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Abstract. For Hopf hypersurfaces in a nonflat complex space form Mn(c;C), integral

curves of their characteristic vector fields are “nice” curves in the sense that their extrinsic

shapes in Mn(c;C) are Kähler circles. In this paper we mainly study geodesic spheres

in a nonflat complex space form Mn(c;C). On these geodesic spheres we classify smooth

curves whose extrinsic shapes are Kähler circles in Mn(c;C), c 6= 0. We also give a

characterization of complex space forms among Kähler manifolds by extrinsic shapes of

integral curves of characteristic vector fields on their geodesic spheres.
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1. Introduction

Let (M̃, 〈 , 〉) be a Kähler manifold with complex structure J . A smooth
curve γ on M̃ parameterized by its arclength is called a Kähler circle if it
satisfies either ∇̃γ̇ γ̇ = kJγ̇ or ∇̃γ̇ γ̇ = −kJγ̇ with some positive constant k.
Here ∇̃γ̇ denotes the covariant differentiation along γ with respect to the
Riemannian connection ∇̃ of M̃ . This constant k is called the curvature of
this Kähler circle. Since we can interpret Kähler circles as trajectories for
some uniform magnetic fields, we regard geodesics as Kähler circles of null
curvature (c.f. [A1]). The notion of Kähler circles is closely related to the
complex structure J of M̃ .

For a smooth curve γ on a Riemannian submanifold M in M̃ , regarding
this curve as a curve in M̃ , we call it the extrinsic shape of γ in M̃ . In this
paper we study extrinsic shapes of smooth curves on geodesic spheres in a
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Kähler manifold. For a geodesic sphere of small radius in a Kähler manifold
M̃ , we have the canonical almost contact metric structure (φ, ξ, η, 〈 , 〉).
The characteristic vector field ξ is given by ξ = −JN with outward unit
normal vector field N of a geodesic sphere. When M̃ is a complex space
form Mn(c;C), which is locally congruent to one of a complex projective
space CPn(c) of constant holomorphic sectional curvature c (> 0), a com-
plex Euclidean space Cn and a complex hyperbolic space CHn(c) of constant
holomorphic sectional curvature c (< 0), every integral curve of the char-
acteristic vector field of a geodesic sphere is a geodesic, and moreover its
extrinsic shape is a Kähler circle in Mn(c;C).

In view of the above features of integral curves for characteristic vector
fields, we naturally come to pose the following problems.
(1) On geodesic spheres in Mn(c;C), c 6= 0, are there smooth curves whose

extrinsic shapes are Kähler circles except integral curves of character-
istic vector fields?

(2) Among real hypersurfaces in Mn(c;C), c 6= 0, is it possible to charac-
terize geodesic spheres by these smooth curves?

In this paper, we classify smooth curves on geodesic spheres in Mn(c;C),
c 6= 0 whose extrinsic shapes are Kähler circles, and show that there are in-
finitely many such smooth curves which are not congruent each other. This
result is a complete answer to the first problem. We also give a character-
ization of complex space forms among Kähler manifolds from this point of
view.

For about the second problem, we give a partial answer. We say a real
hypersurface M of real dimension 2n−1 in a nonflat Mn(c;C) to be a Hopf
hypersurface if ξ is a principal curvature vector of M in the ambient space
Mn(c;C). Geodesic spheres Gx(r) are known as the simplest examples of
Hopf hypersurfaces. We give a sufficient condition for a real hypersurface
M to be a Hopf hypersurface by the condition that the extrinsic shape of
each integral curve of the characteristic vector field is a Kähler circle in the
ambient space Mn(c;C).

2. Extrinsic shapes of smooth curves on geodesic spheres

Let M be a real hypersurface of a Kähler manifold M̃ of complex di-
mension n (= 2) with Riemannian metric 〈 , 〉 and Kähler structure J . The
Riemannian connections ∇̃ of M̃ and ∇ of M are related by the following
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formulas of Gauss and Weingarten:

∇̃XY = ∇XY + 〈AX, Y 〉N , (2.1)

∇̃XN = −AX, (2.2)

for vector fields X and Y tangent to M , where A is the shape operator
of M in M̃ and N is a unit normal vector field. The canonical almost
contact metric structure (φ, ξ, η, 〈 , 〉) induced from J is a quartet of the
characteristic vector field ξ, a tensor field φ of type (1,1), the induced metric
〈 , 〉 and a 1-form η on M defined by 〈φX, Y 〉 = 〈JX, Y 〉, 〈ξ, X〉 = η(X) =
〈JX, N〉. They satisfy

φ2X = −X + η(X)ξ, 〈ξ, ξ〉 = 1, φξ = 0. (2.3)

Since ∇̃J = 0, those equalities (2.1), (2.2) and (2.3) show ∇Xξ = φAX.
Indeed,

∇Xξ = ∇̃Xξ − 〈AX, ξ〉N = J∇̃X(−N ) + 〈AX, JN〉N
= JAX − 〈JAX, N〉N = φAX.

