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ON THE GROWTH OF REAL FUNCTIONS
AND THEIR DERIVATIVES

Abstract

We show that for any k-times differentiable function f : [a,00) — R,
any integer ¢ > 0 and any « > 1 the inequality

. xF logx-logyx ... log, T |F%) (2)]
lim inf

s L5 @) B

holds and that this result is best possible in the sense that log, x cannot
be replaced by (log, x)? with any 8 > 1.

1 Introduction and Statement of Results

Many classical and more recent inequalities deal with relations between a
real-valued function and its derivatives, for example the Landau-Hadamard-
Kolmogorov inequalities

£ oo Cron I F IS 1 F 1B

for n-times differentiable functions f : R — R (where & € {1,...,n —1})
and their numerous variations, see [8, pp. 138-140]. In this paper we prove a
different fundamental growth estimate for real-valued functions on unbounded
intervals which, to our best knowledge, hasn’t been studied so far and which
turns out to be best possible. Here, log,  denotes the g-times iterated natural
logarithm, defined recursively by log,z := x and log, x := log(logq71 x) for
q=>1
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Theorem 1. Let k > 1 and g > 0 be integers, a > 1, a € R and f : [a,00) —
R a k-times differentiable function. Then

z* logx-logyx - ... -log, z - f¥)(z
lim inf = %8% " 062 TR MG (1)
200 L+ [f(z)]
and
¥ logx-logyx - ... -log, x - |f*)(x
" g - logy g,z | ()] _o @)
300 1+ |f(2)|*
(Here, of course, for q =0, the product logx -logyx - ... -log,  is understood

to be the empty product, i.e. 1.)

2 Remarks

(1) This result is best possible in the sense that it is no longer valid if log, x
is replaced by (log, x)? with any 8 > 1. This can be seen by considering
the function f : [a,00) — R defined by

flx):= / / / dxy ... dxy,
k. logxy-...- .- log, 1

where a > 0 is chosen sufficiently large. (For k = 1 the iterated integral
reduces to the one-dimensional integral from a to z.) Indeed, for > a
we have

|f ()]

— o dxg— d
/a log y, - . logqsck </ /‘,7[‘,2 zk diy Tk 1) Tk

= 1 / — dx
(k=1 ), logzy - ...-logqu o
1
= (k—1)! ’ (1qu+1 S a)

IN

and of course
1

zk logz ... log,x

fPN (@) =
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hence for any «, 5 > 1

a® loga -logyx - ... (log, )7 - f*)(x)
1+ [f(2)]
1 p-1
> (log, =) o

@
1+(ﬁ-logq+1x+0)

where C' is a constant. So (1) does not hold, and neither does (2).

Another, related counterexample is f(z) := log,,, . However, it is more
difficult to verify that it has the desired properties than for the example
given above.

The denominator 1+|f(z)|* cannot be replaced by |f(x)|* (which might
appear as a more natural choice at first sight), not even if one skips the
term z* and the logarithmic terms and assumes that f*) and f don’t
have common zeros. This is demonstrated by the functions f(z) := -

k N A €)) : .
where m > —%5; here, the quotient For tends to oo if z — co.
Of course, the appearance of the terms log x-log, x-. . .-log,  in Theorem

1 and the fact that log,z cannot be replaced by (log, z)? with g > 1
are reminescent of the well-known fact from basic calculus that for any
natural number ¢ the infinite series

— 1
k;ﬂ klogk-...-log, k- (log, k)?

(where kg is chosen sufficiently large) is convergent for § > 1 and di-
vergent for 0 < 8 < 1 and that a corresponding result holds for the
improper integral

/CO 1
dx.
zo T-loga ... -log, 1x~(logq:c)5

This resemblance seems to be more than coincidence as Case 3 of the
proof of (1) reveals: It makes crucial use of the divergence of fzooo (x -

logz - ... log,x)"! de.

