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Geometry of ordinary helices in a complex
projective space

(Dedicated to Professor Katsuei Kenmotsu on the occasion of his 60th birthday)
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Abstract. It is well-known that every ordinary helix in Euclidean space is an open curve
without self-intersection points. In this paper we study ordinary helices on Riemannian
homogeneous spaces. We present an example of closed ordinary helices in a complex
projective plane with 6 self-intersection points. We also characterize real space forms in
terms of ordinary helices.
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1. Introduction

Investigating nice curves is important in Differential Geometry as well
as in Topology. We pay attention to ordinary helices in a Euclidean 3-space
R3. It is well-known that each ordinary helix v = v(s) parametrized by its
arclength s is an open curve without self-intersection points and satisfies
the following ordinary differential equations with respect to s, which are
called the Frenet formula for +y:

§=xrVa, Vo=—kVi+1Vs, Va=—7Va. (1.1)

Here k and 7 are positive constants, and {V; = 4, V%, V3} is an orthonormal
frame along v. We call those constants x and 7 the curvature and the torsion
of v, respectively, and {Vi, Va, V3} its Frenet frame. The unit vectors Va2 and
V3 are called the unit principal normal vector and the unit binormal vector
on the curve «, respectively.

On a Riemannian manifold (M, (, )) with Riemannian metric { , ),
using the covariant differentiation V induced from the metric { , ), we can
consider an ordinary helix v as a solution of a system of ordinary differential
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equations corresponding to (1.1). Needless to say, on every Riemannian
manifold M, for an arbitrary pair (k,7) of two positive constants there
exists an ordinary helix on M with curvature « and torsion 7. However, in
general such ordinary helices are not necessarily congruent each other under
the action of the isometry group G of M.

In this paper we study ordinary helices in a nonflat n-dimensional com-
plex space form M, (c) of constant holomorphic sectional curvature ¢, that
is, My(c) is complex analytically isometric to either a complex projective
space CP™(c) endowed with the Fubini-Study metric of constant holomor-
phic sectional curvature ¢ or a complex hyperbolic space CH™(c) endowed
with the Bergman metric of constant holomorphic sectional curvature c.
After reviewing the definitions and some results on ordinary helices we first
construct an example of closed ordinary helices in a complex projective
plane CP%(c) with 6 self-intersection points (Theorem 1). Later in the
class of Riemannian homogeneous spaces we provide a characterization of
~ an n-dimensional real space form M™(c) of constant curvature c in terms of
ordinary helices (Theorem 2). Here M"(c) is isometric to a Euclidean space
R™, a standard sphere S™(c) with radius 1/+/c or a real hyperbolic space
H"™(c) of constant sectional curvature c.

2. Ordinary helices in a Riemannian manifold

Let M be an n-dimensional Riemannian manifold with Riemannian
connection V. We shall start by reviewing the definitions of circles and
ordinary helices in M. A smooth curve v = y(s) on M parametrized by its
arclength s is called a circle, if there exists a field of unit vectors V,(s) along
~ which satisfies, together with the field of unit tangent vectors V; = 4, the
differential equations:

v’)’fy = K/‘/Z’ v’y% = _K/V'l:

where x is a positive constant, which is called the curvature of v, and V4
denotes the covariant differentiation along v with respect to V. We call a
smooth curve v = (s) on M™ with n = 3 an ordinary heliz if there exist
an orthonormal frame {V; = 4, V5, V3} along v and positive constants «, T
which satisfy the following system of ordinary equations
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v’y’Y = kVa,
ViVa = —rV1 +7V3, (2.1)
V:YV3 = —TVQ.

The orthonormal frame {V7, V5, V3} is called the Frenet frame of v, those
constants £ and 7 are called the curvature and the torsion of «, respectively.
Note that if M is a real analytic Riemannian manifold then every ordinary
helix is a real analytic curve. The following is a well-known result on the
existence and uniqueness of ordinary helices on a Riemannian manifold.

