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Gromov–Witten Invariants of the Hilbert Scheme of Two
Points on a Hirzebruch Surface

Yong Fu

Abstract. In Gromov–Witten theory the virtual localization method
is used only when the invariant curves are isolated under a torus action.
In this paper, we explore a strategy to apply the localization formula to
compute the Gromov–Witten invariants by carefully choosing the re-
lated cycles to circumvent the continuous families of invariant curves
when there are any. For the example of the two-pointed Hilbert scheme
of Hirzebruch surface F1, we manage to compute some Gromov–
Witten invariants, and then by combining with the associativity law
of (small) quantum cohomology ring, we succeed in computing all
1- and 2-pointed Gromov–Witten invariants of genus 0 of the Hilbert
scheme with the help of [13].

1. Introduction

In the 1990s, enumerative geometry experienced a big impetus from the work by
physicists, in which they calculated the number of rational curves of arbitrary de-
gree in a quintic threefold. To explain their work and verify their results, Gromov–
Witten theory was established. Now this subject finds applications in many areas
of mathematics, for example, enumerative geometry, the theory of singularities,
integrable systems, to name just a few.

One of the big problems in Gromov–Witten theory since its inception is how
to compute the Gromov–Witten invariants. Generally, this is a very hard problem.
Some techniques have been developed to attack the problem, for example, the
degeneration method, finding a mirror model to reduce the problem to period
calculations, and so on. When the spaces enjoy much symmetry, the computation
problem can be dealt with more easily. Especially when there is a torus action
on the target space, computations can be carried out by the virtual localization
method [10], which is a modification of the usual topological localization formula.
This is the main technique adopted in this work.

Gromov–Witten invariants can be wrapped up as the quantum product on
the cohomology ring of the target space. See [4; 8] for references. This quan-
tum product is associative and supercommutative, so that it makes the coho-
mology ring into a new ring called the quantum cohomology ring. This new
ring structure is a deformation of the cohomology ring of the space. If unrav-
eled properly, the associativity of the quantum product exhibits very strong rela-
tions among Gromov–Witten invariants. These relations can be more efficiently
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utilized when combined with other methods for the computations of the invari-
ants.

From the early stage on, Gromov–Witten invariants and quantum cohomology
have been computed for spaces with strong symmetry; see, for example, [1; 2;
3]. There are other cases where quantum cohomology is successfully decided
for spaces with weaker symmetry. For example, Okounkov and Pandharipande
[15] determine the ring structure of the equivariant quantum cohomology of the
Hilbert schemes of points on the plane together with its relations to other areas
of mathematics; Graber [9] and Pontoni [16] compute Gromov–Witten invariants
and describe the quantum cohomology of the Hilbert scheme of two points on P2

and P1 × P1 and study their enumerative applications.
In this work, we consider the Hilbert scheme of two points on a Hirzebruch

surface. The Hilbert scheme is of dimension four, admitting a two-dimensional
torus action, which is not regarded as sufficient amount of symmetry for standard
application of the localization method. In fact, the condition for complete applica-
tion of the localization formula is quite strict: the invariant curves under the torus
action have to be isolated. This happens when the target space admits a torus ac-
tion of high enough dimension. When the invariant curves occur as continuous
families, it is not known how to carry out in general the localization process. The
Hilbert scheme we study exhibits continuous families of invariant curves in ad-
dition to isolated invariant curves. To attack the problem, we adopt the following
strategy. We make use of the property of this space that it admits different invari-
ant subvarieties to represent relevant cohomology classes by the Poincaré duality
and thus by carefully choosing representing cycles to avoid the continuous fam-
ilies of invariant curves we are able to implement the standard localization pro-
cedure. This strategy allows us to compute all one-pointed and some two-pointed
Gromov–Witten invariants of the space with the help of [13]. These results suffice
for us to compute the quantum product of generators of the cohomology ring of
the Hilbert scheme. Then with the relations from the associativity of the (small)
quantum cohomology ring, we can calculate all two-pointed GW-invariants. If we
work harder, then we can even determine the (small) quantum cohomology ring
of the Hilbert scheme [6].

The structure of this paper is as follows. In Section 2, we first introduce the
necessary background for the Hilbert scheme. This includes its blowup construc-
tion and thus its cohomology ring. We determine the weights at fixed points and
the invariant curves of the two-dimensional torus action. After these preparatory
work, we start out to compute one-pointed Gromov–Witten invariants and some
two-pointed invariants in Section 3. In Section 4, we compute the quantum prod-
uct for the generators of the cohomology ring, and then with the associativity
law of the quantum product we determine all other two-pointed Gromov–Witten
invariants.
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2. Background

2.1. The Hilbert Scheme of Two Points over an Algebraic Surface

For the definition and structure of Hilbert schemes of points over smooth algebraic
surfaces, we refer the reader to [14]. Since the spaces we are going to deal with ad-
mit torus actions with only finitely many fixed points, their odd degree homology
and cohomology groups vanish, so we adopt the convention Ak(X) = H2k(X) and
Ak(X) = H 2k(X). By the Poincaré duality, Ak(X) = An−k(X) for n = dimC X,
and thus we go back and forth between homology and cohomology groups. To
decide the cohomology groups of the two-pointed Hilbert scheme, we first recall
its blowup construction.

Let � : S → S × S be the diagonal, and S̃ × S be the blowup of S × S along
� with the exceptional divisor P(T S), the projectivization of the tangent bundle
of S. The group Z2 acts on S × S by switching the points, which fixes the di-
agonal, so automatically inducing an involution on the blowup, which fixes the

exceptional divisor. The Hilbert scheme S[2] is the quotient of S̃ × S under this
involution.

This blowup construction can be described in the fiber square

P(T S)
j−−−−→ S̃ × S

g

⏐⏐� ⏐⏐�f

S
�−−−−→ S × S,

where j is the inclusion, and f , g are the projections.

Let φ : S̃ × S → S[2] be the quotient, and let A∗(S̃ × S)Z2 be the fixed sub-

group of A∗(S̃ × S) of the involution. By Example 1.7.6 in [7], there is a canoni-

cal isomorphism φ∗ : A∗(S[2]) → A∗(S̃ × S)Z2 , where for a subvariety V ⊂ S[2],
φ∗[V ] = ∑

eW [W ], the sum over all irreducible components of φ−1(V ), and
eW = #{g ∈ Z2 : g|W = idW }. We have the identities

φ∗φ∗ = 2 id, φ∗φ∗ = 2 id .