For k = 1, the geometric idea behind our main result is the following
simple one: If (1) should be violated, then f is growing so rapidly that
it cannot exist on the whole interval [a, 00); it tends to co within a finite
time.
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Accordingly, the case k = 1 of assertion (1) can be easily deduced from
a standard comparison principle for differential inequalities. Indeed, if
k=1 and f is as in Theorem 1 and if (1) does not hold, then there is
an € > 0 and an ag > 0 such that

x-logz-logyx-...-log,z- f'(x) >e-(1+[f(z)|*) forall z > ao.
In particular, f'(x) > ¢/(x - logz - logyx - ... - log, x) for all 2 > ao.
In view of the divergence of f;: 1/(x-logx - ... log,z) dr this implies

lim, o f(2) = +00. Therefore we can conclude that there exists an
xo > ag such that for all z > z¢ we have f(z) > 0 and

f(z) = £ ().

3

x-logx-loggx-...-logqx.

However, the solution of the initial value problem

2 v (@),  ylwo) = flao)

/
y(z) = z-logx-logyw-... log,x '
does not exist on the whole interval [z, 00); there is some b < +00
such that lim,_,;_ y(x) = +00. So by the afore-mentioned comparison
principle (see for example [9, Chapter I1.8]) we obtain f(z) > y(z) for
all admissible x > xq, a contradiction. — Without using the comparison
principle the same can be obtained even more immediately by integrating

fia) :
fe(x) ~ x-logx-logyx-... log,

However, we don’t see a feasible way to extend this reasoning to the case
k> 2.

This paper is related to (and was partially motivated by) our previous
work in [3], [2], [1], [4], [6], [7] and [5] where we had studied differen-
tial inequalities in the context of complex analysis, more precisely with
respect to the question whether they constitute normality (or at least
quasi-normality) in the sense of Montel. In [2] it was shown that a fam-
ily F of meromorphic functions in some domain D in the complex plane
such that

f®]

1+ [f]

(where a > 1, C > 0 and k > 1) has to be normal. This doesn’t hold
any longer if a@ > 1 is replaced by o = 1 as easy examples demonstrate.

() >C forall z€ D and all f € F (3)
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However, for o = 1 condition (3) implies at least quasi-normality [7, 5].
Furthermore, in [1] we had shown that the condition

Il

g > for all D 4
1+‘f(])|a(z)_0 orall z € (4)

(where k > j > 0 are integers, o > 1 and C > 0) implies quasi-normality.

As to entire functions, it is almost obvious that they cannot satisfy a
differential inequality like (3). Indeed, if f is entire and |f*)|(z) >
C - (14 |f(2)|*) for all z € C, then in particular |f*)(z)| > C for all
z € C, so f*) is constant by Picard’s (or Liouville’s) theorem. But
then f is a non-constant polynomial, and one obtains a contradiction for
z — oo provided that a > 0.

In view of Theorem 1 and the fact that the exponential function grows
larger than every polynomial, the following fact certainly doesn’t come as a
big surprise:

For every continuously differentiable function g : [a,00) — R we have

9@ _ (5)

liminf Z20s

Indeed, otherwise there would be an ¢ > 0 and an xy > a such that
g (x) > e-e9® for all x > z¢. In particular, ¢’ is positive on [zg,00), so
g is increasing there, hence ¢'(z) > ¢ - e9@0) for all © > x(, which implies
lim, 00 g(x) = co. This enables us to conclude that ;jé:)) — oo for z — oo.

