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A NOTE ON LEVEL SETS OF
DIFFERENTIABLE FUNCTIONS F(X,Y)
WITH NON-VANISHING GRADIENT

Abstract

The purpose of this note is to give an alternate proof of a result of
M.Elekes. We show that if f : R2 → R is a differentiable function with
everywhere non-zero gradient then for every point x ∈ R2 in the level
set {x : f(x) = c} there is a neighborhood V of x such that {f = c}∩V
is homeomorphic to an open interval or the union of finitely many open
segments passing through a point.

1 Introduction

The Inverse Function Theorem is frequently proved under the assumption that
the mapping is continuously differentiable. In [4] continuity was removed from
the assumptions and the theorem was generalized for differentiable mappings.
The Implicit Function Theorem is commonly derived from the Inverse Function
Theorem. Whether the Implicit Function Theorem may be proved under these
more general assumptions was studied in [1] and [2].
More precisely, in [1] the following was proved.

Theorem 1. Assume that f : R2 → R is a differentiable function such that
|∇f | > η > 0 for all x in R2 then in a neighborhood of its points the level set,
{x ∈ R2 : f(x) = c} is homeomorphic to an open interval.
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Moreover, in [1] a differentiable function f : R2 → R, of non-vanishing gra-
dient, such that in any neighborhood of the origin the level set is not homeo-
morphic to an open interval, was presented. Later, in [2] the following related
result was proved.

Theorem 2. If f : R2 → R is a differentiable function with non-vanishing
gradient then in a neighborhood of each of its points the level set Z = {x :
f(x) = c} is homeomorphic either to an open interval or a union of finitely
many open segments passing through a point. Furthermore, the set of branch
points (see below for definition) is discrete.

In this note we will present an alternate account of Theorem 2.

We first mention some terminology and facts that will frequently be used in
the remainder of this note. An arc is the image of a continuous injective func-
tion from [0, 1] into the plane. An unbounded arc will refer to a set which
is the image of a continuous injective function from [0, 1) to R2 that is not
contained in any ball centered about the origin. A set S ⊂ R2 is said to be
locally arcwise connected if each neighborhood in S contains an arcwise con-
nected neighborhood. We will make extensive use of the fact that a complete
locally connected space is locally arcwise connected, ([3] p. 254). If there are
two distinct arcs between points x and y then there must exist a closed curve
in the union of these arcs. As we are dealing with functions of non-vanishing
gradient we observe that in this case a level set may not contain any closed
paths as this will lead to a local extreme. By branch point we will refer to
a point where the level set is not locally homeomorphic to an open interval.
When {Γi} is a collection of arcs with the terminal point of Γi coinciding with
the starting point of Γi+1 then

∑
Γi will refer to their concatenation. At times

we will need to supply a specific parametrization of an arc, we will denote it
by the lowercase of the respective letter that has been used to denote the arc.
We will also use A(x, a, b) to denote an annulus centered at x with inner radius
a and outer radius b. B(x, r) will denote a ball of radius r centered at x. By
bdS we will denote the topoligical boundary of a set S.

As mentioned above we will use the fact that any closed, locally connected set
is locally arcwise connected. The usefulness of this follows from the following
fact which was proved in [2].

Theorem 3 ([2]). Given a function f , as in Theorem 2, the level set
{x : f(x) = c} is a locally connected set.
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For any unit vector, v, let

S(x, ε, θ, v) = {y :

∣∣∣∣ (x− y)

|x− y|
· v
∣∣∣∣ > | cos(θ)|, |x− y| < ε} ∪ {x}.

x
θ

∇f(x)

∇f(x)⊥

S(x, ε, θ,∇f(x)⊥)

