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THE BAIRE CLASSIFICATION OF
STRONGLY SEPARATELY CONTINUOUS

FUNCTIONS ON `∞

Abstract

We prove that for any α ∈ [0, ω1) there exists a strongly separately
continuous function f : `∞ → [0, 1] such that f belongs to the (α+1)’th
/(α+ 2)’th/ Baire class and does not belong to the α’th Baire class if α
is finite /infinite/.

1 Introduction

The notion of real-valued strongly separately continuous function defined on
Rn was introduced and studied by Dzagnidze in his paper [2]. He proved that
the class of all strongly separately continuous real-valued functions on Rn
coincides with the class of all continuous functions. Later, Činčura, Šalát and
Visnyai [1] considered strongly separately continuous functions defined on the

Hilbert space `2 of sequences x = (xn)∞n=1 of real numbers with
∞∑
n=1

x2n < +∞

and showed that there are essential differences between some properties of
strongly separately continuous functions defined on `2 and the corresponding

Mathematical Reviews subject classification: Primary: 54C08, 54C30; Secondary: 26B05
Key words: strongly separately continuous function, Baire classification
Received by the editors September 4, 2017
Communicated by: Miroslav Zeleny

325



326 O. Karlova and T. Visnyai

properties of functions on Rn. In particular, they noticed that there exists
a strongly separately continuous function f : `2 → R which does not belong
to the first Baire class. Extending these results, Visnyai [8] constructed a
strongly separately continuous function f : `2 → R of the third Baire class
which is not quasi-continuous at every point of `2. It was shown recently in [6]
that for every 2 ≤ α < ω there exists a strongly separately continuous function
f : `p → R which belongs the α’th Baire class and does not belong to the β’th
Baire class on `p for β < α, where p ∈ [1,+∞).

The aim of this paper is to generalize results from [6] to the case of p = +∞.
We develop arguments from [3] and prove that for any α ∈ [0, ω1) there exists
a strongly separately continuous function f : `∞ → [0, 1] such that f belongs
to the (α+1)’th /(α+2)’th/ Baire class and does not belong to the α’th Baire
class if α is finite /infinite/.

2 Definitions and notations

Let `∞ be the Banach space of all bounded sequences of reals with the norm

‖x‖∞ = sup
k∈ω
|xk|

for all x = (xk)k∈ω ∈ `∞. For x, y ∈ `∞ we denote d∞(x, y) = ‖x − y‖∞. If
x ∈ `∞ and δ > 0, then

B∞(x, δ) = {y ∈ `∞ : ‖x− y‖∞ < δ}.

Definition 2.1. Let x0 = (x0k)k∈ω ∈ `∞ and (Y, | · − · |) be a metric space.
A function f : `∞ → Y is said to be strongly separately continuous at x0 with
respect to the k-th variable if

∀ε > 0 ∃δ > 0 ∀x = (xk)k∈ω ∈ B∞(x0, δ)

|f(x1, . . . , xk, . . . )− f(x1, . . . , xk−1, x
0
k, xk+1, . . . )| < ε. (1)

If f is strongly separately continuous at x0 with respect to each variable, then
f is said to be strongly separately continuous at x0. Moreover, f is strongly
separately continuous on `∞ if it is strongly separately continuous at each
point of `∞.

Strongly separately continuous functions we will also call ssc functions for
short.

Definition 2.2. A subset A ⊆ X of a Cartesian product X =
∏∞
k=1Xk of

sets X1, X2, . . . is called S-open [4], if

σ1(a) = {(xk)∞k=1 ∈ X : |{k : xk 6= ak}| ≤ 1} ⊆ A
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for all a = (ak)∞k=1 ∈ A.

We put

σ(a) = {(xk)∞k=1 ∈ X : |{k : xk 6= ak}| ≤ ℵ0}

and observe that the set σ(a) is S-open.
If x ∈ `∞ and N ⊆ ω, then we put

πN (x) = (xk)k∈N .

In the case N = {n}, we write πn(x) instead of π{n}(x).

3 Main result

Define a function (α)• as the following

(α)• =

{
α, α ∈ [0, ω),
α+ 1, α ∈ [ω, ω1).

(2)

Theorem 3.1. For any α ∈ [0, ω1) there exists a strongly separately continu-
ous function f : `∞ → [0, 1] which belongs to the (α + 1)•’th Baire class and
does not belong to the α’th Baire class on `∞.

Proof. We define transfinite sequences (Aα)1≤α<ω1 and (Bα)1≤α<ω1 of sub-
sets of `∞ inductively and in the following way. Put

A1 = {(xn)∞n=1 ∈ `∞ : ∃m ∀n ≥ m xn = 0} and B1 = `∞ \A1.

Let (Tn : n ∈ ω) be a partition of ω onto infinite sets Tn = {tn0, tn1, . . . },
where (tnm)m∈ω is a strictly increasing sequence of numbers tnm ∈ ω. We put

`Tn
∞ = {(xtnm) ∈ `∞ : tnm ∈ Tn ∀m ∈ ω}.

