{i}^{m(i)}\right\rangle=\delta\left(c_{i}\right)$ for $i \in\{1, \ldots, n\}$. When $m(i)=0$, the list $\left\langle c_{i}, v_{1}, \ldots, v_{m(i)}\right\rangle$ means $\left\langle c_{i}\right\rangle$, and the condition $v_{j} \in \mathcal{T} \llbracket\left(y_{i}^{j}\right)^{*} \rrbracket_{k}(\forall j \in\{1, \ldots, m(i)\})$ is always true. The interpretation $\mathcal{T} \llbracket x \rrbracket$ is defined by

$$
\mathcal{T} \llbracket x \rrbracket=\bigcup_{k=0}^{\infty} \mathcal{T} \llbracket x \rrbracket_{k}
$$

for all $x \in \Sigma_{0}^{+}$.
(Definition of $\mathcal{T} \llbracket \rrbracket$ for constructors) For $z \in \Sigma_{c}^{+}, \mathcal{T} \llbracket z \rrbracket$ is defined by

$$
\mathcal{T} \llbracket z \rrbracket=\left\{\left\langle\left\langle z, v_{1}, \ldots, v_{m}\right\rangle, v_{1}, \ldots, v_{m}\right\rangle \mid v_{i} \in \llbracket y_{i} \rrbracket(\forall i \in\{1, \ldots, m\})\right\}
$$

where m and the sequence $\left\{y_{i}\right\}$ are defined by $\left\langle x, y_{1}, \ldots, y_{m}\right\rangle=\delta(z)$.
Example 2 Suppose $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, *, \delta, \ell\right)$ is defined as the same as the previous example. The 0 -cell Nat^{+}is interpreted by $\mathcal{T} \llbracket \rrbracket_{k}(k=0,1,2,3, \ldots)$ as

$$
\begin{aligned}
\mathcal{T} \llbracket N a t^{+} \rrbracket_{0} & =\emptyset \\
\mathcal{T} \llbracket N a t^{+} \rrbracket_{1} & =\left\{\left\langle\text { zero }^{+}\right\rangle\right\} \cup\left\{\left\langle\text { succ }^{+}, y\right\rangle \mid y \in \mathcal{T} \llbracket N a t^{+} \rrbracket_{0}\right\} \\
& =\left\{\left\langle\text { zero }^{+}\right\rangle\right\} \\
\mathcal{T} \llbracket N a t^{+} \rrbracket_{2} & =\left\{\left\langle\text { zero }^{+}\right\rangle\right\} \cup\left\{\left\langle\text { succ }^{+}, y\right\rangle \mid y \in \mathcal{T} \llbracket N a t^{+} \rrbracket_{1}\right\} \\
& =\left\{\left\langle\text { zero }^{+}\right\rangle,\left\langle\text {succ }^{+},\left\langle\text {zero }^{+}\right\rangle\right\rangle\right\} \\
\mathcal{T} \llbracket N a t^{+} \rrbracket_{3} & =\left\{\left\langle\text { zero }^{+}\right\rangle\right\} \cup\left\{\left\langle\text { succ }^{+}, y\right\rangle \mid y \in \mathcal{T} \llbracket N a t^{+} \rrbracket_{2}\right\} \\
& =\left\{\left\langle\text { zero }^{+}\right\rangle,\left\langle\text {succ }^{+},\left\langle\text {zero }^{+}\right\rangle\right\rangle,\left\langle\text {succ }^{+},\left\langle\text {succ }^{+},\left\langle\text {zero }^{+}\right\rangle\right\rangle\right\rangle\right\}
\end{aligned}
$$

$$
\vdots
$$

and so on, therefore

$$
\begin{array}{rl}
\mathcal{T} & N a t^{+} \rrbracket=\bigcup_{k=0}^{\infty} \mathcal{T} \llbracket N a t^{+} \rrbracket_{k} \\
& =\left\{\left\langle\text { zero }^{+}\right\rangle,\left\langle\text {succ }^{+},\left\langle\text {zero }^{+}\right\rangle\right\rangle,\left\langle\text {succ }^{+},\left\langle\text {succ }^{+},\left\langle\text {zero }^{+}\right\rangle\right\rangle\right\rangle, \ldots\right\}
\end{array}
$$

holds. For the constructors zero $^{+}$and succ $^{+}$,

$$
\begin{aligned}
& \mathcal{T} \llbracket \text { zero }^{+} \rrbracket=\left\{\left\langle\left\langle\text { zero }^{+}\right\rangle\right\rangle\right\} \\
& \mathcal{T} \llbracket{s u c c^{+} \rrbracket}^{\rrbracket}=\left\{\left\langle\left\langle s u c c^{+}, v\right\rangle, v\right\rangle \mid v \in \mathcal{T} \llbracket N a t^{+} \rrbracket\right\}
\end{aligned}
$$

holds. As a result, we have

$$
\begin{aligned}
& \mathcal{T} \llbracket N a t^{+} \rrbracket=\overline{N a t} \\
& \mathcal{T} \llbracket z e r o^{+} \rrbracket=\{\langle\overline{z e r o}\rangle\} \\
& \mathcal{T} \llbracket s u c c^{+} \rrbracket=\{\langle\overline{\operatorname{succ}}(v), v\rangle \mid v \in \overline{N a t}\}
\end{aligned}
$$

where $\overline{N a t}=\{(\overbrace{\overline{s u c c} \circ \cdots \circ \overline{s u c c}}^{k})(\overline{z e r o}) \mid k \in\{0,1, \ldots\}\}, \overline{z e r o}=\left\langle\right.$ zero $\left.{ }^{+}\right\rangle$ and $\overline{\operatorname{succ}}(x)=\left\langle\operatorname{succ}^{+}, x\right\rangle$.