Proposition A Given a point x € M, an orthonormal system {v1, v, v3}
of the tangent space T, M and two positive constants k, T, we have a unique
ordinary helix v = y(s) on M having curvature x and torsion T with v(0) =
x whose initial frame (V1(0), V2(0), V3(0)) is (v1, vz, vs).

This guarantees the following result on ordinary helices on a real space
form, which is either a standard sphere S™(c), a Euclidean space R™, or a
real hyperbolic space H™(c).

Proposition 1 For an arbitrary pair (k,T) of positive constants there ez-
ists a unique ordinary heliz on a real space form M™(c) with curvature s
and torsion T up to the action of the isometry group of M"(c).

We shall call two ordinary helices 1, v on M are congruent under
the action of the isometry group of M if there exists an isometry ¢ with
2 = @ o~y;. This proposition shows that on a real space form M"(c) we
have a one-to-one correspondence between the set {(x,7) | k,7 > 0} in R?
and the set of all congruency classes of ordinary helices under the action of
the isometry group.

Here we study ordinary helices on a real space form in connection with
the action of the isometry group. On a Euclidean space R® the equation
(2.1) is equivalent to the equation v{* + (k2 + 72)% = 0. If we define an
isometry s of R3 by ¢s(z) = A(s) - z + v(s), where

cos VK2 +72s —sinvk2+72s 0
A(s) = | sinvs2 + 725 cosVrZ+7%s 0| €S50(3),
0 0 1
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’U(S) = 0 )
78/ VEZ+ T2

every ordinary helix +y is congruent to an ordinary helix s — ¢, (*(r/(x* +
2
T ),0,0)).

Next we represent a standard sphere S3(1) of curvature 1 as a unit
sphere in R%. Regarding an ordinary helix v on $3(1) as a curve on R%, we
find the equation (2.1) is equivalent to the equation v*) + (k2 +72 +1)5 +
72y = 0. Hence if we define an isometry s of S3(1) by ps(z) = A(s) - =
with

cosas —sinas 0 0
sinows  cosas 0 0
Als) = 0 0 cosffs —sinfs €80(4),
0 0 sinfs cosfs

where

o= (VET T+ VT (T DP),
ﬁ=—;—(\/H2+(T+1)2—\/K,72+(T—1)2),

we see 7y is congruent to an ordinary helix s — ¢;(*(a,0,,0)) with

_VFEERE AR

- a2—ﬂ2 ’ a2—ﬂ2

Finally we represent a real hyperbolic space H®(—1) of curvature —1 as
a subset {z € R} | (z,z) = —1} of a de Sitter space R} equipped with the
inner product (z,y) = —zoyo + T1y1 + T2y2 + z3y3 for = Y(xg, 1, T2, T3)
and y = *(y0,y1,¥2,y3).- Regarding an ordinary helix v on H3(-1) as a
curve on R, we find the equation (2.1) is equivalent to the equation 74 4
(k2 + 72 — 1) — 7%y = 0. Hence if we define an isometry o of H3(—1) by
ws(z) = A(s) - z with

coshas sinhas 0 0
sinhas cosh as 0 0
Afs) = 0 0 cosf3s —sinfs € 0(1,3),

0 0 sinf8s cosfs
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where

2
a=\/7—\/\/(&2—!—72-}—1)2—1-47'2—1-1—fi2—7'2,

2
B = %\//124-7'2 — 14+ V(K2 + 72+ 1)2 4 472,
we see 7y is congruent to an ordinary helix s — ¢, (t(a, 0,b, 0)) with

(B2 + 1)2 — K2 ) K2 — (a2 — 1)2
- a’ + 182 ’ - a2 + /82 :

Proposition 2 Every ordinary heliz v = v(s) on a real space form M™(c)
is an integral curve of some Killing vector field on M™(c), that is, there

exists a one-parameter subgroup {ps} of the isometry group of M™(c) with
v(s) = ¢s(7(0)) for all s.