For every n ∈ ω we denote by An1 /Bn1 / the copy of the set A1 /B1/, which
is contained in the space `Tn

∞ . Assume that for some α > 1 we have already
defined sequences (Aβ)1≤β<α and (Bβ)1≤β<α (and their copies (Anβ)1≤β<α and

(Bnβ )1≤β<α in `Tn
∞ ) of subsets of `∞. Now we put

Aα =

{ ⋃∞
m=1

⋂∞
n=m π

−1
Tn

(Bnβ ), α = β + 1,⋃∞
n=1 π

−1
Tn

(Anβn
), α = supβn,

and

Bα = `∞ \Aα.

Claim 1. For every α ∈ [1, ω1) the following statements are true:
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1. the sets Aα and Bα are S-open in `∞;

2. for any y = (yn)∞n=1 ∈ `∞ with yn 6= 0 for all n ∈ ω we have

x = (xn)n∈ω ∈ Aα ⇔ z = (xn · yn)n∈ω ∈ Aα.

Proof of Claim 1. (1). Evidently, A1 and B1 are S-open. Assume that for
some α < ω1 the claim is valid for all β < α. Let α = β + 1 be an isolated
ordinal. Take any x ∈ Aα and y ∈ σ1(x). Then there exists m ∈ N such that
πTn(x) ∈ Bnβ for all n ≥ m. Since πTn(y) ∈ σ1(πTn(x)) and Bnβ is S-open,
πTn

(y) ∈ Bnβ . Therefore, y ∈ Aα. We argue similarly in the case where α is a
limit ordinal.

(2). We fix y = (yn)∞n=1 ∈ `∞ such that yn 6= 0 for all n ∈ N. The
statement is true for α = 1, since A1 = σ(0). Assume that for some α < ω1

the property is valid for all β < α. Let α = β + 1 for some β. The inductive
assumption implies that

x ∈ Aα ⇐⇒ ∃m ∈ N ∀n ≥ m πTn
(x) ∈ Bnβ

m
z ∈ Aα ⇐⇒ ∃m ∈ N ∀n ≥ m πTn(z) ∈ Bnβ

We argue similarly in the case of limit α. �
Consider the equivalent metric

d(x, y) = min{d∞(x, y), 1}

on the space `∞.
Claim 2. For every α ∈ [1, ω1) the following condition holds:

(∗) for every set C ⊆ (`∞, d) of the additive /multiplicative/ class α there
exists a contracting mapping f : (`∞, d) → (`∞, d) with the Lipschitz
constant L = 1

2 such that

C = f−1(Aα) /C = f−1(Bα)/, (3)

|πn(f(x))| < 1 ∀x ∈ `∞ ∀n ∈ ω. (4)

Proof of Claim 2. We will argue by the induction on α. Let C be an arbi-
trary Fσ-subset of (`∞, d). Then there exists an increasing sequence (Cn)n∈ω
of of closed subsets of (`∞, d) such that C =

⋃
n∈ω Cn. Consider a map

f : `∞ → `∞, defined by the rule

f(x) =
(
1
2d(x,C1), . . . , 12d(x,Cn), . . .

)



The Baire Classification of SSC Functions 329

for all x ∈ `∞.
We show that C = f−1(A1). Take x ∈ C and choose m ∈ ω such that

x ∈ Cn for all n ≥ m. Then d(x,Cn) = 0 and πn(f(x)) = 0 for all n ≥ m.
Hence, x belongs to the right-hand side of the equality. Now we prove the
inverse inclusion. Let x ∈ f−1(A1). Then there exists m ∈ ω such that
πn(f(x)) = 0 for all n ≥ m. Consequently, d(x,Cn) = 0 for all n ≥ m. Since
Cn is closed, x ∈ Cn for all n ≥ m. Therefore, x ∈

⋃
n∈ω Cn = C.

Since

d(f(x), f(y)) ≤ d∞(f(x), f(y)) = sup
n∈ω
| 12d(x,Cn)− 1

2d(y, Cn)| ≤ 1
2d(x, y)

for all x, y ∈ `∞, the mapping f is contracting with the Lipschitz constant
L = 1

2 . Moreover,
|πn(f(x))| = 1

2d(x,Cn) < 1

for every n ∈ ω.
Assume that for some α < ω1 the condition (∗) is valid for all β < α.

Let C ⊆ (`∞, d) be any set of the α’th additive class. Take an increasing
sequence of sets Cn such that C =

⋃
n∈ω Cn, where every Cn belongs to

the multiplicative class β if α = β + 1, and in the case α = supβn we can
assume that Cn belongs to the additive class βn for every n ∈ ω. By the
inductive assumption there exists a sequence (fn)n∈ω of contracting maps
fn : (`∞, d)→ (`∞, d) with the Lipschitz constant L = 1

2 such that

Cn =

{
f−1n (Bβ), α = β + 1,
f−1n (Aβn

), α = supβn,
(5)

|πm(fn(x))| < 1 ∀x ∈ `∞ ∀n,m ∈ ω. (6)

For every k ∈ ω we choose a unique pair (n(k),m(k)) ∈ ω2 such that

k = tn(k)m(k) ∈ Tn(k).