It is an elementary fact that for every x ∈ R2 there exists an ε0 > 0 such that
the level set Z containing a point x satisfies Z∩B(x, ε) ⊂ S = S(x, ε, π4 ,∇f(x)⊥)
(note that any θ > 0 will do) whenever 0 < ε < ε0 and ∇f(x)⊥ is the unit vec-
tor perpendicular to the gradient of f at x for which the basis {∇f(x),∇f(x)⊥}
has positive orientation. As the directional derivative of f at x along ∇f(x)
may not vanish it follows that the signs of f−f(x) on the two connected com-

ponents of
{
y : (x−y)

|x−y| · ∇f(x)⊥ = 1√
2

}
must be opposite. The same is true

for the components of
{
y : (x−y)
|x−y| · ∇f(x)⊥ = −1√

2

}
. From this and the Inter-

mediate Value Theorem it follows that if f(x) = c then elements of {f = c}
will accumulate at x through both sides of S.
There is an important fact that we will be leveraging. From Lemmas 4.1,4.2,4.3
of [2] it follows that given a rectangle R there cannot be infinitely many points
of a level set on each line which meets R and is parallel to a side of R. From
this we obtain the following lemma.

Lemma 4. For any ε > 0 and any x in the level set {y : f(y) = c} there are
at most a finite number of disjoint arcs in S(x, ε, π4 ,∇f(x)⊥) ∩ {y : f(y) = c}
which contain a point on both boundary curves of the annulus A(x,

ε

2
, ε).
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Proof. Suppose that there exists an ε > 0 such that there are infinitely many
pairwise disjoint arcs {Γi} in S = S(x, ε, π4 ,∇f(x)⊥) which are contained in
the level set {y : f(y) = c} and intersect both boundary curves of the annulus
A(x, ε2 , ε). Let R1, R2 be rectangles described by the following:

• one side is parallel to the direction of∇f(x) and tangent to the boundary

of B(x,
ε

2
)

• this point of tangency is the midpoint of the side and the length of this
side is

√
2ε

• another side, perpendicular to the first side, has length
ε√
2
− ε

2
and has

an endpoint on B(x, ε).

Then, at least one of these rectangles has infinitely many points of ∪iΓi on each
line which is parallel to ∇f(x) and meets the rectangle, a contradiction.

Lemma 5. Let α0 be an arc in {f = c} connecting points u and v. Then
for any R > 0, α0 may be extended in an arcwise manner to an arc α which
intersects the boundary of B(x,R).

Proof. Let A0 be an arc in {f = c} which connects points x and y0. Fur-
thermore, assume that all arcs which extend A0 and are contained in {f = c},
must be contained in some ball B(x,R). We first observe that any arc between
two points y and z in Z = {f = c} may be extended in an arcwise manner by
an arc contained in Z. For suppose Z ∩B(z, δ) ⊂ S = S(z, δ, π4 ,∇f(z)⊥). By
continuity the arc can only approach z through one of the halves of S. Ap-
plying local arcwise connectedness one may extend the arc by concatenating
with an arc from z to a point of the level set in the other half of S. For the
remainder of the proof an extended arc will be assumed to be contained in Z.
Let

S1 = {y : ∃ an extended arc ofA0 from x to y}

and let y1 ∈ S1 be a point such that

|y0 − y1| ≥
1

2
sup
y∈S1

{|y0 − y|} .

Call A1 the arc from y0 to y1. Inductively, we define for n ≥ 2

Sn = {y : ∃ an extended arc ofA0 +A1 + · · ·+An−1 fromx to y}
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and yn ∈ Sn a point such that

|yn − yn−1| ≥
1

2
sup
y∈Sn

{|yn−1 − y|}

and let An denote the arc from yn−1 to yn. Note that Ai, Aj , i < j are disjoint
except when j = i+ 1 in which case their intersection is the point yi.
Let dn = |yn−1 − yn|. It is clear that all points of An are within 2dn of yn−1,
since they are in Sn, and thus the diameter of An is at most 4dn. Suppose
{ynk
} is a subsequence converging to a point z, that there is some other point