Proposition 2 For all $x \in \Sigma_{c}^{+}$, the relation $\mathcal{T} \llbracket x \rrbracket$ is a function from $\prod_{i \in I_{x}^{-}} \mathcal{T} \llbracket \delta_{x}(i) \rrbracket$ to $\prod_{i \in I_{x}^{+}} \mathcal{T} \llbracket \delta_{x}(i) \rrbracket$, where $I_{x}^{ \pm}=\left\{i \mid \delta_{x}(i) \in \Sigma_{0}^{ \pm}\right\}$.
Proposition $3\left(\mathcal{T} \llbracket \Sigma_{0}^{+} \rrbracket, \mathcal{T} \llbracket \Sigma_{c}^{+} \rrbracket\right)$ is a term algebra.
(Definition of $\mathcal{D} \llbracket \rrbracket$) We define a sequence of interpretations $\mathcal{D} \llbracket \rrbracket_{k}$ as

$$
\mathcal{D} \llbracket x \rrbracket_{0}= \begin{cases}\mathcal{T} \llbracket x \rrbracket & \text { if } x \in \Sigma_{0}^{+} \cup \Sigma_{c}^{+} \\ \mathcal{T} \llbracket x^{*} \rrbracket & \text { if } x \in \Sigma_{0}^{-} \cup \Sigma_{c}^{-} \\ \emptyset & \text { if } x \in \Sigma_{d}\end{cases}
$$

and

$$
\mathcal{D} \llbracket x \rrbracket_{k+1}=\left\{\begin{array}{lr}
\mathcal{D} \llbracket x \rrbracket_{k} & \text { if } x \in \Sigma_{0} \cup \Sigma_{c} \\
\left\{\langle s(\langle 2,1\rangle), \ldots, s(\langle 2, m\rangle)\rangle \mid y \in \Sigma_{2}, \delta_{y}(2)=x, s \in V_{y}^{k}\right\} \\
& \text { if } x \in \Sigma_{d}
\end{array}\right.
$$

where $m=\operatorname{length}\left(\delta_{x}\right)$ and $V_{y}^{k}=\operatorname{VAsgn}\left(y, \mathcal{D} \llbracket \rrbracket \rrbracket_{k}, \mathcal{N}_{y}^{0}, \mathcal{N}_{y}^{1} \backslash\{2\}\right) . \mathcal{D} \llbracket \rrbracket$ is defined by

$$
\mathcal{D} \llbracket x \rrbracket=\bigcup_{k=0}^{\infty} \mathcal{D} \llbracket x \rrbracket_{k}
$$

for all $x \in \Sigma_{0} \cup \Sigma_{1}$.
Example 3 Suppose $\mathcal{H}=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, *, \delta, \ell\right)$ is defined as in the examples 1 and 2. By definition, we have

$$
\begin{aligned}
& \mathcal{D} \llbracket{N a t^{+}}^{+} \rrbracket_{k}=\mathcal{D} \llbracket \text { Nat }^{-} \rrbracket_{k}=\mathcal{T} \llbracket N a t^{+} \rrbracket=\overline{\text { Nat }} \\
& \mathcal{D} \llbracket z e o^{+} \rrbracket_{k}=\mathcal{D} \llbracket z e r o^{-} \rrbracket_{k}=\mathcal{T} \llbracket z e r o^{+} \rrbracket=\{\langle\overline{\text { evro }}\rangle\} \\
& \mathcal{D} \llbracket \text { succ }^{+} \rrbracket_{k}=\mathcal{D} \llbracket \text { succ }^{-} \rrbracket_{k}=\mathcal{T} \llbracket \text { succ }^{+} \rrbracket=\left\{\langle\overline{\text { succ }}(v), v\rangle \mid v \in \mathcal{T} \llbracket N a t^{+} \rrbracket\right\}
\end{aligned}
$$

for all $k \in\{0,1,2, \ldots\}$. By definition, $\mathcal{D} \llbracket i d^{+} \rrbracket_{0}=\emptyset$, and

$$
\begin{aligned}
\mathcal{D} \llbracket i d^{+} \rrbracket_{k+1}= & \left\{\left\langle s_{1}(\langle 2,1\rangle), s_{1}(\langle 2,2\rangle)\right\rangle \mid s_{1} \in V_{\text {zeroid }}^{k}\right\} \\
& \cup\left\{\left\langle s_{2}(\langle 2,1\rangle), s_{2}(\langle 2,2\rangle)\right\rangle \mid s_{2} \in V_{\text {succid }}^{k}\right\}
\end{aligned}
$$

where $V_{y}^{k}=\operatorname{VAsgn}\left(y, \mathcal{D} \llbracket \rrbracket_{k}, \mathcal{N}_{y}^{0}, \mathcal{N}_{y}^{1} \backslash\{2\}\right)$. Because s_{1} is an assignment to zeroid ${ }^{+}$over $\mathcal{N}_{z \text { zeroid }}{ }^{+}, s_{1}(\langle 1,1\rangle)=s_{1}(\langle 2,1\rangle)$ and $s_{1}(\langle 2,2\rangle)=s_{1}(\langle 3,1\rangle)$ hold. Because s_{1} is valid over $\{1,3\}$, we have $s_{1}(\langle 1,1\rangle) \in \mathcal{D} \llbracket$ zero $^{-} \rrbracket_{k}$ and
$s_{1}(\langle 3,1\rangle) \in \mathcal{D} \llbracket$ zero $^{+} \rrbracket_{k}$. Therefore

$$
\left\{\left\langle s_{1}(\langle 2,1\rangle), s_{1}(\langle 2,2\rangle)\right\rangle \mid s_{1} \in V_{z e r o i d^{+}}^{k}\right\}=\{\langle\overline{\text { zero }}, \overline{z e r o}\rangle\}
$$