We now study smooth curves on a geodesic sphere G(r) of radius r in
CPn(c) or CHn(c). Here, the radius r satisfies 0 < r < π/

√
c when c > 0,

and 0 < r < ∞ when c < 0. We should note that on these geodesic spheres
their shape operators satisfy φA = Aφ and 〈(∇uA)u, u〉 = 0 for every
tangent vector u (see [NR]). In the following, we shall use these equalities
repeatedly. For a smooth curve γ on G(r), we define its structure torsion ργ

by ργ = 〈γ̇, ξ〉. In general, ργ is not constant along γ. However, when γ is
a geodesic, we can see that its structure torsion is constant in the following
way. As ∇γ̇ξ = φAγ̇, we have

∇γ̇〈γ̇, ξ〉 = 〈γ̇, φAγ̇〉 = 〈γ̇, Aφγ̇〉 = 〈Aγ̇, φγ̇〉 = −〈φAγ̇, γ̇〉,
so the structure torsion ργ of a geodesic γ is constant. For geodesics on
G(r), their structure torsions are quite important. They are classified by
their structure torsions: Two geodesics on G(r) in CPn(c) or CHn(c) are
congruent each other if and only if the absolute values of their structure
torsions coincide (see [AMY]).

The extrinsic shapes of geodesics on a geodesic sphere in CPn(c) or
CHn(c) were studied in [AMY] (see Propositions 2.1 and 3.1 in [AMY]).
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Proposition 1 The extrinsic shape of a geodesic γ on a geodesic sphere
G(r) of radius r (0 < r < π/

√
c) in CPn(c) is as follows:

(1) If ργ = ±1, which is the case that γ is an integral curve of ξ, then the
extrinsic shape in CPn(c) is a Kähler circle of curvature

√
c cot(

√
cr),

(2) if ργ = ± cot(
√

cr/2) for the case π/(2
√

c) < r < π/
√

c, then the
extrinsic shape in CPn(c) is a geodesic,

(3) otherwise, the extrinsic shape in CPn(c) is not a Kähler circle.

Proposition 2 The extrinsic shape of a geodesic γ on a geodesic sphere
G(r) of radius r (0 < r < ∞) in CHn(c) is as follows:
(1) If ργ = ±1, then the extrinsic shape in CHn(c) is a Kähler circle of

curvature
√
|c| coth(

√
|c|r),

(2) otherwize, the extrinsic shape in CHn(c) is not a Kähler circle.

The features of Kähler circles on CPn(c) and CHn(c) are known (see
[A1, C]). On CPn(c) a Kähler circle of curvature k is simple and closed
with length 2π/

√
k2 + c and lies on a totally geodesic CP 1(c). On CHn(c)

a Kähler circle of curvature k is simple and lies on a totally geodesic CH1(c).
When k >

√
|c|, it is closed with length 2π/

√
k2 + c but when k 5

√
|c|, it

is an unbounded curve.
In view of these Propositions we are hence interested in other smooth

curves on geodesic spheres in CPn(c) and CHn(c) whose extrinsic shapes
are Kähler circles.

Theorem 1 Let γ be a smooth curve on a geodesic sphere G(r) of radius
r 5 π/(2

√
c) in CPn(c). If the extrinsic shape of γ in CPn(c) is a Kähler

circle of curvature k (= 0), then the curve γ is one of the following curves;
(1) a geodesic with structure torsion ργ = ±1, where k =

√
c cot(

√
cr),

(2) a non-geodesic curve satisfying ∇γ̇ γ̇ = ±kφγ̇ for k >
√

c cot(
√

cr) with
structure torsion ργ = ±c−1/2(

√
k2 + c − k) cot(

√
cr/2), where double

signs take the same signatures.