of accumulation z′ of the sequence {yn} and set w = |z − z′|. This leads to
a contradiction of the fact that Z contains no loops as we may (using the
local arcwise connectedness of Z at z) connect two points ynk1

and ynk2
, when

nk1 and nk2 are large, to z by arcs in Z contained in B(z, w/4), while there

is another arc in Z between them which must intersect B
(
z′,

w

4

)
. Thus we

must have yn → z, and dn → 0. Define A =
∑
i

Ai, and let ε > 0 , and

α : [0, 1)→ R2 be a parametrization of A such that α

([
1− 1

2n
, 1− 1

2n+1

])
is equal to An. It is clear that α is injective. Let ψ : [0, 1]→ R2 extend α by
defining ψ(1) = z, and let Ψ be the image of ψ. Let n be large enough so that

|ym − z|, dm <
ε

100
for all m > n. If t ∈

(
1− 1

2n+10
, 1

]
, then ψ(t) ∈ Am for

some m ≥ n+ 10. We have

|ψ(t)− z| ≤ |ψ(t)− ym−1|+ |ym−1 − z| < 4dm +
ε

100
< ε .

Thus ψ is continuous and Ψ is an arc from x to z as z cannot also be in A.
This arc may then be extended non-trivially which contradicts dn → 0.

2 Proof of Theorem 2

Proof. Fix x ∈ Z. By local arcwise connectedness there is a bounded open
set U containing x such that Z0 = Z ∩ U is arcwise connected. Let Γ0 be an
arc in Z0 that passes from x to the boundary of U . Such an arc exists since x
is a limit point of Z and Lemma 5 ensures that any arc in Z may be extended
to an unbounded arc. Extend {Γ0} to a maximal family {Γk}nk=0 of arcs which
are disjoint except for x and end at the boundary of U intersecting bdU at
a single point. By Lemma 4 this family must be finite. Suppose {zn} is a
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sequence of distinct points zn → x, zn ∈ Z0 \ ∪nk=0Γk. For each zi let Ai be
an arc in Z0 beginning at x, passing through zi and ending on the boundary
of bdU such that Ai ∩ bdU is a single point. Let αi : [0, 1] → R2 denote a
parametrization of Ai. We may write Ai = Ai0 + Ai1 where Ai0 = αi|[0,ti],
Ai1 = αi|(ti,1], and ti = sup {s ∈ [0, 1] : αi(s) ∈ ∪nk=0Γk}. By the maximality
of {Γk}nk=0 and the fact that Z contains no loops 0 < ti < 1, Ai0 ⊂ ∪nk=0Γk,
Ai1 ∩ ∪nk=0Γk = ∅, and Ai1 ∩ B(x, ηi) = ∅ for some ηi > 0. By the arcwise-
connectedness of Z0 there exists a mi > i such that if j > mi there is an
arc from x to zj which is contained in B(x, ηi2 ) ∩ Aj , and as such we must
have, zj /∈ Ai, and Ai1 ∩Aj1 = ∅ (this intersection is empty since any point in
it would not be in B(x, ηi) and thus there would be two distinct paths from
x to such a point, one with zj and one without zj). This clearly contradicts
Lemma 4. Hence, there is a ball V ⊂ U containing x such that Z∩V ⊂ ∪ni=0Γi.
If γi is a parametrization of Γi and si = inf {s : γi(s) ∈ bdV }, we let W be the
connected component of V \∪γi[si, 1] containing x. We note that the number
of arcs is even, since f must have opposite sign on two adjacent connected
components of W \ ∪ni=0Γi or we would have a critical point. Thus we may
pair the paths of the collection {γi[0, si)}ni=0 to get the required pieces, which
are homeomorphic to open intervals. If q ∈ W with q 6= x, and q ∈ Γi ∩W
for some i, we may clearly find a neighborhood Wq of q contained in W such
that Wq ∩ Z is homeomorphic to an open interval. Thus, branch points are
isolated and the claim follows.
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