Similarly, we have $s_{2}(\langle 1,1\rangle)=s_{2}(\langle 2,1\rangle), s_{2}(\langle 1,2\rangle)=s_{2}(\langle 3,2\rangle), s_{2}(\langle 2,2\rangle)=$ $s_{2}(\langle 3,1\rangle)$,

$$
\left\langle s_{2}(\langle 1,1\rangle), s_{2}(\langle 1,2\rangle)\right\rangle \in\left\{\langle\overline{\operatorname{succ}}(v), v\rangle \mid v \in \mathcal{D} \llbracket N a t^{+} \rrbracket\right\}
$$

and

$$
\left\langle s_{2}(\langle 3,1\rangle), s_{2}(\langle 3,2\rangle)\right\rangle \in\left\{\langle\overline{\operatorname{succ}}(v), v\rangle \mid v \in \mathcal{D} \llbracket N a t^{+} \rrbracket\right\}
$$

whence

$$
\begin{aligned}
& \left\{\left\langle s_{2}(\langle 2,1\rangle), s_{2}(\langle 2,2\rangle)\right\rangle \mid s_{2} \in V_{\text {succid }}\right. \\
& \quad=\{\langle\overline{\operatorname{succ}}(v), \overline{\operatorname{succ}}(v)\rangle \mid v \in \overline{N a t}\} .
\end{aligned}
$$

We have

$$
\mathcal{D} \llbracket i d^{+} \rrbracket_{k+1}=\{\langle\overline{\text { zero }}, \overline{z e r o}\rangle\} \cup\left\{\langle\overline{\operatorname{succ}}(v), \overline{\operatorname{succ}}(v)\rangle \mid v \in \mathcal{D} \llbracket N a t^{+} \rrbracket\right\}
$$

for all $k \in\{0,1,2, \ldots\}$, which implies

$$
\mathcal{D} \llbracket i d^{+} \rrbracket=\{\langle v, v\rangle \mid v \in \overline{N a t}\} .
$$

The interpretation for $a d d^{+}$is defined similarly as follows. By definition, $\mathcal{D} \llbracket a d d^{+} \rrbracket_{0}=\emptyset$, and

$$
\left.\begin{array}{rl}
\mathcal{D} \llbracket a d d^{+} \rrbracket_{k+1}= & \left\{\left\langle s_{3}(\langle 2,1\rangle), s_{3}(\langle 2,2\rangle), s_{3}(\langle 2,3\rangle)\right\rangle \mid s_{3} \in V_{\text {zeroadd }}\right. \\
& \cup\left\{\left\langle s_{4}(\langle 2,1\rangle), s_{4}(\langle 2,2\rangle), s_{4}(\langle 2,3\rangle)\right\rangle \mid s_{4} \in V_{\text {succadd }}\right.
\end{array}\right\}
$$

where $V_{y}^{k}=\operatorname{VAsgn}\left(y, \mathcal{D} \llbracket \cdot \rrbracket_{k}, \mathcal{N}_{y}^{0}, \mathcal{N}_{y}^{1} \backslash\{2\}\right)$. We have $s_{3}(\langle 1,1\rangle)=s_{3}(\langle 2,1\rangle)$, $s_{3}(\langle 2,2\rangle)=s_{3}(\langle 3,1\rangle), s_{3}(\langle 2,3\rangle)=s_{3}(\langle 3,2\rangle)$,

$$
\left\langle s_{3}(\langle 1,1\rangle)\right\rangle \in \mathcal{D} \llbracket z^{\text {zero }}{ }^{+} \rrbracket_{k}=\{\langle\overline{z e r o}\rangle\}
$$

and

$$
\left\langle s_{3}(\langle 3,1\rangle), s_{3}(\langle 3,2\rangle)\right\rangle \in \mathcal{D} \llbracket i d^{+} \rrbracket_{k}=\{\langle v, v\rangle \mid v \in \overline{N a t}\}
$$

whence

$$
\begin{aligned}
& \left\{\left\langle s_{3}(\langle 2,1\rangle), s_{3}(\langle 2,2\rangle), s_{3}(\langle 2,3\rangle)\right\rangle \mid s_{3} \in V_{\text {zeroadd }}+\right\} \\
& \quad=\{\langle\overline{\text { zero }}, v, v\rangle \mid v \in \overline{N a t}\}
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& s_{4}(\langle 1,1\rangle)=s_{4}(\langle 2,1\rangle), s_{4}(\langle 1,2\rangle)=s_{4}(\langle 4,1\rangle), \\
& s_{4}(\langle 2,2\rangle)=s_{4}(\langle 3,2\rangle), s_{4}(\langle 2,3\rangle)=s_{4}(\langle 4,3\rangle), s_{4}(\langle 3,1\rangle)=s_{4}(\langle 4,2\rangle), \\
& \left\langle s_{4}(\langle 1,1\rangle), s_{4}(\langle 1,2\rangle)\right\rangle \in\{\langle\overline{\operatorname{succ}(v), v\rangle \mid v \in \overline{N a t}\},} \\
& \left\langle s_{4}(\langle 3,1\rangle), s_{4}(\langle 3,2\rangle)\right\rangle \in\{\langle\overline{\operatorname{succ}}(v), v\rangle \mid v \in \overline{N a t}\},
\end{aligned}
$$

and

$$
\left\langle s_{4}(\langle 4,1\rangle), s_{4}(\langle 4,2\rangle), s_{4}(\langle 4,3\rangle)\right\rangle \in \mathcal{D} \llbracket a d d^{+} \rrbracket_{k},
$$

whence

$$
\begin{aligned}
& \left\{\left\langle s_{4}(\langle 2,1\rangle), s_{4}(\langle 2,2\rangle), s_{4}(\langle 2,3\rangle)\right\rangle \mid s_{4} \in V_{\text {succadd }}^{k}\right\} \\
& \quad=\left\{\left\langle\overline{\operatorname{succ}}\left(v_{1}\right), v_{2}, v_{3}\right\rangle \mid\left\langle v_{1}, \overline{\operatorname{succ}}\left(v_{2}\right), v_{3}\right\rangle \in \mathcal{D} \llbracket a d d^{+} \rrbracket_{k}\right\} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\mathcal{D} \llbracket a d d^{+} \rrbracket_{k+1}= & \{\langle\overline{\text { zero }}, v, v\rangle \mid v \in \overline{\text { Nat }}\} \\
& \cup\left\{\left\langle\overline{\overline{u c c}}\left(v_{1}\right), v_{2}, v_{3}\right\rangle \mid\left\langle v_{1}, \overline{\text { succ }}\left(v_{2}\right), v_{3}\right\rangle \in \mathcal{D} \llbracket a d d^{+} \rrbracket_{k}\right\} \\
= & \left\{\left\langle\overline{\text { succ }}^{i}(\overline{\text { zero }}), v, \overline{\text { succ }}^{i}(v)\right\rangle \mid i \in\{0,1, \ldots, k\}, v \in \overline{\text { Nat }}\right\}
\end{aligned}
$$