We now concern ourselves on ordinary helices on a complex space form.
We remark that corresponding assertions in Propositions 1 and 2 do not hold
for ordinary helices on a nonflat complex space form M, (c) with complex
structure J. In order to explain this fact in detail we use the complex
torsions 7;;(s) = (Vi(s), JV;(s)) of an ordinary helix v, where 1 Si < j £ 3
and {V1, Vo, V3} is the Frenet frame for . Note that every complex torsion
7;; = Tij(s) of each ordinary helix is a real analytic function and satisfies
|735(s)] £ 1 for every s. In this paper we shall call a smooth curve v on
M, (c), ¢ # 0 a Killing ordinary heliz if it is an ordinary helix and also is
an integral curve of some Killing vector field on M, (c). For the later use
we recall the following.

Theorem A ([MA]) Let My(c) be an n (2 3)-dimensional nonflat com-
plez space form. Then the following hold:
(1) All complez torsions of each Killing ordinary heliz v in My(c) are
constant. They satisfy

KTo3 = TT12, T13 =0, |712| £ K/VK?+ 72,

with curvature k and complex torsion 7 of ~.

(2) Conversely, given positive constants k, T and a constant u with |u| <
k/V K2+ 12, we have a unique Killing ordinary heliz on My(c) up to
the action of holomorphic isometries of My(c) whose curvature is s,
torsion is T, and the first complex torsion Ti2 is u.
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(3) If |u| > w/VK*+ 72, we have no such a Killing ordinary heliz on
M, (c).

Theorem B ([MA]) Let Ms(c) be a 2-dimensional nonflat complex space
form. Then the following hold:
(1) All complex torsions of each Killing ordinary heliz v in Ma(c) are
constant. They are expressed as either

T2 = K/VK>+ 72, T13=0, To3=7/VK>+ 72 (2.2)
or

T2 = —6/VEE+T72 T13=0, To3=—T/V K>+ 72 (2.3)

by use of curvature k and torsion T of .

(2) Conversely, for given positive constants k, 7 we have two Killing ordi-
nary helices on Ma(c) whose curvature is & and torsion is T up to the
action of holomorphic isometries on Ma(c). Their complex torsions
correspond to either (2.2) or (2.3).

It is well-known that every isometry of a nonflat complex space form
My (c) is either holomorphic or anti-holomorphic with respect to the given
complex structure J of M, (c). We should note that those Killing ordinary
helices having the same curvature « and torsion 7 with complex torsions
(2.2) or (2.3) are mutually congruent by some anti-holomorphic isometry of
M, (c).

Similarly those statements in Proposition 2 do not hold for ordinary
helices on other symmetric spaces of rank one, which are a quaternionic
projective space HLP™, a quaternionic hyperbolic space HH™, a Cayley plane
OP? and a Cayley hyperbolic plane OH?2. We denote by K either the field
of quaternion numbers H or the Cayley algebra Q. For an ordinary helix v
on KP™ or KH™ we put 7;;(s) = ||Proj;(Vi(s))||, 1 =4 < j = 3, where Proj;
denotes the projection of the tangent space at y(s) onto the K-subspace
generated by V;(s). These correspond to the absolute value of the complex
torsions for ordinary helices on nonflat complex space forms. On these
spaces KP" and KH™ every isometry ¢ preserves the K-structure; that is,
dy maps the K-subspace spanned by a tangent vector v to the K-subspace
spanned by dp(v). Therefore if an ordinary helix v on KP™ or KH" is
generated by some Killing vector field on such a space, then 7;; should be
constant along «v. We now take for example an ordinary helix of curvature s
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and of torsion 7 on CP? or CH? with 713(0) # 0. Then 715 is not constant,
because T15(s) = 7-113(s). Hence it follows from the fact that KP™ admits
CP? as a totally geodesic submanifold and KH™ admits CH? as a totally
geodesic submanifold and Theorem A that the following result holds.

Proposition 3 Let M be a Riemannian symmetric space of rank one

which is not a real space form, and (k,T) be a pair of positive numbers.

(1) There exist on M infinitely many congruency classes of ordinary he-
lices which are not Killing ordinary helices whose curvature is k and
whose torsion is T.

(2) When M is not a plane, that is, M # CP?, HP?, QP%, CH?, HH?,
OQH?, there exist on M infinitely many congruency classes of Killing
ordinary helices whose curvature is & and whose torsion is T.