Combining this with the fact that liminf, % < 0 by Theorem 1 gives

g/
1+]g
the assertion.
However, it might be a bit surprising that this no longer holds if ¢’ is
replaced by higher derivatives of ¢, i.e. for & > 2 in general the estimate

)
lim inf, o geg(fff) < 0 does not hold. This is demonstrated by the function

g(x) := —xk=3/2 which satisfies
(k) —3/2
9" (x) T
eg(@) c- eXp(_l,k_,‘}/Q) — 00 for r — o0

with some C > 0.
On the other hand, for every k times continuously differentiable function
g:la,00) — R (k> 1) we have
®) ()

(k)
lim inf M < and lim inf g T

ehee 1+ e9(@) = iminf e < 0.
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Both inequalities are proved by a similar reasoning as in the proof of (5),
applying Theorem 1 with (for example) o = 2 and keeping in mind that
g®¥)(z) > ¢ for all z > z¢ would imply g(z) — oo for # — oo resp. that

ela(@)l

T TP

is bounded away from zero.

3 Proof of Theorem 1

Our main efforts are required to prove (1). Then (2) will be an easy conse-
quence from (1).

We want to prove (1) by induction w.r.t. ¢g. However, the start of our
. L . £®) (z) zF ) () :
induction is to consider T rather than TFroe (which would be the
case ¢ = 0). So we have to introduce a unifying notation first. For given k > 1,

we set

q
P_i(z):=1, Py(z):=2" and Py(z) := z* H log; z for ¢ > 1.
j=1

Then our assertion (1) has the form

. £(k)
i jut 2 S @)

S N TEIG ©

First we consider the case ¢ = —1 in (6). Let’s assume the assertion is
wrong. Then there is an € > 0 and an ag > 0 such that

FE(@) > e (1 +|f()]Y) for all x > ay. (7)

From f(k)(x) > ¢ for all x > ag one easily sees that there is some a; > ag such
that

fB @) >0, f*D@)>0,...,f(x)>0, f() >0 forall z>ay.

In particular, f is strictly increasing (i.e. one-to-one) on [a;,00) and
lim, o f(x) = co. We choose a natural number n such that (a«—1)-n > k—1.
Then there is a natural number jo such that f([a;,00)) contains the interval
[§8, 00). For j > jo we set

ry = TG
Then (r;); is strictly increasing and unbounded, and by the mean value the-
orem, applied to ¢(t) := t", we have

frjz) = fr))=G+D)" =" <n-(G+1)"* for all j > jo.  (8)
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On the other hand, for j > jo we deduce from the fundamental theorem of
calculus

F(risn) — fr) = / " P day

J

Tj+1

/ f'(rj) / [ (x2) dxo | dxy
Ti+1

/ / f CL’Q diCQ d.’El

Ti+1 z1 Tk—2
/ / .. / f(k'_l)(xk,l) dzy_1 ...dvodzy;
T T T

here again in the case k = 1 the iterated integrals are understood to reduce to
a one-dimensional integral. From (7) we obtain

Y

v

v

FE V(@) = fE N0 +e- /i (1+ 7)) dt

J

for all > r; and j > jo. (Observe that this cannot be deduced from the
fundamental theorem of calculus since f*) might be not integrable. However
it follows by an easy monotonicity argument.) Therefore we arrive at

frjpr) = f(ry) = €~/ml/ / (14 f*(xp)) day. .. dvoda;

Ti+1 T Tp—1
/ / / (rj) dzg . . . dwodzy

= e-J° .k! (7"]-5-1_7"])-

Vv

Combining this estimate with (8) yields

& .
ne D) 2 g G (e - )",
hence
LR L WA R TP Lo 1
Ti+1 =T < ( € ’ jon ) < ( £ ) . j((afl)-n+1)/k '
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Here, by our choice of n, ((« — 1) -n + 1)/k > 1 which ensures that
the series Z;‘;jo 1/j(e=1n+D/k converges. Hence also the telescope series
Zj‘;jo (rjp1—r;) = limj_ o 7; — 1, converges, contradicting lim;_, ., 7; = oo.
This proves (1) for ¢ = —1.