where $\overline{s u c c}^{i}=\overbrace{\overbrace{\text { succ }} \circ \cdots \circ \overline{\text { succ }}}^{i}$, which implies

$$
\mathcal{D} \llbracket a d d^{+} \rrbracket=\left\{\left\langle\overline{\operatorname{succ}}^{i}(\overline{\text { zero }}), v, \overline{\operatorname{succ}}^{i}(v)\right\rangle \mid i \in\{0,1, \ldots\}, v \in \overline{\text { Nat }}\right\} .
$$

Theorem 1 The interpretation $\mathcal{D} \llbracket \rrbracket$ is a model of the 2-hypergraph \mathcal{H}.
Proof. Let $y \in \Sigma_{2}^{+}$. We show that $\mathcal{D} \llbracket \rrbracket \rrbracket$ satisfies the equation y. Let s be an assignment to y over $\mathcal{N}_{y}^{0+-} \cup \mathcal{N}_{y}^{0-+}$ with respect to $\mathcal{D} \llbracket \rrbracket \rrbracket$.

Suppose $t_{1} \in \operatorname{Asgn}\left(y, \mathcal{D} \llbracket \rrbracket \rrbracket, \mathcal{N}_{y}^{0--}\right)$ satisfies

$$
s \cup t_{1} \in \mathbf{V A} \operatorname{sgn}\left(y, \mathcal{D} \llbracket \cdot \rrbracket, N_{1}, \mathcal{N}_{y}^{1-}\right)
$$

where $N_{1}=\mathcal{N}_{y}^{0--} \cup \mathcal{N}_{y}^{0-+} \cup \mathcal{N}_{y}^{0+-}$. Let $x=\delta_{y}(2)$. Because t_{1} is valid over $\{2\}$,

$$
\left\langle t_{1}(\langle 2,1\rangle), \ldots, t_{1}(\langle 2, m\rangle)\right\rangle \in \mathcal{D} \llbracket x \rrbracket
$$

holds where $m=\operatorname{length}\left(\delta_{x}\right)$. There is a natural number $k \geq 1$ such that

$$
\left\langle t_{1}(\langle 2,1\rangle), \ldots, t_{1}(\langle 2, m\rangle)\right\rangle \in \mathcal{D} \llbracket x \rrbracket_{k} .
$$

By the definition of $\mathcal{D} \llbracket \cdot \rrbracket_{k}$, there are $z \in \Sigma_{2}^{+}$and

$$
t_{2} \in \operatorname{VAsgn}\left(z, \mathcal{D} \llbracket \cdot \rrbracket_{k-1}, \mathcal{N}_{z}^{0}, \mathcal{N}_{z}^{1} \backslash\{2\}\right)
$$

such that $\delta_{z}(2)=x$ and $t_{2}(\langle 2, i\rangle)=t_{1}(\langle 2, i\rangle)$ for $1 \leq i \leq m$. By the definition of $\mathcal{D} \llbracket \cdot \rrbracket$,

$$
t_{2} \in \operatorname{VA} \operatorname{sgn}\left(z, \mathcal{D} \llbracket \cdot \rrbracket, \mathcal{N}_{z}^{0}, \mathcal{N}_{z}^{1} \backslash\{2\}\right)
$$

holds. Because

$$
t_{2}(\langle 1,1\rangle)=t_{2}(\langle 2,1\rangle)=t_{1}(\langle 2,1\rangle)=t_{1}(\langle 1,1\rangle)
$$

and $\delta_{y}(1)$ is a constructor, we have $\delta_{y}(1)=\delta_{z}(1)$, which implies $y=z$ by (F-5). Moreover, we have $t_{2}(\langle 1, i\rangle)=t_{1}(\langle 1, i\rangle)$ for $i \geq 2$ by Proposition 3 . Because $t_{2}(j)=t_{1}(j)$ for $j \in \mathcal{N}_{y}^{0-+}$ and t_{1} is an assignment over \mathcal{N}_{y}^{0}, $s(j)=t_{2}(j)$ holds for $j \in \mathcal{N}_{y}^{0-+} \cup \mathcal{N}_{y}^{0+-}$. Let $t_{2}^{\prime}=\left.t_{2}\right|_{\mathcal{N}_{y}^{0++}}$. We have $t_{2}^{\prime} \in \boldsymbol{\operatorname { A s g n }}\left(y, \mathcal{D} \llbracket \cdot \rrbracket, \mathcal{N}_{y}^{0++}\right)$ and $s \cup t_{2}^{\prime} \in \mathbf{V A s g n}\left(y, \mathcal{D} \llbracket \cdot \rrbracket, N_{2}, \mathcal{N}_{y}^{1+}\right)$, where $N_{2}=\mathcal{N}_{y}^{0++} \cup \mathcal{N}_{y}^{0-+} \cup \mathcal{N}_{y}^{0+-}$.