Furthermore, the intersection products are related by x · y = 1
2φ∗(φ∗x · φ∗y) for

x, y ∈ A∗(S[2]). See Example 8.3.12 in [7].
Let T be the tautological bundle O(−1) on P(T S), and let E = g∗(T S)/T .

Because f is a local complete intersection morphism of relative dimension zero,

the Gysin map f ∗ : A∗(S × S) → A∗(S̃ × S) is well-defined. From Proposi-
tion 6.7 and Example 8.3.9 in [7] we have the following:

Proposition 2.1. There are split exact sequences

0 → Ak(S)
α−−−−→ Ak(P (T S)) ⊕ Ak(S × S)

β−−−−→ Ak(S̃ × S) → 0
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Figure 1 Special Divisors in Fa

with α(x) = (c1(E) ∩ g∗x,−�∗x) and β(̃x, y) = j∗x̃ + f ∗y. A left inverse for α

is given by (̃x, y) 	→ g∗(̃x). The ring structure of A∗(S̃ × S) is determined by the
following rules:

(i) f ∗y · f ∗y′ = f ∗(y · y′);
(ii) j∗x̃ · j∗x̃′ = j∗(c1(T ) · x̃ · x̃′);

(iii) f ∗y · j∗x̃ = j∗((g∗�∗y) · x̃).

This proposition tells us that Ak(S̃ × S)Z2 consists of two parts, coming from
Ak(S × S) and Ak(P (T S)). The former part is given by the Gysin map f ∗. From
Theorem 6.7 in [7], the relation between f ∗ and the proper transform is described
in the following:

Proposition 2.2. Let V be a k-dimensional subvariety in S ×S, and let Ṽ be the

proper transform of V in S̃ × S. Then

f ∗[V ] = [Ṽ ] + j∗{c(E) ∩ g∗s(V ∩ �,V )}k
in Ak(S̃ × S), where {·}k means the degree k part of a class. In particular, when
dim(V ∩ �) ≤ k − 2, we have f ∗[V ] = [Ṽ ].
The latter part is presented in the following proposition. See P.606 [11].

Proposition 2.3. Let ζ = c1(T ). Then, as graded rings,

A∗(P (T S)) = A∗(S)[ζ ]/(ζ 2 − c1(T S)ζ + c2(T S)).

Now we specialize to the Hirzebruch surface Fa = ProjS•F with projection
π : Fa → P1 for F = OP1 ⊕ OP1(−a), a ≥ 0. The projection F → OP1(−a)

determines a section of π , which is denoted as S∞; the projection F → OP1

determines another section of π , denoted as S0. Note that the twisting sheaf
OFa (1) ∼= L(S∞) [12]. We call the points on S∞ over (0,1), (1,0) ∈ P1 as A

and C, the points on S0 over (0,1), (1,0) ∈ P1 as B and D, respectively. We de-
note the fibers over (0,1) and (1,0) by f0 and f∞, respectively. These special
divisors and their geometric configuration are illustrated in Figure 1.
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There are numerical equivalence relations S0 ≡ S∞+af and K ≡ −2S0 −(2−
a)f for the canonical divisor class K . Also, any two fibers of π are numerically
equivalent. So A0(Fa) = Zpt , A1(Fa) = ZS ⊕Zf , and A2(Fa) = ZFa , where pt
is any point, S means either one of S0 and S∞, and f means either one of f0 and
f∞. We keep the freedom to choose whichever one of them is needed later. The
intersection products of the generators are as listed here:

S2
0 = a, S2∞ = −a, S0 · S∞ = 0, f 2 = 0, S · f = 1.

From Proposition 2.3, A∗(P (T Fa)) consist of two parts, the pullbacks of the
homology classes of Fa under g and the cap products of ζ with these pullbacks,
which can be simplified by the following:

Lemma 2.4. We have the following relations among various classes:

(1) P(T Fa|S0) = P(T Fa|S∞) + aP (T Fa|f );
(2) ζ ∩ P(T Fa|S∞) = (2 − a)P (T Fa|pt ) − c1(E) ∩ P(T Fa|S∞);
(3) ζ ∩ P(T Fa|S0) = (2 + a)P (T Fa|pt ) − c1(E) ∩ P(T Fa|S0);
(4) ζ ∩ P(T Fa|f ) = 2P(T Fa|pt ) − c1(E) ∩ P(T Fa|f );
(5) ζ ∩ P(T Fa) = 2P(T Fa|S∞) + (2 + a)P (T Fa|f ) − c1(E) ∩ P(T Fa).

Proof. (1) is obtained by pulling back the relation S0 ≡ S∞ + af . To prove (2),
note that c1(g

∗(T Fa)) = c1(T ) + c1(E) = ζ + c1(E), so

ζ ∩ P(T Fa|S∞) = c1(g
∗(T Fa)) ∩ P(T Fa|S∞) − c1(E) ∩ P(T Fa|S∞).

But c1(g
∗(T Fa)) ∩ P(T Fa|S∞) = g∗(2S0 + (2 − a)f ) ∩ P(T Fa|S∞) = (2 −

a)P (T Fa|f ) ∩ P(T Fa|S∞) = (2 − a)P (T Fa|pt ), noting that c1(T Fa) = −K ≡
2S0 + (2 − a)f . This finishes (2). The remaining cases can be proven simi-
larly. �

From this lemma, the homology groups of P(T Fa) can be generated as follows:

A0(P (T Fa)) = Zpt;
A1(P (T Fa)) = ZP(T Fa|pt ) ⊕Zc1(E) ∩ P(T Fa|S∞) ⊕Zc1(E) ∩ P(T Fa|f );
A2(P (T Fa)) = ZP(T Fa|S) ⊕ZP(T Fa|f ) ⊕Zc1(E) ∩ P(T Fa);
A3(P (T Fa)) = ZP(T Fa).