3. Construction of closed ordinary helices with self-intersections
in CP?

In this section we construct a closed ordinary helix with self-intersection
points on a complex projective plane CP? by using Riemannian submanifold
theory. We consider a quotient of a 2-dimensional flat torus N = (S x
S')/¢. Here representing the first component by S! = {z € C | |z| = 1}
and the second component by St = {(a1,as) € R? | (a1)? + (a2)? = 1}, we
define the identification ¢ by ¢((e%, (a1,a2))) = (—€?, (—a1, —a2)). The
Riemannian metric on N is induced by the metric on a torus S x S which
is given by (A+&, B+n) = (4, B)s1 + %(f, 1) st for tangent vectors A, B €
TS! of the first component and tangent vectors &, € T'S! of the second
component, where (, )1 denotes the canonical metric on S*.

In order to obtain an ordinary helix with self-intersection points we
make use of the following isometric embedding f : N — CP?(4) defined by

F([€%, (a1, a2)])
= (G +2me®), L —aieh), Zimet ), (3)

where 7 : $°5(1) — CP?(4) is the Hopf fibration. By virtue of the result in
[AM], the image fo~y of a circle v of curvature 1/2 on N is an ordinary helix
on CP?(4) with curvature v/3/2 and torsion /3/2. The complex torsions
of f oy are described as
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2 1 . 1
Tio = \/;cos3<§s+¢o), T3 = —sm3(§s+@bo>,

1 1
Tog3 = _E c053<§s + 1,b0>.

Here, g is the angle between 4(0) and the unit vector u tangent to the first
component of V. As the complex torsions of f o~ are not constants, we
find it is not an integral curve of any Killing vector field on CP?(4).

We now consider the universal Riemannian covering p : R?> — N. Re-
garding the Riemannian metric on IV, we can choose a fundamental region
for N in R? as § = [0,2v27/3) x [0,/67/3). Two points (z1,z2) and
(y1,y2) on R? satisfy p((z1,22)) = p((y1, y2)) if and only if they satisfy one
of the following conditions:

i) 21—y = 2\/§m17r/3, To— Yo = 2\/6m27r/3 for some my, mg € Z,
i) z; —y1 = V202m; + 1)7/3, 2o — y2 = V6(2mg -+ 1)7/3 for some
mi, Mo € Z.

Let 4 denote a covering circle in R? of a circle v of curvature 1/2 on N.
Then the curve 7 is a circle of radius 2 in the sense of Euclidean Geometry.
This, together with the fact that f is an isometric imbedding, shows that
the curve f o+ is a closed curve of length 47 in CP?(4). Moreover, since the
curvature 1/2 of the circle v is less than 3/(v/27), it has self-intersection
points and hence so does the ordinary helix f o~. Suppose v(so) is a self-
intersection point. Denoting the tangential vector ¥(so) by (v1,v2) € R2 &
Ty(s0)N, we have

S — 8o

. §— 8o
V1 Sin + vg (cos 5 l)
=2 2 AU E Ot
Vg 8in — V1 (cos I 1)

If v(so0 + 51) = ¥(s0), then we get in the case i) that

vsin§—1—+v (cosfi—l)——zmw
1 9 2 2 - 3 17,
vsins—l—v <cos§—£—1>——6m7r
2 9 1 2 =3 27 .

As v? 4+ v2 = 1, we obtain in this case that
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2
sin 52—1 = %w(mlvl + \/§m2v2),
2
cos 52—1 = \/?_W(mlvz — \/gmzvl) + 1.

Thus we find (v1,ve) satisfies either
I) m(m?+3m3) = 3(—v2vam; + v6vrmy), or

II) w{(2m1+1)% +3(2ma + 1)?} = 3{—v2v2(2m1 + 1) + v6v1(2m2 + 1)}
for some pair of intergers (m1, ma) # (0,0) corresponding to the conditions
i) and ii). In our case, as the curvature 1/2 of -y is greater than 3/(/67), such
conditions might occur only for (mi, ma) = (1, 0) for the case I) and for
(m1,mg) = (0,-1), (0,0), (—1,0), (—1,-1), (1,-1), (1,0) for the case II)
(see Figure 1). Checking these conditions (or looking Figure 1 carefully),
we find v does not have self-intersection points corresponding to (my,mse) =
(1,-1), (1,0) for IT), and has self-intersection points corresponding to other
conditions. Thus we find v has 6 self-intersection points, and so does f o~.