Theorem 2 Let γ be a smooth curve on a geodesic sphere G(r) of radius
r with π/(2

√
c) < r < π/

√
c in CPn(c). If the extrinsic shape of γ in

CPn(c) is a Kähler circle of curvature k (= 0), then the curve γ is one of
the following curves;
(1) a geodesic with structure torsion ργ = ±1, where k = −√c cot(

√
cr),

(2) a geodesic with structure torsion ργ = ± cot(
√

cr/2), where k = 0,
(3) a non-geodesic curve satisfying ∇γ̇ γ̇ = ±kφγ̇ for arbitrary positive k
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with structure torsion ργ = ±c−1/2(
√

k2 + c − k) cot(
√

cr/2), where
double signs take the same signatures,

(4) a non-geodesic curve satisfying ∇γ̇ γ̇ =±kφγ̇ for 0 < k <−√c cot(
√

cr)
with structure torsion ργ = ∓c−1/2(

√
k2 + c + k) cot(

√
cr/2), where

double signs take the opposite signatures.

Proof of Theorems 1 and 2. If the extrinsic shape of a smooth curve γ on
G(r) parameterized by its arclength is a Kähler circle of curvature k, its
equation ∇̃γ̇ γ̇ = ±kJγ̇ is equivalent to the equations

∇γ̇ γ̇ = ±kφγ̇, (2.4)

〈Aγ̇, γ̇〉 = ±kργ (2.5)

by the Gauss equation (2.1). Smooth curves satisfying (2.4) were also
treated in [A2] from the viewpoint of magnetic fields. Our interest here
is in curves satisfying both (2.4) and (2.5).

For a smooth curve γ satisfying (2.4) on G(r), we see that it has constant
structure torsion, because we have

∇γ̇〈γ̇, ξ〉 = 〈±kφγ̇, ξ〉+ 〈γ̇, φAγ̇〉
= 〈γ̇, φAγ̇〉 = 〈γ̇, Aφγ̇〉 = −〈φAγ̇, γ̇〉.

So we are enough to study the condition (2.5) at an initial point. In con-
sideration of Proposition 1, it suffices to study the case of ργ 6= ±1.

Since the shape operator A of G(r) satisfies Aξ =
√

c cot(
√

cr)ξ and
Au = (

√
c/2) cot(

√
cr/2)u for every tangent vector u orthogonal to ξ, the

equality (2.5) turns to

ρ2
γ

√
c cot(

√
cr) + (1− ρ2

γ)
√

c

2
cot

(√cr

2

)
= ±kργ .

As 2 cot 2θ = cot θ − tan θ, we see that ργ satisfies

√
c tan

(√cr

2

)
· ρ2

γ ± 2kργ −
√

c cot
(√cr

2

)
= 0.

Hence ργ is a solution of the quadratic equation

ρ2 ±
( 2k√

c

)
cot

(√cr

2

)
· ρ− cot2

(√cr

2

)
= 0. (2.6)

We denote by f±(ρ) the left side quadratic function in this equation. Since
f±(0) < 0, the equation (2.6) has a solution in the open interval (0, 1) if
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and only if f±(1) > 0 and has a solution in the open interval (−1, 0) if
and only if f±(−1) > 0. One can easily see that f+(1) > 0 if and only if
k >

√
c cot(

√
cr) and that f+(−1) > 0 if and only if −k >

√
c cot(

√
cr).

Therefore, when 0 < r 5 π/(2
√

c), as cot(
√

cr) = 0, we know that the
equation f+(ρ) = 0 has a unique solution c−1/2

(√
k2 + c − k

)
cot(

√
cr/2)

in the interval (−1, 1) if and only if k >
√

c cot(
√

cr). When π/(2
√

c) <

r < π/
√

c, as cot(
√

cr) < 0, we see that it has a solution c−1/2
(√

k2 + c −
k
)
cot(

√
cr/2) in the interval (−1, 1) for every positive k, and has another

solution −c−1/2
(
k +

√
k2 + c

)
cot(

√
cr/2) in the interval (−1, 1) if and only

if k < −√c cot(
√

cr). By the same argument as in the equation f−(ρ) = 0
we get our conclusions. ¤

For a geodesic sphere G(r) in CHn(c) of radius r, its shape operator
satisfies Aξ =

√
|c| coth(

√
|c|r)ξ and Au = (

√
|c|/2) coth(

√
|c|r/2)u for

every tangent vector u orthogonal to ξ. Therefore the equality (2.5) turns
to

ρ2
γ

√
|c| coth(

√
|c|r) + (1− ρ2

γ)

√
|c|
2

coth
(√

|c|r
2

)
= ±kργ .

Since 2 coth 2θ = coth θ + tanh θ, we find that ργ satisfies

√
|c| tanh

(√
|c|r
2

)
· ρ2

γ ∓ 2kργ +
√
|c| coth

(√
|c|r
2

)
= 0.