Now let some ¢ > 0 be given and assume that (1) is true for ¢ — 1 instead
of ¢ and for all k-times differentiable functions f : [a,00) — R. We assume
there is a k-times differentiable function f : [0,00) — R and an € > 0 such
that

Pya)- f9 (@) > & (14 |f(@)]) (9)
holds for all z large enough. Then in particular f*)(z) > 0 for all large
enough z, so f*~1 is increasing, and we easily see by induction that
f=1 f(k=2) £/ f are strictly monotonic on an appropriate interval
[az, 00) where ag is large enough. So the limits

Lj:= lim f9) (j=0,....,k—1)
Tr—r0o0

exist. (They might be 400 or —00.)
In the following we will apply the induction hypothesis to the function

g(t) = f(e")

and will use that
k—1 ' '
gM (1) = fP(e") e+ e fI(eh) - et (10)
j=1

for certain constants ¢; > 0. (This is easily seen by induction.)
By the mean value theorem, for all n € N there is a (,, € [n, 2n] such that

n- [ f PG = 11470 2n) — fE V@), (11)

Here of course we have lim,, ., (,, = oo.

Now we consider several cases.
Case 1: Ly 1 #0.

Since f*~1) is increasing, we either have Ly_; € R or Lj_, = +o0.
Case 1.1: Ly, €R, wlog. Li_1>0.

Then we have

1
3 L1 < f(kfl)(x) < 2L, for large enough =z,

hence
_1
3(k—1)!

cLp_q 2Pl < flx) < ﬁLk_l cgkl for large enough x.
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Using the lower estimate, we conclude that for large enough z
1 1 x(k—l)(1+o¢)/2
—. <

z 1+|f(x)l> = 1+[f(z)

(Here it is crucial that 1 < § - (1 + &) < a.) Furthermore,

0< Py(x)- —0 (x—o00). (12)

0= G- [FP Gl < 20 191G = 2 F*7 0 2n) = fE D ()] =570 (13)
since Ly_1 is finite. Multiplying (12) and (13) gives

f* ()l

—Pq(Cn)'W

— 0 (n— o).
This is a contradiction to (9).
Case 1.2: Lji_1 = +o0.

Then for large enough z we have f*=1(z) > 1, f*2(z) > 1,..., f'(z) >
1, f(x) > 1 (and Lg_o = --- = L1 = Ly = +00). By applying the induction
hypothesis to g, using (10) and substituting ¢t = logz we obtain for ¢ > 1

(k)
0 > liminf P,_4(¢)- gL

e RO
_ ltlglgofnlog]t o S f)-ektlizl;f(;ti)cif<j>(et).ejt
= EngﬁlogJHm (log 2)" - f(k)(x).xk1++§|:;(_j)|cif(j)(x),x]
J
> lggljrgglogjx logz - W
IS A CORD A C)

S T [f@)

as desired. This remains valid for ¢ = 0 if we replace Hj;% log; t-t* by 1 in the
second line of this calculation and make similar modifications in the following
lines.
Case 2: Ly_1 = -+ = Ly =0, but L, # 0 for some integer m > 0,
m < k — 2. (In particular, this case can occur only for k > 2.)

Then for j =k —1,k—2,...,m+ 1 and all large enough x by the mean
value theorem we find a (, € [z, 2z] such that

- [fP22)] <@ |9 = 1YV (2e) - fU V@) < 1 /U @) (1)
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here we have used that | f()| is decreasing (since f() is monotonic and L; = 0)
and that fU=1(22) and fU~Y(z) have the same sign forlarge enough x.
By induction we obtain for all = large enough

1

2h1 |f(k71)(2k717mx)| < T S |f(m)(x)|

< ™| f ()] (15)
Case 2.1: L, # too,ie. L, € R.