Also, we take generators for Ak(Fa × Fa)
Z2 in the following way:

A0(Fa × Fa)
Z2 = Zpt;

A1(Fa × Fa)
Z2 = Z(S∞ × pt + pt × S∞) ⊕Z(f × pt + pt × f );

A2(Fa × Fa)
Z2 = Z(S0 × S∞ + S∞ × S0) ⊕Z(f0 × f∞ + f∞ × f0)

⊕Z(S∞ × f + f × S∞) ⊕Z(Fa × pt + pt × Fa);
A3(Fa × Fa)

Z2 = Z(Fa × S∞ + S∞ × Fa) ⊕Z(Fa × f + f × Fa);
A4(Fa × Fa)

Z2 = Z(Fa × Fa).
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Under the identification of α in Proposition 2.1, c1(E) ∩ P(T Fa|S∞) is identified
with �∗(S∞), c1(E) ∩ P(T Fa|f ) is identified with �∗(f ), and c1(E) ∩ P(T Fa)

is identified with �∗(Fa). However, in Ak(Fa × Fa)
Z2 ,

�∗(S∞) = S∞ × pt + pt × S∞,

�∗(f ) = f × pt + pt × f,

�∗(Fa) = Fa × pt + pt × Fa + S∞ × f + f × S∞ + a

2
(f0 × f∞ + f∞ × f0),

so we can take the generators in A∗(F̃a × Fa)
Z2 either from A∗(P (T Fa)) via j∗

or from A∗(Fa × Fa)
Z2 via f ∗ as follows:

α0 = 2pt, ∀pt ∈ P(T Fa);
α1 = 2P(T Fa|pt),

α2 = S∞ × pt + pt × S∞,

α3 = f × pt + pt × f ;
α4 = 2P(T Fa|S∞),

α5 = 2P(T Fa|f ),

α6 = S0 × S∞ + S∞ × S0,

α7 = f0 × f∞ + f∞ × f0,

α8 = S∞ × f + f × S∞,

α9 = Fa × pt + pt × Fa;
α10 = 2P(T Fa),

α11 = Fa × S∞ + S∞ × Fa,

α12 = Fa × f + f × Fa;
α13 = Fa × Fa,

where we omit the symbols j∗ and f ∗. Define βi = (φ∗)−1(αi) = 1
2φ∗(αi) for

each i. Then the homology groups of F
[2]
a are generated by β0, β1, . . . , β13.

The intersection products of the generators of complementary dimensions can
be computed by Proposition 2.1. For generators of A1(F

[2]
a ) and A3(F

[2]
a ), they

are
β1 · β10 = −2, β1 · β11 = 0, β1 · β12 = 0;
β2 · β10 = 0, β2 · β11 = −a, β2 · β12 = 1;
β3 · β10 = 0, β3 · β11 = 1, β3 · β12 = 0.

(2.1)

We also compute the following intersection products for later use:

β9·β10 = 2β1, β9 · β11 = β2, β9 · β12 = β3,

β2
10 = 4β4 + 2(2 + a)β5 − 2aβ7 − 4β8 − 4β9,

β10 · β11 = 2β4, β10 · β12 = 2β5, β2
11 = β6 − aβ8 − aβ9,

β11 · β12 = β8 + β9, β2
12 = β7,

(2.2)
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from which we conclude that the cohomology ring of F
[2]
a is generated by β10,

β11, β12, and the nondivisor class β9, and the other basis elements are expressed
as

β1 = 1

2
β9β10, β2 = β9β11, β3 = β9β12, β4 = 1

2
β10β11,

β5 = 1

2
β10β12, β6 = β2

11 + β11β12, β7 = β2
12, β8 = β11β12 − β9.

2.2. Torus Action on Hilbert Schemes

As a toric variety, Fa can be constructed from the following fan:

�

�
(0,1)

� (1,0)

σ1

σ3

σ4

�
σ2

(0,−1)

�
�

�
��

(−1, a)

The four affine varieties from the four two-dimensional cones are

Uσ1 = SpecC[x, y], Uσ2 = SpecC[x, y−1],
Uσ3 = SpecC[x−1, x−ay−1], Uσ4 = SpecC[x−1, xay].

Note that the origins of the four affine planes correspond to the points we named
A, B , D, and C, respectively, in Figure 1. Now the two-dimensional torus
T = C∗2 acts on Fa by acting on the variables (λ,μ) · (x, y) = (λ−1x,μ−1y)

so that the weights at the fixed points are A : λ, μ; B : λ, −μ; C : −λ, aλ + μ;
and D : −λ, −aλ−μ. A moment of thinking shows that the representative cycles
β1 through β13 are invariant under the torus action, so they can be lifted to the
equivariant cohomology groups. This is how they are used in localization proce-
dure.

There are two types of fixed points of the torus action on the Hilbert scheme,
the reduced ones and nonreduced ones. The reduced fixed points are unordered
pairs of distinct fixed points on Fa , that is, A, B , C, and D. These points and their
weights under the torus action are listed in the following:

Lemma 2.5. The weights of the T -action on the tangent spaces of F
[2]
a at these

six fixed points are:

(1) (AB) : λ, μ, λ, −μ;
(2) (AC) : λ, μ, −λ, aλ + μ;
(3) (AD) : λ, μ, −λ, −aλ − μ;
(4) (BC) : λ, −μ, −λ, aλ + μ;
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(5) (BD) : λ, −μ, −λ, −aλ − μ;
(6) (CD) : − λ, aλ + μ, −λ, −aλ − μ.

The nonreduced fixed points are located at fixed points on Fa . It is easy to see that
around each such fixed point, there are two fixed points of F

[2]
a , one corresponding

to the direction of S∞ or S0 and one corresponding to the direction of the fiber
through it. We denote them using subscripts “1” or “2”, respectively. In total, we
have eight of them, A1, A2, B1, B2, C1, C2, D1, and D2.

To determine the weights of the torus action at these fixed points, we take A1
as an example. It lives in the first affine plane Uσ1 , where A1 is represented by the
ideal (x2, y). The full deformation of (x2, y) in F

[2]
a is described by (x2 + ε1x +

ε2, y +ε3x +ε4). So there are four curves passing through A1 given by families of
ideals in C[x, y]: I1(ε) = (x2 + εx, y), I2(ε) = (x2 + ε, y), I3(ε) = (x2, y + εx),
and I4(ε) = (x2, y + ε).

Lemma 2.6. The weights of the T -action on the tangent space of F
[2]
a at A1 are

λ, 2λ, μ − λ, and μ.

Proof. We have

(λ,μ) · I1(ε) = (λ−2x2 + ελ−1x,μ−1y) = (x2 + ελx, y) = I1(ελ).

So the weight on the tangent direction of this curve is λ. Similarly,

(λ,μ) · I2(ε) = (λ−2x2 + ε,μ−1y) = I2(ελ
2),

(λ,μ) · I3(ε) = (λ−2x2,μ−1y + ελ−1x) = I3(ελ
−1μ),

(λ,μ) · I4(ε) = (λ−2x2,μ−1y + ε) = I4(εμ).