Hence ργ is a solution of the quadratic equation

ρ2 ∓
( 2k√

|c|
)

coth
(√

|c|r
2

)
· ρ + coth2

(√
|c|r
2

)
= 0, (2.7)

which corresponds to (2.6). We only need to consider the case k2 = |c|,
which is equivalent to that this equation has solutions. Under this condition
in the interval (−1, 1) this equation has at most one solution. We denote
by g±(ρ) the left side quadratic function in (2.7). Here double signs take
the opposite signatures. As g±(0) > 0, we see the equation g+(ρ) = 0
has a solution in the interval (0, 1) if and only if g+(1) < 0, that is k >√
|c| coth(

√
|c|r), and the equation g−(ρ) = 0 has a solution in the interval

(−1, 0) if and only if g−(−1) < 0. We hence obtain the following.

Theorem 3 Let γ be a smooth curve on a geodesic sphere G(r) of radius
r (0 < r < ∞) in CHn(c). If the extrinsic shape of γ in CHn(c) is a Kähler
circle of curvature k (= 0), then the curve γ is one of the following curves;
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(1) a geodesic with structure torsion ργ = ±1, where k =
√
|c| coth(

√
|c| r),

(2) a non-geodesic curve satisfying ∇γ̇ γ̇ = ±kφγ̇ for k >
√
|c| coth(

√
|c|r)

with structure torsion ργ =±|c|−1/2
(
k−√k2 + c

)
coth(

√
|c|r/2), where

double signs take the same signatures.

We say two curves γ1, γ2 to be congruent if there exist an isometry ϕ

and a constant s0 with γ1(s) = (ϕ ◦ γ1)(s + s0) for every s.
By these theorems we find that there are infinitely many smooth curves

on geodesic spheres in CPn(c) and CHn(c) whose extrinsic shapes are
Kähler circles. But if we restrict ourselves on the smooth curves whose
extrinsic shapes are Kähler circles of given curvature, we can say the fol-
lowing.

Corollary 1 Consider a geodesic sphere G(r) in CPn(c) of radius r with
0 < r < π/(2

√
c).

(1) For k = √
c cot(

√
c r), there is only one congruence class of smooth

curves whose extrinsic shapes are Kähler circles of curvature k.
(2) For 0 5 k <

√
c cot(

√
c r), there does not exist smooth curves whose

extrinsic shapes are Kähler circles of curvature k.

Corollary 2 On a geodesic sphere G(r) in CHn(c) we find the following.
(1) For k =

√
|c| coth(

√
|c| r), there is only one congruence class of smooth

curves whose extrinsic shapes are Kähler circles of curvature k.
(2) For 0 5 k <

√
|c| cot(

√
|c| r), there does not exist smooth curves whose

extrinsic shapes are Kähler circles of curvature k.

On the contrary, on a geodesic sphere G(r) in CPn(c) with π/(2
√

c) <

r < π/
√

c, there exist non-congruent curves with respect to the full isometry
group Iso(G(r)) of G(r) whose extrinsic shapes are Kähler circles of the same
curvature k in the ambient space CPn(c) for some positive constant k (c.f.
[A2]).

Corollary 3 Consider a geodesic sphere G(r) in CPn(c) of radius r with
π/(2

√
c) < r < π/

√
c.

(1) For 0 < k 5 −√c cot(
√

cr), there are two congruence classes of smooth
curves with respect to the full isometry group of G(r) whose extrinsic
shapes are Kähler circles of curvature k.

(2) For k > −√c cot(
√

cr) or k = 0, there is only one congruence class of
smooth curves whose extrinsic shapes are Kähler circles of curvature
k
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Remark Though two smooth curves corresponding to congruence classes
in Corollary 3 (1) are not congruent with respect to the full isometry group
of G(r), their extrinsic shapes are congruent each other with respect to the
full isometry group of CPn(c).

3. A characterization of Hopf hypersurfaces

In this section we give a characterization of Hopf hypersurfaces in a
nonflat complex space form by extrinsic shapes of integral curves of their
characteristic vector fields.

As a generalization of Kähler circles we say a smooth curve γ = γ(s) on
a Kähler manifold M parameterized by its arclength s to be a Kähler Frenet
curve if it satisfies either ∇γ̇ γ̇(s) = κ(s)Jγ̇(s) or ∇γ̇ γ̇(s) = −κ(s)Jγ̇(s) with
some positive smooth function κ(s) (c.f. [MT]). Needless to say we regard
a geodesic as a Kähler Frenet curve in a trivial sense.