A
>

D=E" D=E

0 C A P

Fig. 1. Circle of curvature 1/2 on N
(P(2v27/3,0), Q(0,v6m/3), A(2,0), B(0,2)).
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Summarizing up we obtain the following.

Theorem 1 Let f: N — CP?(4) denote the isometric embedding de-

fined by (3.1) and vy be a circle of curvature 1/2 on N. Then the curve fo-y

satisfies the following:

(1) It is a closed ordinary heliz of length 4w with curvature v/3/2 and
torsion /3/2 on CP%(4).

(2) It is not generated by any Killing vector field on CP?(4) and has 6
self-intersection points.

Remark 1 In connection with submanifolds we have the following Killing
ordinary helix on CP2?(4). Let h : CPY(2) (= 5%(2)) — CP2(4) denote
the second Veronese embedding given by h([z0, 21]) = [22, V22021, 2?] with
homogeneous coordinate (29, z1) on CP!(2). For a circle of curvature 1/v/2
on CP(2), the curve h o v is a Killing ordinary helix of curvature /3/2
and torsion v/3. This ordinary helix is closed with length 2\/2/_57r and does
not have self-intersection points (see [AM]).

4. Characterization of real space forms by ordinary helices

A Riemannian manifold M is said to be homogeneous if the isometry
group G of M acts transitively on M. Our study in this section is motivated
by the following theorem:

Theorem C ([MT]) Let M be a Riemannian homogeneous space and k
be a positive constant. If every circle of curvature k on M is generated by
some Killing vector field on M, then M is either a Euclidean space or a
Riemannian globally symmetric space of rank one.

Our aim here is to provide the following characterization of real space
forms by ordinary helices in the class of Riemannian homogeneous spaces.

Theorem 2 Let M be a Riemannian homogeneous space and x, T be pos-
itive constants. Every ordinary heliz of curvature k and torsion T on M is
generated by some Killing vector field on M if and only if M is a real space
form.

Let K denote the compact isotropy subgroup of G such as M = G/ K.
We denote by g and ¢ the Lie algebras of G and K, respectively. Take an
Ad(K)-invariant decomposition g = €@ p of g. For each X € p, we define
an element A, (X) € so(p) by



Geometry of ordinary helices 243

1
Ap(X)(Y) = S[X, Y], + U (X, Y)
for Y € p, where U : p X p — p is given by the equality
1
(U(X’ Y), Z) = §{<[Z, X]P? Y> + <[Za Y]P’X>}

for every X,Y,Z € p. We define a linear map A : g — so(p) by A(X) =
adx, +Ap(Xy), where for X € g we denote by X = X¢ + X, with X¢ € £
and X, € p. We denote the projection by w : G — G/K. Along the same
lines as in [MT] we can conclude the following.

Proposition 4 Let {X,Y, Z} be a triplet of orthonormal vectors in p and
H be an element of ¢. The orbit v(t) = w(expt(H + X)) is an ordinary
heliz on G/K of curvature k and torsion T with initial frame (X,Y, Z) if
and only if the following equalities hold:

AH + X)(X) = [H, X]+ A(O)(X) = &Y,
AH + X)(Y) = [H, Y] + Ap(X)(Y) = —kX +7Z,
AH + X)(2) = [H, Z)+ Ay(X)(2) =  —rV.