Conversely suppose $t_{2} \in \operatorname{Asgn}\left(y, \mathcal{D} \llbracket \cdot \rrbracket, \mathcal{N}_{y}^{0++}\right)$ satisfies

$$
s \cup t_{2} \in \mathbf{V A} \operatorname{sgn}\left(y, \mathcal{D} \llbracket \cdot \rrbracket, N_{2}, \mathcal{N}_{y}^{1+}\right)
$$

where $N_{2}=\mathcal{N}_{y}^{0++} \cup \mathcal{N}_{y}^{0-+} \cup \mathcal{N}_{y}^{0+-}$. There is a natural number $k \geq 1$ such that

$$
s \cup t_{2} \in \mathbf{V A} \operatorname{sgn}\left(y, \mathcal{D} \llbracket \cdot \rrbracket_{k}, N_{2}, \mathcal{N}_{y}^{1+}\right)
$$

Let t_{1} be an assignment defined by

$$
t_{1}(\langle 1,1\rangle)=t_{1}(\langle 2,1\rangle)=\left\langle\delta_{y}(1), s(\langle 1,2\rangle), \ldots, s(\langle 1, m\rangle)\right\rangle
$$

where $m=\operatorname{length}\left(\delta_{z}\right), z=\delta_{y}(1) . s \cup t_{1}$ is a valid assignment over $\{1\}$ with respect to $\mathcal{D} \llbracket \cdot \rrbracket$. By the definition of $\mathcal{D} \llbracket \cdot \rrbracket_{k+1}, s \cup t_{1}$ is a valid assignment over $\{2\}$ with respect to $\mathcal{D} \llbracket \cdot \rrbracket_{k+1}$. Therefore we have $s \cup t_{1} \in$ $\operatorname{VAsgn}\left(y, \mathcal{D} \llbracket \cdot \rrbracket, N_{1}, \mathcal{N}_{y}^{1-}\right)$ where $N_{1}=\mathcal{N}_{y}^{0--} \cup \mathcal{N}_{y}^{0-+} \cup \mathcal{N}_{y}^{0+-}$.

Lemma 2 For all $x \in \Sigma_{d}^{+}$and $k \geq 0$, the relation $\mathcal{D} \llbracket x \rrbracket_{k}$ is a function from $\prod_{i \in I_{x}^{-}} \mathcal{D} \llbracket \delta_{x}(i) \rrbracket$ to $\prod_{i \in I_{x}^{+}} \mathcal{D} \llbracket \delta_{x}(i) \rrbracket$, where $I_{x}^{ \pm}=\left\{i \mid \delta_{x}(i) \in \Sigma_{0}^{ \pm}\right\}$.
Proof. By induction. When $k=0, \mathcal{D} \llbracket x \rrbracket_{k}=\emptyset$. Suppose $k \geq 1$. Let $p, q \in$ $\mathcal{D} \llbracket x \rrbracket_{k}, p=\left\langle p_{1}, \ldots, p_{m}\right\rangle, q=\left\langle q_{1}, \ldots, q_{m}\right\rangle$, where $m=$ length $\left(\delta_{x}\right)$. Suppose $p_{i}=q_{i}$ for $i \in I_{x}^{-}$. We show that $p_{i}=q_{i}$ for $i \in I_{x}^{+}$. Since $p, q \in \mathcal{D} \llbracket x \rrbracket_{k}$,
there are $y_{1}, y_{2} \in \Sigma_{2}^{+}$,

$$
s_{1} \in \operatorname{VAsgn}\left(y_{1}, \mathcal{D} \llbracket \cdot \rrbracket_{k-1}, \mathcal{N}_{y_{1}}^{0}, \mathcal{N}_{y_{1}}^{1} \backslash\{2\}\right)
$$

and

$$
s_{2} \in \operatorname{VAsgn}\left(y_{2}, \mathcal{D} \llbracket \cdot \rrbracket_{k-1}, \mathcal{N}_{y_{2}}^{0}, \mathcal{N}_{y_{2}}^{1} \backslash\{2\}\right)
$$

satisfying

$$
\delta_{y_{1}}(2)=x, \quad \delta_{y_{2}}(2)=x, \quad s_{1}(\langle 2, i\rangle)=p_{i}, \quad s_{2}(\langle 2, i\rangle)=q_{i}
$$

for $1 \leq i \leq m$. Because $\left(\mathcal{T} \llbracket \Sigma_{0}^{+} \rrbracket, \mathcal{T} \llbracket \Sigma_{c}^{+} \rrbracket\right)$ is a term algebra and $p_{1}=q_{1}$ holds, we have $\delta_{y_{1}}(1)=\delta_{y_{2}}(1)$. By (F-5) and (F-6), we have $y_{1}=y_{2}$. From $s_{1}(\langle 2,1\rangle)=s_{2}(\langle 2,1\rangle)$ it follows $s_{1}(\langle 1,1\rangle)=s_{2}(\langle 1,1\rangle)$. Because $\mathcal{D} \llbracket \delta_{y_{1}}(1) \rrbracket$ is an injection by Proposition 3, we have $s_{1}(\langle 1, i\rangle)=s_{2}(\langle 1, i\rangle)$ for $2 \leq i \leq$ length $\left(\delta_{y_{1}}\right)$. Let $N_{1}=\left\{\ell_{y_{1}}(j) \mid j \in J_{x}^{-}\right\}$and $N_{2}=\left\{\ell_{y_{1}}(\langle 2, i\rangle) \mid i \in I_{x}^{+}\right\}$ where

$$
J_{x}^{-}=\left\{\langle 1, i\rangle \mid 2 \leq i \leq \operatorname{length}\left(\delta_{y_{1}}\right)\right\} \cup\left\{\langle 2, i\rangle \mid i \in I_{x}^{-}\right\}
$$

Note that $\mathcal{N}_{y_{1}}^{0+-}=N_{1} \cup N_{2}$ holds. By the induction hypothesis and (F-7),

$$
s_{1}(j)=s_{2}(j) \quad\left(\forall j \in N_{1}\right) \Longrightarrow s_{1}(j)=s_{2}(j) \quad\left(\forall j \in N_{2}\right)
$$

holds. We already have $s_{1}(\langle 1, i\rangle)=s_{2}(\langle 1, i\rangle)$ for $2 \leq i \leq \operatorname{length}\left(\delta_{y_{1}}\right)$ and $s_{1}(\langle 2, i\rangle)=s_{2}(\langle 2, i\rangle)$ for $i \in I_{x}^{-}$. Therefore we have $s_{1}(j)=s_{2}(j)$ for $j \in N_{2}$, which implies $p_{i}=q_{i}$ for $i \in I_{x}^{+}$.