So the weights on the tangent directions of these curves are 2λ, μ−λ, and μ. �

The weights at the remaining seven fixed points can be determined similarly. We
list all the weights here:

A1 : λ,2λ,μ − λ,μ;
A2 : λ,μ,λ − μ,2μ;
B1 : 2λ,λ,−μ,−λ − μ;
B2 : λ,−2μ,−μ,λ + μ;
C1 : −2λ,−λ,aλ + μ, (a + 1)λ + μ; (2.3)

C2 : −λ,2aλ + 2μ,aλ + μ,−(a + 1)λ − μ;
D1 : −λ,−2λ, (1 − a)λ − μ,−aλ − μ;
D2 : −λ,−aλ − μ, (a − 1)λ + μ,−2aλ − 2μ.

A1(F
[2]
a ) is freely generated by β1, β2, β3. For later use, we need the intersec-

tion numbers of the curve classes with its anticanonical bundle, which are used
to decide the virtual dimensions of the moduli space of stable maps. They are
worked out in the following
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Lemma 2.7.
∫
β1

c1(T F
[2]
a ) = 0,

∫
β2

c1(T F
[2]
a ) = 2 − a,

∫
β3

c1(T F
[2]
a ) = 2.

Proof. Take the image of P(T Fa|A) in the Hilbert scheme under (φ∗)−1 in Sub-
section 2.1 to represent β1. The two fixed points in this curve are A1 and A2, at
which T acts with weights λ − μ and μ − λ. Then by the localization formula,∫

β1

c1(T F [2]
a ) = λ + 2λ + μ − λ + μ

λ − μ
+ λ + μ + λ − μ + 2μ

μ − λ
= 0,

where the numerators are the respective sums of the weights at A1 and A2. Other
two equalities can be verified similarly by taking pt to be B in the definition of β2
and f to be f0 and pt to be C in the definition of β3. �

2.3. Invariant Curves

Here an invariant curve means an irreducible curve of genus 0 in the Hilbert
scheme invariant under the T -action. To apply virtual localization to calculate
GW-invariants, we have to find all of them. To this end, we make use of the blowup
construction of the Hilbert scheme.

Let us recall that f : F̃a × Fa → Fa × Fa is the blowup of Fa × Fa along the
diagonal �, with the exceptional divisor P(T Fa). Then F

[2]
a is the Z2-quotient

of the blowup. Since this quotient map is equivariant for T , it suffices to find the

invariant curves in F̃a × Fa . First of all, an invariant curve either is completely
contained in P(T Fa), or is disjoint from it, or intersects it at only points.

We first consider the case where the invariant curve is contained in P(T Fa).
Since the projection P(T Fa) → Fa is equivariant, this invariant curve is mapped
to either a fixed point or an invariant curve in Fa . In the former case, it must be
the fiber of P(T Fa) over this fixed point, one for each of A, B , C, and D. They
are isolated invariant curves. We assign names to these curves by listing their end
points. For example, the invariant curve over A is denoted as [A1,A2], connect-
ing A1 and A2. Here and subsequently the symbol [P,Q] means the invariant
curve connecting two fixed points P and Q. Three other such invariant curves are
[B1,B2], [C1,C2], and [D1,D2].

In the latter case, the invariant curve is mapped onto an invariant curve in
Fa . We only have four invariant curves in Fa , that is, S∞, S0, f0, and f∞. Take
S∞ through A and C as an example. Then the invariant curve must be contained
in P(T Fa|S∞), but T Fa|S∞ = T S∞ ⊕ NS∞|Fa , where NS∞|Fa represents fiber
directions at S∞ in Fa , so P(T Fa|S∞) is also a rational ruled surface. With the
induced torus action on this surface, the two sections corresponding to the tangent
directions and fiber directions of S∞ in Fa are invariant. The section from tangent
directions goes from A1 to C1, but from the further discussions it will follow that it
is not isolated, so we put it aside for now. The other one [A2,C2], representing the
fiber directions, is isolated. Similarly, we have isolated invariant curves [A1,B1],
[B2,D2], and [C1,D1], corresponding to fiber or normal directions of f0, S0, f∞.

Assume now that an invariant curve only intersects P(T Fa) at points. Since the
blowup map f composed with the two projections from Fa ×Fa to Fa gives rise to
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two equivariant maps to Fa , the images of the invariant curve under these maps are
either fixed points or invariant curves in Fa . They cannot both be points since the
curve is connected. If they are a point and a curve not containing it, we get an iso-
lated invariant curve in F

[2]
a . Considering the Z2-symmetry, we have eight of them

[AB,AD], [AC,AD], [AB,BC], [BC,BD], [AC,BC], [BC,CD], [AD,BD],
and [AD,CD]. If the point is contained in the curve, then we get an invariant
curve with a nonreduced point on it, which is also isolated. They are listed as
[A1,AC], [A2,AB], [B2,AB], [B1,BD], [C1,AC], [C2,CD], [D1,BD], and
[D2,CD].

Suppose both images are curves. When they are disjoint, they are either the pair
S∞, S0 or the pair f0, f∞. In the first case, the T -action near (A,B) ∈ S∞ × S0

is described by (λ,μ) · (x, y) = (λx,λy), so we have a one-dimensional family
of invariant curves connecting AB to CD. Near (A,C) ∈ f0 × f∞, the action is
expressed as (λ,μ) · (x, y) = (μx,λaμy). Since the two weights are independent,
no invariant curve is generated from this action.

Now we turn to the case where the two image curves are distinct, thus intersect-
ing at one fixed point, for example, S∞, f0. Then T -action near (A,A) ∈ S∞ ×f0

is expressed as (λ,μ) · (x, y) = (λx,μy). This action does not produce any invari-
ant curve satisfying the condition. Other combinations neither produce anything
new.

Finally, we are left with the case where the two image curves coincide. This
situation is reduced to a concrete example. Let C∗ act on C as λ ·x = λx, inducing
an action on C[2] = C(2), the symmetric product of C. We define a map τ : C(2) →
C2 by τ(x, y) = (x +y, xy), which is an isomorphism. With this map, C2 inherits
a C∗-action by λ · (x, z) = (λx,λ2z). This means that the weights of the torus
action at the origin are λ and 2λ.