Corollary Let M = G/K be a Riemannian symmetirc space. Let
{X,Y,Z} be a triplet of orthonormal vectors in p and H be an element
of t. The orbit v(t) = w(expt(H + X)) is an ordinary helizc on G/K of
curvature £ and torsion T with initial frame (X,Y,Z) if and only if the
following equalities hold:

[H7X]=HY7 [H’Y]:_KX+TZ> [HaZ]Z_TY'

Proof of Theorem 2. The “if” part of the theorem is Proposition 2. In
the following we prove the “only if” part. Suppose that every ordinary
helix with curvature x and torsion 7 in M = G/K is an orbit of one-
parameter subgroup of G. Let {X,Y, Z} be an arbitrary triplet of mutually
orthonormal vectors in p. Take two ordinary helices v; and s of curvature
 and torsion 7 which go through the point eX (= 71(0) = 72(0)) and whose
initial frames (V1(0), Va(0), V3(0)) are (X, Y, Z) and (X, —Y, Z), respectively.
By Proposition 4 we have Hy, Hy € € with

[Hy, X] + Ap(X)(X) = KY;  [Ha, X]+ Ap(X)(X) = —AY.

We then obtain [H, X] =Y for H = (1/2k)(H; — Hs). Repeating the same
discussion as in the proof of Theorem 3.1 in [MT], we find that the linear
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isotropy group Ad(K) acts transitively on the unit sphere S(p) in p. Hence
M is a Euclidean space or a Riemannian globally symmetric space of rank
one.

On each Riemannian symmetric space of rank one which is not a real
space form we have by Proposition 3 ordinary helices of curvature x and
torsion 7 which are not generated by any Killing vector field on this space.
We hence get our conclusion. O

Before closing this paper, we write down the form of an ordinary helix
on a symmetric space G/K. For a curve v : R — G/K we represent its
framing Fy : R — G, which is a map with v = woF,, as F,, = g,h, by using
maps g, : R — G, h, : R — K with the property that g;l(dgfy/dt) em.

Proposition 5 A smooth curve v on a Riemannian symmetric space G/ K
is an ordinary helix of curvature k and torsion T with initial frame (X,Y, Z)
if and only if gy is a solution of the following differential equation with

g(0) = I

d 1 sinv/k2 + 72t
-1 %9y _ 2 /.2 2 2 K8l
9y 7 _/<a2+7'2(m cos VK +7‘t+7‘)X+—_——,———-l€2+7_2 Y

KT
2
+;2—+'7_—2(1—COS E2+7‘ t)Z. (41)

In this case, each entry of the solution g,(t) is represented by the power
series of t with infinite radius of convergence.

Proof. Since we can easily get the last claim by standard argument (cf.
[AMU]), we only show the “only if” part. Suppose 7 is an ordinary helix.
Let F~ L(dF,/dt) = as + am be the decomposition according as g = £ @ m.
By using g, and h, we have

FY(dF,/dt) = by (dhy/dt) + Ad by (g5 (dgy/dt)).

We here note that ap = hy(dh,/dt) always has a solution for a given
(see [KN]). We then have oy = Adh 1(9,7 1(dg,/dt)) for such a solution
hy.
By the equation (2.1) we find the curve ou, which is defined by Ad hyam
satisfies
d3Gm
dt?

= _(’4’2 + 7—2)%,
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hence we see by initial condition V;Vs;¥(0) = —x?X + k7Z that

d? &,
dt?

= (K2 + 738 + 72X + K7 Z.

If we set

~ ~ 1

amzam—m(TzX-}-/ﬁTZ),

then we have d%ay,/dt* = —(k? 4+ 72)@m. Solving this equation, we obtain
. 1 2
Om = cos VK2 + T2t<X - m(r X+ fer)>

+msin\/f$2+7-2ty+ 1
VK2 472 K247
which lead us to the desirable differential equation because o

95 (dgy/dt). O

This proposition also shows Corollary. For an orbit v(¢) = w(expt(H +
X)) on a symmetric space G/K we may have g,(t) = exp(t(H + X)) -
exp(—tH), hence obtain g7(dg,/dt) = Adexp(¢tH)X. This shows that the
curve &y = g5 *(dgy/dt) satisfies (d/@m/dt7)(0) = (ad H)?X. On the other
hand, by (4.1) we have

dGim Pam, B
7(0) = K)Y, W(O) =—r"X +I<JTZ, —C—ZtT

Thus we get Corollary.

5(T°X +k7Z),

(0) = —k(k? + T2)Y.
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