Theorem 2 For all $x \in \Sigma_{1}^{+}$, the relation $\mathcal{D} \llbracket x \rrbracket$ is a function from $\prod_{i \in I_{x}^{-}} \mathcal{D} \llbracket \delta_{x}(i) \rrbracket$ to $\prod_{i \in I_{x}^{+}} \mathcal{D} \llbracket \delta_{x}(i) \rrbracket$, where $I_{x}^{ \pm}=\left\{i \mid \delta_{x}(i) \in \Sigma_{0}^{ \pm}\right\}$.

7. Sample language

In this section, we show how a 2-hypergraph can represent interactions between noncopyable objects, using a realistic example. We define a simple language whose syntax elements correspond to 0,1 , and 2 -cells of a functional 2-hypergraph.

7.1. Syntax summary

7.1.1. Types

A type definition has the following syntax. The following code defines a type Nat whose constructors are zero and succ.

```
.datatype Nat: zero, succ;
zero : -> Nat();
succ : Nat() -> Nat();
```


7.1.2. Type-parameterized types

A type can have type parameters. The following code defines a type List which has a type parameter t.

```
.datatype List : nil, cons;
nil : -> List(t);
cons : t, List(t) -> List(t);
```


7.1.3. Rewriting rules

Rewriting rules are defined with the following syntax.

```
add (x, y -> z)
{
    zero() = x;
    z = y;
|
    succ(xp) = x;
    ys = succ(y);
    z = add(xp, ys);
}
```

A function defined in this way corresponds to a destructor of a functional 2-hypergraph. The above code defines two unnamed rewriting rules. The former block defines $\operatorname{add}(z e r o(), y) \rightarrow y$, and the latter defines $\operatorname{add}(\operatorname{succ}(x p), y) \rightarrow \operatorname{add}(x p, \operatorname{succ}(y))$. Variables such as $x, y, z, x p$, and $y s$ correspond to pairs of node indexes connected by the bijection (Fig. 6). The first line of each block must be of the form

```
constructor_name(variable) = variable
```

where the right hand side is the first argument for $a d d$, so that the 2-hypergraph becomes functional. The expression $z=y$ is a short for $z=i d(y)$ where id is the identity function.

7.1.4. Compositions

A function can be defined by a composition of functions. The following code defines a function baz by a composition of foo and bar.

Fig. 6. variables correspond to connections between node indexes

```
baz(x, y -> z)
{
    w = foo(x);
    z = bar(w, y);
}
```

A function definition in this way does not correspond to a rewriting rule of a functional 2-hypergraph. Instead, in this example we think that such a function is just a macro expands to a composition of functions.

7.1.5. External abstract types and external functions

External abstract types and external functions can be used for importing types and functions without knowing their details.

```
.external_abstract_type Sys;
.external_abstract_type RFileDescriptor;
.external open_rfile;
open_rfile : Sys(), String()
    -> Sys(), Maybe(RFileDescriptor());
```

The above code declares two external abstract types Sys and RFileDescriptor, and an external function open_rfile. Because their details are defined by the operating system, we have no idea of what are constructors of Sys and RFileDescriptor, whether open_rfile is a constructor or not, and what are rewriting rules related to open_rfile.

7.1.6. Generic functions and type classes

The following code declares two generic functions ~ and !. The function ~ takes an object of type t and returns nothing. That is, the function \sim deletes an object of type t. Likewise, the function! copies an object of type t.

```
~ : t -> : ~ [t];
! : t -> t, t : ! [t];
```

For each generic function g, there is a type class $g\left[t_{1}, \ldots, t_{n}\right]$ where t_{1}, \ldots, t_{n} are the type variables occurred in the boundary of g. In the above code, there are two type classes $\sim[t]$ of deletable types and ! $[t]$ of copyable types. An n-tuple $\left\langle T_{1}, \ldots, T_{n}\right\rangle$ of types belongs to $g\left[t_{1}, \ldots, t_{n}\right]$ iff there is an instance f of g such that the boundary of f matches the boundary of g. If a function f is an instance of a generic function g and g is called (invoked) with arguments whose types match the boundary of f, the function f is called instead.

```
.instance ~b8 : ~;
.instance !b8 : !;
```

The former line declares that the function ${ }^{\sim} b 8$ is an instance of the generic function g, that is, the type of the first argument for ${ }^{\sim} b 8$ belongs to the type class $\sim[t]$. Likewise, the latter line declares that the type of the first argument for ! $b 8$ belongs to the type class ! $[t]$.

```
~list : List(t) -> : ~ [t];
!list : List(t) -> List(t), List(t) : ! [t];
```

The former line declares that the function ~list takes an object of type $\operatorname{List}(t)$ where t belongs to the type class $\sim[t]$, i.e., the first argument for the function ${ }^{\text {list must be a list of deletable objects. Likewise, the latter }}$ line declares that the first argument for the function !list must be a list of copyable ones.

7.2. Example

At first, we declare two generic functions \sim and !.

```
~ : t -> : ~ [t];
! : t -> t, t : ! [t];
.datatype B1 : false, true;
false : -> B1();
true : -> B1();
```

```
~
{
    false() = x;
|
    true() = x;
}
!b1 (x -> a, b)
{
    false() = x;
    a = false();
    b = false();
|
    true() = x;
    a = true();
    b = true();
}
```

The type $B 1$ is a 2 -valued boolean algebra ${ }^{1}$. It has two constructors true and false.

```
.datatype B2 : b2;
b2 : B1(), B1() -> B2();
~b2 (x -> )
{
    b2(h, l) = x;
    ~}\mathrm{ b1(h);
    ~}\mathrm{ b1(1);
}
!b2 (x -> a, b)
{
    b2(h, l) = x;
    h1, h2 = !b1(h);
    l1, l2 = !b1(l);
    a = b2(h1, l1);
```