The map τ extends to an isomorphism from the symmetric product of P1 to
P2, still denoted as τ : (P1)(2) → P2 by τ((a, b), (x, y)) = (ay +bx, ax, by). The
image of the diagonal of (P1)(2) is a conic curve, but it is not isolated as an invari-
ant curve. In fact, there is a one-dimensional family of invariant conic curves in
P2, which breaks up to two coordinate lines [16]. We summarize the conclusions
in the following:

Lemma 2.8. Let C∗ act on P1 as λ · (x, y) = (λx, y). Then it induces an action on
P2 as λ · (x, y, z) = (λx,λ2y, z) via τ . At (0,0,1) ∈ P2, this action has weights
λ and 2λ; the three coordinate lines are isolated invariant lines, and there is a
one-dimensional family of invariant curves defined by x2 = μyz with μ ∈C∗ − 0,
whose class is twice the line class in P2. As μ → 0, this family approaches the
double cover of the line x = 0; as μ → ∞, it degenerates to the nodal curve the
union of lines y = 0 and z = 0.

Now we apply this picture to S∞, S0, f0, and f∞ in Fa . Taking S∞ as an exam-
ple, we get an embedding P2 in F

[2]
a and the three coordinate lines in P2 as the

curves [A1,AC], [AC,C1] before and an isolated invariant curve [A1,C1] from
A1 to C1, which was postponed before, and a one-dimensional family of invariant
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curves from A1 to C1. It is easy to see that the invariant curves [A1,AC] and
[A1,C1] at A1 agree with the curves I1 and I2 in Lemma 2.6. Similarly, we have
the new isolated invariant lines [A2,B2], [B1,D1], and [C2,D2] and the corre-
sponding one-dimensional families of invariant curves. This lemma also explains
that, at every nonreduced fixed point, there always appears a pair of a weight and
its double in the list of (2.3).

Up till this point, we have found all the isolated and one-dimensional families
of invariant curves in F

[2]
a . For the purpose of computing GW-invariants, their

curve classes in A1(F
[2]
a ) should be decided. For brevity, we still use the symbol

[P,Q] to denote the homology class for the invariant curve from P to Q.

Lemma 2.9. (1) [A1,A2] = [B1,B2] = [C1,C2] = [D1,D2] = β1;
(2) [A1,AC] = [C1,AC] = β2 − β1, [B1,BD] = [D1,BD] = β2 + aβ3 − β1,

[A2,AB] = [B2,AB] = [C2,CD] = [D2,CD] = β3 − β1;
(3) [A1,C1] = β2 − β1, [A2,B2] = [C2,D2] = β3 − β1, [B1,D1] = β2 + aβ3 −

β1;
(4) [A2,C2] = 2β2 + aβ1, [A1,B1] = [C1,D1] = 2β3, [B2,D2] = 2β2 + 2aβ3 −

aβ1.

Proof. (1) This is by definition.
(2) Let L be the proper transform of S∞ × A + A × S∞ in the blowup of

Fa × Fa in Section 2.1. Then by Proposition 2.2 we have, as homology classes,

f ∗(S∞ × A + A × S∞) = L + P(T Fa|A),

where P(T Fa|A) comes from the second term in the formula. However, S∞ ×
A + A × S∞ is rationally equivalent to S∞ × pt + pt × S∞ in Fa × Fa , where
pt is a point off S∞. After projecting to A∗(F [2]

a ) by φ∗, L gives rise to the curve
[A1,AC], so, as classes, [A1,AC] = β2 − β1. Others can be proven similarly.

(3) We take [A1,C1] as an example. By Lemma 2.8 the class [A1,C1] is the
same as a line class in P2, one of which is the curve [A1,AC], resulting in the
conclusion.

(4) By Lemma 2.4(2), ζ ∩ P(T Fa|S∞) = (2 − a)β1 − 2β2, where here and
in the following the equality takes place as classes in the Hilbert scheme.
Now T Fa|S∞ = T S∞ ⊕ NS∞|Fa , where T S∞ = O(2) for S∞ � P1, 7y and
NS∞|Fa = O(−a). This means that P(T Fa|S∞) = Proj(O(−2) ⊕ O(a)) ∼=
Proj(O ⊕ O(−2 − a)) is also a rational ruled surface, where the isomorphism
is produced by multiplying O(−a). Let η be its ∞-section in the standard
convention. Then, by Lemma 7.9, Ch.2 in [12], ζ ∩ P(T Fa|S∞) = −η − aβ1,
so η = 2β2 − 2β1. Clearly, [A2,C2] is the 0-section in the ruled surface, so
[A2,C2] = η + (2 + a)β1 = 2β2 + aβ1.

Similarly, by Lemma 2.4(4), ζ ∩ P(T Fa|f0) = 2β1 − 2β3. Now P(T Fa|f0) =
Tf0 ⊕ Nf0|T Fa , where again Tf0 = T P1 = O(2), and Nf0|T Fa is trivial since
c1(Nf0|T Fa ) = c1(T Fa|f0) − c1(Tf0) = f0 · (2S0 + (2 + a)f0) − 2 = 0. So we
get P(T Fa|f0) = Proj(O ⊕ O(−2)), which is again a ruled surface. Let η′ be
its ∞-section. Then η′ = −ζ ∩ P(T Fa|f0) = 2β3 − 2β1 again by Lemma 7.9,
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Ch.2 [12]. As [A1,B1] is the 0-section, we have [A1,B1] = η′ + 2β1 = 2β3. It is
obvious that [C1,D1] = [A1,B1].

Finally, by Lemma 2.4(3) and (1) we have ζ ∩ P(T Fa|S0) = (2 + a)β1 −
2β2 − 2aβ3. Because T Fa|S0 = T S0 ⊕ NS0|Fa = O(2) ⊕ O(a),P (T Fa|S0) =
Proj(O(−2) ⊕ O(−a)), which is isomorphic to Proj(O ⊕ O(2 − a)) by multi-
plying O(2) if a ≥ 2 and isomorphic to Proj(O⊕O(−1)) by multiplying O(1) if
a = 1.

When a ≥ 2, again by Lemma 7.9, Ch.2 in [12], we have ζ ∩ P(T Fa|S0) =
−ξ + 2β1, where ξ is the ∞-section, hence ξ = 2β2 + 2aβ3 − aβ1, and so
[B1,D1] = ξ + (a − 2)β1 = 2β2 + 2aβ3 − 2β1. When a = 1, we get ζ ∩
P(T Fa|S0) = −ξ ′ + β1, where ξ ′ is the ∞-section, hence ξ ′ = 2β2 + 2β3 − 2β1
and [B2,D2] = ξ ′ + β1 = 2β2 + 2β3 − β1. �

Results (2) and (3) of this lemma agree with the conclusion of Lemma 2.8, which
shows that the two isolated invariant curves described there at a nonreduced fixed
point share the same curve class. Also from this lemma, the generic invariant
curve in the one-dimensional family connecting AB and CD is of class 2β2 +aβ3
since, as limits, it breaks up into two nodal curves composed of the curve from
AB to AD of class β2 + aβ3 intersecting the curve from AD to CD of class β2
and the curve from AB to BC of class β2 intersecting the curve from BC to CD

of class β2 + aβ3.
All the isolated invariant curves and one-dimensional families of invariant

curves for F
[2]
1 are shown in Figure 2. In this diagram, the isolated invariant

curves are depicted by straight or curved lines with their degrees on them; the
one-dimensional families of invariant curves are shown by wavy lines with the
degree of generic curves in the families attached. In Figure 3, we display weights
at each fixed point for convenient reference along isolated invariant curves.