Theorem 4 Let M be a real hypersurface in either CPn(c) or CHn(c).
Then the following are equivalent.
(1) M is a Hopf hypersurface in CPn(c) or CHn(c).
(2) The extrinsic shape of each integral curve of the characteristic vector

field ξ on M is a Kähler Frenet curve in CPn(c) or CHn(c).
(3) The extrinsic shape of each integral curve of the characteristic vector

field ξ on M is a Kähler circle in CPn(c) or CHn(c).

Proof. (1) =⇒ (3). Suppose that our real hypersurface M satisfies Aξ =
αξ. Then the principal curvature function α is locally constant on M (see
[NR]). Hence, from (2.1) the vector ξ satisfies ∇̃ξξ = αN = αJξ. Thus
the extrinsic shape of every integral curve of ξ on M is a Kähler circle of
curvature |α| in the ambient manifold Mn(c, C).

(2) =⇒ (1). For each integral curve γ = γ(s) of ξ, we have γ̇ = ξγ ,
hence we have ∇̃ξγξγ = ±κγ(s)Nγ with a function κγ(s) which is either a
positive smooth function or κγ ≡ 0. This, together with (2.1) and ∇ξγξγ =
φAξγ , implies that

φAξγ + 〈Aξγ , ξγ〉Nγ = ±κγ(s)Nγ .

In view of the tangential component for M of this equality, we find that
φAξγ = 0, hence ξγ is principal. Since γ is an arbitrary integral curve of
the characteristic vector field ξ, we find that our real hypersurface M is a
Hopf hypersurface. ¤
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4. A characterization of complex space forms

In this section we give a characterization of complex space forms among
Kähler manifolds by extrinsic shapes of integral curves of characteristic vec-
tor fields of geodesic spheres. To do this we use an expansion for the second
fundamental form of geodesic spheres due to Chen and Vanhecke ([CV]).
For a Riemannian manifold M of dimension greater than 2, we denote by
Ax,r the shape operator of a geodesic sphere Gx(r) in M of sufficiently small
radius r centered at x ∈ M with respect to the outward unit normal vector
field N . We adopt the following signature of the Riemannian curvature
tensor R̃ of M ; R̃(X, Y )Z = ∇̃[X,Y ]Z − [∇̃X , ∇̃Y ]Z.

Lemma ([CV, Theorem 3.1]) For nonzero tangent vectors v, w ∈ TxM at
a point x ∈ M , we choose a unit tangent vector u ∈ TxM orthogonal to both
v and w. We denote by vr, wr ∈ Texpx(ru)M the parallel displacements of
v, w along the geodesic segment expx(su), 0 5 s 5 r. Then for sufficiently
small r we have

〈Ax,rvr, wr〉 =
1
r
〈v, w〉 − r

3
〈R̃(u, v)w, u〉+ O(r2). (4.1)

We shall prove the following:

Theorem 5 For a Kähler manifold M of complex dimension greater than
1, the following are equivalent.
(1) M is a complex space form.
(2) At an arbitrary point x ∈ M , for each geodesic sphere Gx(r) of suffi-

ciently small radius r, the extrinsic shape of each integral curve of the
characteristic vector field ξ on Gx(r) is a Kähler Frenet curve in M .

(3) At an arbitrary point x ∈ M , for each geodesic sphere Gx(r) of suffi-
ciently small radius r, the extrinsic shape of each integral curve of the
characteristic vector field ξ on Gx(r) is a Kähler circle in M .

Proof. It suffices to prove that the condition (2) implies the condition (1).
By the same argument as in the proof of Theorem 4, for every integral curve
γ of the characteristic vector field we know that φAx, rξγ = 0 and hence our
geodesic sphere Gx(r) is a Hopf hypersurface.

Given a unit tangent vector v ∈ TxM we take a unit tangent vector
w ∈ TxM which is orthogonal to both v and Jv and use Lemma by putting
u = Jv. Since ur is a normal vector of Gx(r) in M at y = expx(ru), the
vector vr = −Jur is the characteristic vector of Gx(r) at y, so that vr is
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a principal curvature vector of Gx(r). This, combined with equation (4.1),
shows that the curvature tensor R̃ of M satisfies 〈R̃(u, Ju)w, u〉 = 0. This
means that R̃(u, Ju)u is proportional to Ju for every unit vector u at each
point x of M , so that our Kähler manifold M is a complex space form
Mn(c;C) (see [T]). ¤
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