[^1]```
 b = b2(h2, 12);
}
.datatype B4 : b4;
b4 : B2(), B2() -> B4();
~
{
 b4(h, l) = x;
 ~b2(h);
 ~b2(1);
}
!b4 (x -> a, b)
{
 b4(h, l) = x;
 h1, h2 = !b2(h);
 l1, 12 = !b2(l);
 a = b4(h1, l1);
 b = b4(h2, 12);
}
.datatype B8 : b8;
b8 : B4(), B4() -> B8();
.instance ~b8 : ~;
.instance !b8 : !;
~b8 (x ->)
{
 b8(h, l) = x;
 ~}\mathrm{ b4(h);
 ~}\textrm{b}4(1)
}
!b8 (x -> a, b)
{
 b8(h, l) = x;
```

```
 h1, h2 = !b4(h);
 11, 12 = !b4(l);
 a = b8(h1, l1);
 b = b8(h2, l2);
}
```

The types $B 2, B 4$, and $B 8$ are 4 -valued, 16 -valued, and 256 -valued boolean algebras. The functions $\sim b 8$ and $!b 8$ are declared as instances of the generic functions ~ and!.

```
.datatype List : nil, cons;
nil : -> List(t);
cons : t, List(t) -> List(t);
~list : List(t) -> : ~ [t];
!list : List(t) -> List(t), List(t) : ! [t];
~list (a ->)
{
 nil() = a;
|
 cons(hd, tl) = a;
 ~(hd);
 ~list(tl);
}
!list (x -> a, b)
{
 nil() = x;
 a = nil();
 b = nil();
|
 cons(hd, tl) = x;
 h1, h2 = !(hd);
 t1, t2 = !list(tl);
 a = cons(h1, t1);
 b = cons(h2, t2);
}
```

The type $\operatorname{List}(t)$ is the finite lists over $t$. The function ${ }^{\sim}$ list deletes an object of type $\operatorname{List}(t)$, and is available only if $t$ is a deletable type. Likewise, the function !list copies an object of type List $(t)$, and is available only if $t$ is a copyable type.

```
.datatype String : string;
string : List(B8()) -> String();
.instance ~string : ~;
.instance !string : !;
~}\mathrm{ string (x ->)
{
 string(bl) = x;
 ~list(bl);
}
!string (x -> a, b)
{
 string(bl) = x;
 bl1, bl2 = !list(bl);
 a = string(bl1);
 b = string(bl2);
}
```

The type String is simply the finite lists over B8. Because the function ${ }^{\sim}$ list calls the generic function ${ }^{\sim}$, the expression ${ }^{\sim}$ list $(b l)$ requires that $B 8$ is deletable. Likewise, the expression !list $(b l)$ requires $B 8$ is copyable ${ }^{2}$. Both requirements are satisfied because $\sim 8$ and ! 68 are instances of $\sim$ and ! respectively.

```
.datatype Maybe : just, nothing;
just : t -> Maybe(t);
nothing : -> Maybe(t);
```

[^2]```
~maybe : Maybe(t) -> : ~ [t];
~maybe (mx -> )
{
    nothing() = mx;
|
    just(x) = mx;
    ~ (x);
}
```

A value of type $\operatorname{Maybe}(t)$ is either nothing () or $j u s t(x)$, where x is of type t. The type $\operatorname{Maybe}(t)$ is used for error handling in this example.

```
.external_abstract_type Sys;
.external_abstract_type RFileDescriptor;
.external_abstract_type WFileDescriptor;
.external_abstract_type RFile;
.external_abstract_type WFile;
.external open_rfile, attach_rfile, detach_rfile, close_rfile;
.external read_b8;
.external open_wfile, attach_wfile, detach_wfile, close_wfile;
.external write_b8;
open_rfile : Sys(), String()
    -> Sys(), Maybe(RFileDescriptor());
attach_rfile : Sys(), RFileDescriptor() -> RFile();
detach_rfile : RFile() -> Sys(), RFileDescriptor();
close_rfile : Sys(), RFileDescriptor() -> Sys();
read_b8 : RFile() -> RFile(), Maybe(B8());
open_wfile : Sys(), String()
    -> Sys(), Maybe(WFileDescriptor());
attach_wfile : Sys(), WFileDescriptor() -> WFile();
detach_wfile : WFile() -> Sys(), WFileDescriptor();
close_wfile : Sys(), WFileDescriptor() -> Sys(), B1();
write_b8 : WFile(), B8() -> WFile();
write_string (str, wf -> wf_r)
```

```
{
    string(bl) = str;
    wf_r = write_b8list(bl, wf);
}
write_b8list (bl, wf -> wf_r)
{
    nil() = bl;
    wf_r = wf;
|
    cons(b, bl_tail) = bl;
    wf_r = write_b8list(bl_tail, write_b8(wf, b));
}
```

An object of type Sys holds the status of the operating system. Because the internals of the type Sys and related types/functions are defined by the operating system, they are declared as external abstract types and external functions (Section 7.1.5). The open_rfile function opens a file for reading ${ }^{3}$. It returns $j u s t(x)$ on success, where x is a file descriptor which can be used for reading data from the file. The type RFile is simply the product of Sys and RFileDescriptor, and the attach_file function converts a pair of Sys and RFileDescriptor to a single object of type RFile. The read_b8 function reads a byte from the file. It returns just (x) on success, and nothing() if an error occurs or the end of file is reached. The detach_file convert RFile back to Sys and RFileDescriptor. The close_rfile function closes a file descriptor. The type WFile and related functions are defined likewise.

```
main : Sys(), List(String()),
    RFileDescriptor(), WFileDescriptor(), WFileDescriptor()
    -> Sys(), B1();
main (sys, args, stdin, stdout, stderr -> sys_r, errflag)
{
    ~list(args);
    sys1, err_errfd = close_wfile(sys, stderr);
    ~b1(err_errfd);
```