3. Computations of Gromov–Witten Invariants

3.1. Connected Components Analysis

When a torus T acts on a smooth projective variety with finitely many fixed points,
a fixed point of the induced action on the moduli space of stable maps M0,n(X,β)

has the following properties [10]:
(1) all marked points, nodes, contracted components, and ramification points

on the domain curve are mapped to fixed points in X;
(2) a noncontracted irreducible component has to be rational and is mapped

onto an invariant rational curve in X, ramified only over two fixed points in the
rational curve.

When we fix a degree β ∈ H2(X,Z), the degrees of noncontracted components
have to add up to β . In general, there are higher-dimensional families of invariant
curves in X, but if for some β , all the invariant curves that appear in a connected
component of the fixed point loci in the moduli space are isolated, then a map
f in the connected component can be described by a decorated graph � in the
following way: � has one vertex v for each connected component in the inverse
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Figure 2 Invariant Curves of F
[2]
1

image under f of a fixed point in X, which is labeled with the name of that fixed
point; � has one edge e for each noncontracted component, whose two vertices
are labeled with two different fixed points and which is labeled with the degree de

of the map from the component to its image. Also, we label each vertex v with a
number for each marked point. Then the connected components are described by
such graphs.

For each decorated graph �, we define M� = ∏
v∈� M0,val(v), where by

convention M0,1 = M0,2 = pt . The universal family of T -fixed stable maps
π : C → M� induces a morphism γ : M� → M0,n(X,β). The automorphism
group A of this family is filtered by an exact sequence

1 →
∏
e∈�

Z/(de) → A → Aut(�) → 1,

where Aut(�) denotes the automorphism group of �. The induced morphism
γ /A : M�/A → M0,n(X,β) is a closed immersion as a connected component
of fixed points.

The tangent space T 1 and the obstruction space T 2 of M0,n(X,β) are related
in the exact sequence

0 → Ext0(�C(D),O) → H 0(C,f ∗T X)

→ T 1 → Ext1(�C(D),O) → H 1(C,f ∗X) → T 2 → 0,
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Figure 3 Weights at Fixed Points

in which D represents the divisor of marked points on C. When restricted to a
connected component M�/A, the four terms other than the sheaves T 1 and T 2

form vector bundles as fibres, denoted as B1, B2, B4, and B5 respectively, each
decomposing as the direct sum of the fixed part B

f
i and the moving part Bm

i under
the torus action. The moving parts inherit a natural T -action. Then the equivariant
Euler class of the virtual normal bundle of the connected component is computed
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as

eC
∗
(Nvir

� ) = eC
∗
(Bm

2 )eC
∗
(Bm

4 )

eC
∗
(Bm

1 )eC
∗
(Bm

5 )
.

This is the denominator in the virtual localization formula.

3.2. One-Point Gromov–Witten Invariants

From now on we only consider F1 and use F to denote it. We first treat the curve
class dβ1 for an integer d > 0. In general the virtual dimension of Mg,n(X,β)

is equal to virdimMg,n(X,β) = c1(X)β + (1 − g)dimX + 3g − 3 + n. Since
virdimM0,n(F

[2], dβ1) = n + 1 by Lemma 2.7, to get nontrivial GW-invariants
〈α1, α2, . . . , αn〉0,n,dβ1 for αi ∈ A∗(F [2]), the cohomological degrees of αi should
add up to n + 1. This happens only when one class has degree 2 and other classes
all have degree 1. However, by the axiom of divisors of GW-invariants, when
deg(αn) = 1, 〈α1, α2, . . . , αn〉0,n,dβ1 = ∫

dβ1
αn〈α1, α2, . . . , αn−1〉0,n−1,dβ1 . So it

suffices to compute 〈α〉0,1,dβ1 for α ∈ A2(F
[2]), noting that dimF [2] = 4. From

[13] we have the following:

Theorem 3.1. (i) 〈βj 〉0,1,dβ1 = 0 for j = 6,7,8,9;
(ii) 〈β4〉0,1,dβ1 = − 2

d
, 〈β5〉0,1,dβ1 = − 4

d
.

Proof. (i) is clear from [13].
(ii) Again from [13], 〈β4〉0,1,dβ1 = 2(K · S∞)/d = 2(−2S∞ − 3f ) · S∞/d =

− 2
d

, and 〈β5〉0,1,dβ1 = 2(K · f )/d = 2(−2S∞ − 3f ) · f/d = − 4
d

. �

A1(F
[2]) is freely generated by β1, β2 − β1, and β3 − β1, and from Figure 2 the

invariant curves can all be expressed as linear combinations in these generators
with nonnegative coefficients. By virtual localization formula, GW-invariants of
any class β vanish except for β = dβ1 +d2(β2 −β1)+d3(β3 −β1) for nonnegative
integers d , d2, d3. With Theorem 3.1, we just need to assume that d2 and d3 are
not simultaneously zero. To compute one-pointed GW-invariants, we first note
that virdimM0,1(F

[2], β) = d2 + 2d3 + 2.
Since dimF [2] = 4, we only need to consider (d2, d3) = (1,0), (2,0), or (0,1)

to get nonzero invariants. Our strategy is to choose a suitable cycle to represent
the homology class so that only finitely many nodal invariant curves of the given
curve class intersect the cycle, since only these invariant curves have nontrivial
contributions in the localization formula. In particular, if no such invariant curve
intersects the cycle, then the GW-invariant vanishes. This prompts the idea that
we purposely choose the representative of the curve class so that it either stays
away from any such invariant curves or intersects with as few of them as possible.

For the pairs (2,0) and (0,1), virdimM0,1(F
[2], β) = 4, so the insertion for

nonzero GW-invariants must be a point class.