For all x ∈ `∞ and n,m ∈ ω we put fnm(x) = πm(fn(x)) and consider a map
f : `∞ → `∞, defined by the rule

f(x) =
(
1
2fn(1)m(1)(x), . . . , 12fn(k)m(k)(x), . . .

)
for all x ∈ `∞. The inequalities

|fnm(x)− fnm(y)| = |πm(fn(x))− πm(fn(y))| ≤
≤ sup
m∈ω
|πm(fn(x))− πm(fn(y))| = d∞(fn(x), fn(y))
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and

|fnm(x)− fnm(y)| ≤ 2

imply that

1

2
|fnm(x)− fnm(y)| ≤ d(fn(x), fn(y)) ≤ 1

2
d(x, y)

for all x, y ∈ `∞ and n,m ∈ ω. Then

d(f(x), f(y)) ≤ d∞(f(x), f(y)) =

= sup
k∈ω
| 12 (fn(k)m(k)(x)− fn(k)m(k)(y))| ≤ 1

2
d(x, y)

for all x, y ∈ `∞. Therefore, f : (`∞, d)→ (`∞, d) is a Lipschitz map with the
constant L = 1

2 .
It remains to show that C = f−1(Aα). Assume that α = β + 1 (we argue

similarly if α is limit). Let us observe that x ∈ C if and only if there exists
m ∈ ω such that fn(x) ∈ Bβ for all n ≥ m. Since

πTn
(f(x)) =

(1

2
πk(fn(x))

)
k∈Tn

,

we have

fn(x) ∈ Bβ ⇐⇒ πTn(f(x)) ∈ Bnβ .

by statement (2) of Claim 1. Therefore, C = f−1(Aα). �
Claim 3. For every α ∈ [1, ω1) the set Aα belongs to the additive class α

and does not belong to the multiplicative class α in `∞.
Proof of Claim 3. If α = 1, then

A1 =
⋃
n∈ω
{x ∈ `∞ : |{k ∈ ω : xk 6= 0}| ≤ n}

is an Fσ-subset of `∞, since every set {x ∈ `∞ : |k ∈ ω : xk 6= 0| ≤ n} is closed.
Consequently, B1 is Gδ-subset of `∞. Suppose that for some α ≥ 1 the set Aβ
/Bβ/ belongs to the additive /multiplicative/ class β in `∞ for every β < α.
Since every projection πTn

: `∞ → `Tn
∞ is continuous, the set Aα belongs to

the additive class α in `∞ and the set Bβ belongs to the multiplicative class
α in `∞.

Fix α ∈ [1, ω1). In order to show that Aα does not belong to the α’th
multiplicative class we assume the contrary. Claim 2 implies that there exists
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a contraction f : (`∞, d) → (`∞, d) such that Aα = f−1(Bα). By the Con-
traction Map Principle, there would be a fixed point for f , which implies a
contradiction. �

Now we are ready to construct a function f from the statement of the
theorem. Let α ∈ [0, ω1) be fixed. If α = 0, then we put A = c, where c is
the subspace of `∞ consisting of all convergent sequences of real numbers. If
α > 0, then previous steps imply the existence of an S-open set A ⊆ `∞ such
that A belongs to the (α)•’th additive class and does not belong to the (α)•’th
multiplicative class. In any case for every x ∈ `∞ we put

f(x) =
{

1, x ∈ A,
0, x 6∈ A.

We prove that f : `∞ → [0, 1] is strongly separately continuous. Fix
ε > 0, k ∈ ω and x = (xn)n∈ω ∈ `∞. We put δ = 1 and notice that for all
y ∈ B∞(x, δ) we have

y = (y1, . . . , yk, . . . ) ∈ A ⇐⇒ z = (y1, . . . , yk−1, xk, yk+1, . . . ) ∈ A,

since A is S-open. Therefore,

|f(y)− f(z)| = 0

for all y ∈ B∞(x, δ) and z = (y1, . . . , yk−1, xk, yk+1, . . . ). Hence, f is strongly
separately continuous at x with respect to the k’th variable.

Notice that both A and X \ A are of the (α + 1)•’th additive class, that
is, A is ambiguous set of the (α + 1)•’th class in `∞. It is well-known that
the characteristic function of any ambiguous set of the class ξ in any metric
space belongs to the ξ’th Baire class [7, §31] for any ξ ∈ [1, ω1). Therefore,
f ∈ B(α+1)•(`∞, [0, 1]).

If α = 0, then f is discontinuous exactly on A and hence f 6∈ B0(`∞, [0, 1]).
In case α > 0 we assume that f ∈ Bα(`∞, [0, 1]). Then f belongs to the

(α)•’th Borel class. Therefore, A = f−1(1) is the set of the (α)•’th multiplica-
tive class in `∞, which contradicts to the choice of A.

Remark 3.2. The existence of an ssc function f : `∞ → [0, 1] which is not
Baire measurable was proved in [5]. The Baire classification of ssc functions
defined on Rω was studied in [4].

Theorem 3.1 suggests the following question.

Question 3.3. Does there exist a strongly separately continuous function f :
`∞ → [0, 1] such that f ∈ Bω+1 \ Bω?
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