[^3]```
 sys_r, errflag = echo(sys1, stdin, stdout);
}
echo (sys, stdin, stdout -> sys_r, e)
{
 rf = attach_rfile(sys, stdin);
 rf1, mb8 = read_b8(rf);
 sys1, stdin1 = detach_rfile(rf1);
 sys_r, e = echo_cond(mb8, sys1, stdin1, stdout);
}
echo_cond (mb8, sys1, stdin1, stdout -> sys_r, e)
{
 nothing() = mb8;
 sys2 = close_rfile(sys1, stdin1);
 sys_r, e = close_wfile(sys2, stdout);
|
 just(c) = mb8;
 c1, c2 = !b8(c);
 wf = attach_wfile(sys1, stdout);
 wf1 = write_b8(wf, c1);
 wf2 = write_b8(wf1, c2);
 sys2, stdout1 = detach_wfile(wf2);
 sys_r, e = echo(sys2, stdin1, stdout1);
}
```

The main function is the entrance of a program. It receives a Sys, a list of argument strings, the standard input, the standard output, and the standard error. In this example, the main function simply calls the echo function after deleting some unnecessary objects ${ }^{4}$. The echo function reads a byte from the standard input, and calls the echo_cond function. The mb8 variable becomes $j u s t(c)$ if the read_b8 function successfully reads a byte from the standard input, and nothing () if the end of file is reached. If the $m b 8$ variable is $j u s t(c)$, the echo_cond function creates two copies of the $c$ object, writes them to the standard output, and calls echo recursively. This recursion ends when $m b 8$ becomes nothing (), i.e., the standard input

[^4]reaches to the end of file. As a result, this sample program reads a byte from the standard input, writes it to the standard output twice, and repeats them until the end of file is reached.

## 8. Concluding remarks

Recently more "interaction" aspects occurring in the real world are taken into consideration in modeling computation especially in the study of parallel and distributed systems $[6,3,10,8]$. Although the concept of graph rewriting has potential ability to describe intricate combinatorial structures of microscopic interaction and there are large research activities $[4,14]$ around graph rewriting, there are few which intend to focus on the interaction aspect, except for such frameworks as the interaction nets $[9,2,5]$, Milner's $\pi$-calculus [11]. In the latter, the agents exchange link information during the interaction so that the topology of the net change globally, whereas in the former one, the net evolves asynchronously by succession of local interactions between two agents at specific ports of complementary type. The latter property is retained in our 2-hypergraph formulation. In fact one of our contributions is to formulate a mathematical theory which expresses atomic interactions explicitly as 2 -cells of a 2 -hypergraph, which opens a way to give direct semantics of such computational models as interaction nets via the theory of 1-hypercategories [7].

Our mathematical model of computation supports a functional programming language which has common features with the language Clean $[1,12,13]$ in the referential transparency and the laziness of evaluation, although there exist radical differences. For example, in Clean, data which are not copyable must be declared so explicitly, whereas in our language, the procedure of copying must be given explicitly for copyable data. This aspect is useful in synthesizing actual systems reactive with the real world, where most objects are not copyable.

## Acknowledgements

I would like to thank people in graduate school of Mathematics, Hokkaido University for their support during the preparation of this paper and Toru Tsujishita for his help and advice.

I am deeply indebted to the Japan Society for the Promotion of Science for the JSPS Research Fellowships from 1997 to 1999 which supported my research activity in that period.

## References

[1] Achten P.M., et al., High level specification of $I / O$ in functional languages. In Launchbury J. et al., editor, Proceedings Glasgow Workshop on Functional Programming, Springer Verlag, New York, NY, 1993.
[2] Banach R., The algebraic theory of interaction nets. 1995.
[3] Berry G. and Boudol G., The chemical abstract machine. Theoretical Computer Science, 96 (1992), 217-248.
[4] Ehrig H. and Taentzer G., Computing by graph transformation, A survey and annotated bibliography. Bulletin of the European Association for Theoretical Computer Science, 59 (1996), 182-226. Bibliographies.
[5] Fernandez M. and Mackie I., A calculus for interaction nets. In Principles and Practice of Declarative Programming, 1999, pp. 170-187.
[6] Girard J.-Y., Towards a geometry of interaction. In Categories in Computer Science, vol. 92 of Contemporary Mathematics, AMS, 1987, pp. 69-108.
[7] Higuchi A., Miyoshi H., and Tsujishita T., Strict n-hypercategories. Hokkaido Math. J. 31 (2002), 469-511.
[8] König B., A general framework for types in graph rewriting. Lecture Notes in Computer Science, vol. 1974, 2000, p. 373.
[9] Lafont Y., From proof nets to interaction nets. In Girard J.-Y., Lafont Y., and Regnier L., editors, Advances in Linear Logic, Cambridge University Press, 1995, pp. 225-247. London Mathematical Society Lecture Note Series 222, Proceedings of the 1993 Workshop on Linear Logic, Cornell University, Ithaca.
[10] Milner R., Calculi for interaction. Acta Informatica, 33 (1996), 707-737.
[11] Milner R., Communicating and Mobile Systems: The $\pi$-Calculus. Cambridge University Press, 1999.
[12] Nocker E., Smetsers S., van Eekelen M. and Plasmeijer R., Concurrent clean. In Leeuwen Aarts and Rem, editors, Proc. of Parallel Architectures and Languages Europe (PARLE '91), vol. 505, Springer-Verlag, 1991, pp. 202-219.
[13] Plasmeijer M. and van Eekelen M., Language report concurrent clean, 1998.
[14] van Eekelen M.C.J.D., Smetsers S. and Plasmeijer M.J., Graph rewriting semantics for functional programming languages. In CSL, 1996, pp. 106-128.

Kita 12 Nishi 3-5-217
Kita-ku, Sapporo 001-0012, Japan


[^0]:    2000 Mathematics Subject Classification : 68Q10.
    *partially supported by the Japan Society for the Promotion of Science Research Fellowships from 1997 to 1999

[^1]:    ${ }^{1}$ The boolean operations are not defined here because they are not used in the example.

[^2]:    ${ }^{2}$ The function !string is not used in this example.

[^3]:    ${ }^{3}$ open_rfile, open_wfile, and write_string are not used in this example.

[^4]:    ${ }^{4}$ main and echo are defined by compositions of functions (Section 7.1.4).