Proposition 3.2. For any curve class β ∈ A1(F
[2]), 〈pt〉0,1,β = 0 except that

〈pt〉0,1,β3 = 2.
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Proof. We first remark that in this proof and throughout this chapter, we con-
stantly refer to Figure 2 for configuration of fixed points and invariant curves and
to Figure 3 for relevant weights at fixed points.

For the pair (2,0), we take the point BD for the point class. Then any con-
nected invariant curve passing through BD has to contain β3 from Figure 2, which
is not allowed in (2,0). So the localization formula expansion does not have any
nonzero term in it, that is, 〈pt〉0,1,β = 0 in this case.

For the second pair (0,1), we take the point AC for the point class. When
d �= 1, it is away from any nodal invariant curve of degree β . So 〈pt〉0,1,β = 0 in
this case.

Now assume that d = 1, that is, β = β3. Then there are two nonzero terms in
the localization formula from the connected components described by the follow-
ing graphs:

� �
AC

1
BC1

�1 ��
ADAC

1
1

�2

where here and in the following, the boldface points mean where the marked
points are mapped to, and the numbers above the line segments mean the degrees
of the maps.

Now we determine the equivariant Euler classes of their virtual normal bun-
dles. For �1, first of all, eC

∗
(Bm

1 ) = −μ,eC
∗
(Bm

4 ) = 1. To compute eC
∗
(Bm

2 )/

eC
∗
(Bm

5 ), we use the localization formula to f ∗T F [2] in equivariant topological
K-theory, which is used in [5], that is, the virtual bundle

χ(f ∗T F [2]) = tλ + tμ + t−λ + tλ+μ

1 − t−μ
+ tλ + t−μ + t−λ + tλ+μ

1 − tμ

= 1 + tλ + t−λ + t−μ + tμ + tλ+μ,

and then by taking weights, eC
∗
(Bm

2 )/eC
∗
(Bm

5 ) = λ2μ2(λ + μ). Hence
eC

∗
(Nvir

�1
) = −λ2μ(λ + μ).

For �2, eC
∗
(Bm

1 ) = −λ − μ and eC
∗
(Bm

4 ) = 1. Again by K-theoretic localiza-
tion formula,

χ(f ∗T F [2]) = tλ + tμ + t−λ + t−λ−μ

1 − tλ+μ
+ tλ + tμ + t−λ + tλ+μ

1 − t−λ−μ

= 1 + tλ + t−λ + tμ + tλ+μ + t−λ−μ,

so eC
∗
(Bm

2 )/eC
∗
(Bm

5 ) = λ2μ(λ + μ)2, and therefore eC
∗
(Nvir

�2
) = −λ2μ(λ + μ).

Putting these terms in the localization formula, we get

〈pt〉0,1,β3 = −λ2μ(λ + μ)

−λ2μ(λ + μ)
+ −λ2μ(λ + μ)

−λ2μ(λ + μ)
= 1 + 1 = 2,

where the numerators are the equivariant class of the point AC, which is the
product of all the weights at AC. �

For the pair (1,0), virdimM0,1(F
[2], β) = 3, so we need to feed a class in

A1(F
[2]) to get nonzero GW-invariants.



Gromov–Witten Invariants of the Hilbert Scheme 691

Proposition 3.3. For β = dβ1 + (β2 − β1),

(i) 〈β1〉0,1,β = 0 for any d ;
(ii) 〈β2〉0,1,β = 0 for d �= 1; −1 for d = 1;

(iii) 〈β3〉0,1,β = 0 for d �= 1; 1 for d = 1.

Proof. (i) Let us take the invariant curve [B1,B2] to be the representative of β1.
Since any nodal invariant curve touching this representative has to contain β3,
which is not allowed, 〈β1〉0,1,β = 0 for any d ≥ 0.

(ii) For β2, we take the invariant curve [AB,BC] as a representative. When
d �= 1, for the same reason, this invariant curve does not intersect any nodal in-
variant curve of class β , so the GW-invariants are equal to zero. When d = 1, that
is, β = β2, there are two nonzero terms in the localization formula from connected
components described by the following graphs:

� �
AB

1
BC1

�1 ��
BCAB

1
1

�2

Following the same procedure as in the previous proposition, we get
eC

∗
(Nvir

�1
) = −λ2μ and eC

∗
(Nvir

�2
) = λ2μ. Using the virtual localization formula,

we have

〈β2〉0,1,β2 = −λμ2

−λ2μ
+ −λμ(λ + μ)

λ2μ
= −1,

where the numerators are the equivariant class of the curve [AB,BC] restricted
to AB and BC, which are the products of the weights of the normal bundle of the
curve at these points.

(iii) Finally, for 〈β3〉0,1,β , we take the invariant curve from BC to BD to be
the representative of β3. Again, when d �= 1, this invariant curve does not intersect
any nodal invariant curve of class β , which implies that the GW-invariants vanish.
When d = 1, only one component contributes a nonzero term, described by the
following graph:

�
AB

�
BC

1
1

�

Now eC
∗
(Nvir

� ) = λ2μ. By the localization formula, 〈β3〉0,1,β2 = λ2μ/

(λ2μ) = 1. �

Till this point, we have computed all one-pointed GW-invariants of F [2].

3.3. Two-Point Gromov–Witten Invariants

When n = 2, virdimM0,2(F
[2], β) is equal to d2 +2d3 +3 for β = dβ1 +d2(β2 −

β1) + d3(β3 − β1). For the dimensional reason, we must have d2 + 2d3 ≤ 5 to get
nonzero invariants. The complete list of these pairs of (d2, d3) is (5, 0), (4, 0), (3,
0), (2, 0), (1, 0), (3, 1), (2, 1), (1, 1), (0, 1), (1, 2), and (0, 2).

In the following, we shall treat these cases one by one. The strategy is almost
the same as for computing one-point invariants: if we can choose a cycle rep-
resenting one class that never intersects any nodal invariant curve of the given
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curve class or if we can choose the representative cycles for both classes that do
not intersect any nodal invariant curve of the curve class simultaneously, then the
GW-invariant in question must vanish. Thus we carefully choose such represen-
tatives so that they intersect as few such curves as possible.

When one insertion is a point class, this can be carried out more readily. We
are in such a situation for the pairs (5,0), (3,1), (1,2), (4,0), (2,1), and (0,2).
For the former three pairs, virdimM0,2(F

[2], β) = 8, so both insertions must be
the point class.

Proposition 3.4. For β = dβ1 + 5(β2 − β1) and dβ1 + 3(β2 − β1) + (β3 − β1),

〈pt,pt〉0,2,β = 0 for any d .