Then for all z large enough we have

xm

2-m!

g[[og] 1+|f()| glogJ m—w. (16)

From (11) and (15) we conclude that for all n large enough

n* RG] = PR n) — FETD ()
< PR ()

) (k— n k-1 _
—  olk—1-m)(k 1).<2k_1_m) £+ ()]

R

If we combine this estimate with (16) and observe that (™) is bounded (since
L., € R), we obtain (with C,, := 2(’“_1_”‘)2‘*"“)

0 = IThoe & 3

IN

j=1
a *)
g -k PG
< w2 pe
. )
< Cnm jl;[llogjcn T3 7R |f (Q,H,m)\
q
S (M
< Cm H ngn 1+|f(cn)|a |f (2k—1—m>‘—>0 (TL*)OO)
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for all n large enough. This settles Case 2.1.
Case 2.2: L,, = too, w.lo.g. L,, = 4o0.
Then for all x large enough we have

@) >m!+1, fr V@) >mle+ 1, f () >m- 2™ 41

and finally
flz) =™, (17)
hence
q m
log, 2+ ————— — 0 (z — 0).
oo e —0 =)
For j = 1,...,m and all z large enough there are numbers (, € [z, 2z] such
that

fO9V@z) = fO @) + - fOG) >0+ fO(2),
and by induction we conclude that
F@ma) 2 2D o) () > 2 £ (@), (18)

provided that z is large enough. On the other hand, f(™*1) is positive and
decreases to 0, so for a suitably chosen a3 > 0 and all z > 2a3 we obtain

az+2mtt.z
frmeEme) < (ag +2me) = F)(ag) +/ FO () dt

as
az+35
< f(m)(a3)+2m+1_/ f(m+1)(t) dt
as

— gmtl. f(m) <a3 4 g) — (2™ = 1) fM) (ag)
< 2 fO () 0.

From this estimate and (18) we conclude that for all  large enough
2m+1 . f(2mx) > g™ f(m)(2m$),
hence (by replacing 2™z with z)

2 ML f(g) > ™ [0 (2), (19)
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If we combine this estimate with (11), (15) and (17), as in Case 2.1 we obtain

£ (G)
P(¢,) - ———22
0= Rl TR
2 nm - |f(m)( qufmﬂ
S Cm 10g<n 2 P
1] 7 1+ [£(G)
(19) / d |f(2k*q*m)|
< O . log. ¢, - =21/ 1
- Hogﬁg T+ (Gl
q
< Cp- [1log; G- F(GI
Jj=1
(17) 4
< O [Jlog; G- ¢ — 0 (n— ),
7j=1

where C/. is an appropriate constant. This settles this case as well.
Case 3: Lp_1=---=Lyg=0
In this case, (15) holds as well (with m = 1), i.e.

|f'(2)| > 2*2 - [ D (28 72g) |

for all x large enough. Now we use

|F®) ()]

€
> 000
=z q

ak [, log; @

(which is valid for all large enough z) and once more the mean value theorem
to deduce for all large enough x

F@) 2 22 0@ ) - fED )

= 2k gkl () (where 2722 < ¢, < 2F~1g)

2k—2 B xk:—l e
R R VTG

x j=1 ) ST

2k:—2 . .’Ek_l €

>

(2k—1x)k . H?:l IOgj@k_lx)

1

>
= q
x~||j:110gjm

with a suitable constant ¢ > 0, hence by integration

|f(z)| = c-log gz +d— o0 (x — o)
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for some d > 0, since f'(z) doesn’t change its sign for z large enough. This
contradicts Ly = 0, i.e. this case cannot occur.

This completes the proof of (1).

In fact, Case 3 is the only part of the proof where it is crucial that in the
assertion only the factor log, z and not (logq x)? with 8 > 1 occurs. It would
fail for 5 > 1 since the improper integral

o0
/1/(3: logz ... log, ;z-(log, z)?) de  (with z( large enough)
o

converges.

Now (2) is an easy consequence from (1) and from Darboux’ intermediate
value theorem for derivatives. Indeed, if there exists an o such that f*)(z) >
0 for all z > x or f*)(x) < 0 for all x > z¢, (2) follows immediately from
(1), applied to either f or —f. Otherwise, by Darboux’s theorem there is a
sequence {z,,}, tending to oo such that f*)(x,) = 0 for all n, and (2) holds
as well.
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