Proof. For β = dβ1 + 5(β2 − β1), we choose the point BD to represent one
point class. Then BD does not lie in any nodal invariant curve of degree β , so
〈pt,pt〉0,2,β = 0 in this case.

For β = dβ1 + 3(β2 − β1) + (β3 − β1), we choose BD for one point class
and AC for the other. Then any nodal invariant curve of degree β does not pass
through both points simultaneously, so 〈pt,pt〉0,2,β = 0 in this case. �

Unfortunately, for β = dβ1 +(β2 −β1)+2(β3 −β1), the localization formula does
not apply to 〈pt,pt〉0,2,β since every fixed point is traversed by a one-dimensional
family of invariant curves of the given curve class. In the next section, we will take
on this with the help of the associativity law of quantum product.

Now for the latter three pairs, the other insertion must be from A1(F
[2]).

Proposition 3.5. For β = dβ1 +4(β2 −β1), dβ1 +2(β3 −β1), and dβ1 +2(β2 −
β1) + (β3 − β1), 〈pt,βi〉0,2,β = 0 for i = 1,2,3 and any d .

Proof. First, for β = dβ1 + 4(β2 − β1), if we take the point BD for the point
class, then any nodal invariant curve of the designated degree cannot pass through
this point, so 〈pt,βi〉0,2,β = 0 for i = 1,2,3.

Then for β = dβ1 +2(β3 −β1), we choose the point D1 for the point class, the
invariant curve [A1,A2] for β1, [AB,BC] for β2, and [BC,AC] for β3. Then we
see that 〈pt,βi〉0,2,β = 0 for i = 1,2,3.

Finally, assume that β = dβ1 + 2(β2 − β1) + (β3 − β1). If we take the point
BD for the point class and keep the representative for β1 as before, then we see
that 〈pt,β1〉0,2,β = 0; if we take the point D1 for the point class and keep the
representative for β2 as before, then we see that 〈pt,β2〉0,2,β = 0.

To consider 〈pt,β3〉0,2,β , we take D2 for the point class and [B2,AB] for
the representative of β3 − β1. Then we see that no nodal invariant curve of this
degree connects the two cycles. So 〈pt,β3 − β1〉0,2,β = 0. By the preceding,
〈pt,β1〉0,2,β = 0, so we have 〈pt,β3〉0,2,β = 0. �

For the pairs (d2, d3) = (3,0), (1,1), we have virdimM0,2(F
[2], β) = 6. Then

the degree decomposition of the two insertions is either 2 + 4 or 3 + 3. The first
type is dealt with in the following:
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Proposition 3.6. (i) For β = dβ1 + 3(β2 − β1), 〈pt,βi〉0,2,β = 0 for i =
4,5,6,7,8,9 and any d ;

(ii) For β = dβ1 + (β2 − β1) + (β3 − β1), 〈pt,β4〉0,2,β = 〈pt,β6〉0,2,β =
〈pt,β8〉0,2,β = 0 for any d . Also, 〈pt,β9〉0,2,β = 0 for d �= 2 and 2 for d = 2.

Proof. (i) We take the point BD for the point class and the standard represen-
tatives for βi listed in Section 2.1, where f0 is assigned to f , and the point A

assigned to pt in those expressions. Then we see that any nodal invariant curve
has to contain β3, which is excluded by the given curve class, so 〈pt,βi〉0,2,β = 0
for i = 4, . . . ,9.

(ii) For β = dβ1 + (β2 − β1) + (β3 − β1), if we take the point BD for the
point class and the standard representative for β4, then, for the same reason,
〈pt,β4〉0,2,β = 0 for any d .

Now we compute 〈pt,β6〉0,2,β . We choose BD for the point class and the
standard representative for β6. Then we see that 〈pt,β6〉0,2,β = 0 if d �= 2. When
d = 2, there are nonzero terms from the fixed point loci described by the following
graphs:

� �
1 1BD

1
AB

2
BC
��1 ��

11 AB

2
BD

1
BC
��2

� �
1 1BD

1
CD

2
AD
��3 ��

CD

2
BD

1
1

�
AD 1

�4

For �1, eC
∗
(Bm

1 ) = λ and eC
∗
(Bm

4 ) = −λ(λ+μ). To compute eC
∗
(Bm

2 )/eC
∗
(Bm

5 ),
let us use e1 to denote the invariant curve from BC to BD and e2 to denote the
invariant curve from AB to BC. Then, by K-theoretic localization,

χ(f ∗T F [2]|e1) = tλ + t−μ + t−λ + tλ+μ

1 − t−λ−μ

+ tλ + t−μ + t−λ + t−λ−μ

1 − tλ+μ

= tλ + t−λ + t−μ + tλ+μ + t−λ−μ + 1.

Also, χ(f ∗T F [2]|e2) = 2tλ + t−λ + t−μ + 1 by the preceding. Then, applying
a normalization sequence, we have

χ(f ∗T F [2]) = χ(f ∗T F [2]|e1) + χ(f ∗T F [2]|e2) − T F [2]|BC

= t−λ−μ + 2tλ + t−λ + t−μ + 2.

From this we get eC
∗
(Bm

2 )/eC
∗
(Bm

5 ) = −λ3μ(λ + μ), so eC
∗
(Nvir

�1
) = λ3μ(λ +

μ)2. Similarly,

eC
∗
(Nvir

�2
) = −λ3μ2(λ + μ),

eC
∗
(Nvir

�3
) = −λ3μ2(λ + μ),

eC
∗
(Nvir

�4
) = λ3μ(λ + μ)2.
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Using the localization formula, we have

〈pt,β6〉0,2,β2+β3 = λ2μ(λ + μ)μ(λ + μ)

λ3μ(λ + μ)2
+ λ2μ(λ + μ)μ2

−λ3μ2(λ + μ)

+ λ2μ(λ + μ)μ(λ + μ)

−λ3μ2(λ + μ)
+ λ2μ(λ + μ)(λ + μ)2

λ3μ(λ + μ)2
= 0.

To compute 〈pt,β8〉0,2,β , we take BD for point class and the standard repre-
sentative for β8, where f is taken to be f0. Then 〈pt,β8〉0,2,β = 0 for d �= 2. For
d = 2, there are two connected components contributing to localization described
by the following graphs:

� �
1 1BD

1
AB

2
BC
��1 ��

11 AB

2
BD

1
BC
��2

The equivariant Euler classes of the normal bundles are the same as those of �1

and �2 for 〈pt,β6〉0,2,β2+β3 , that is, eC
∗
(Nvir

�1
) = λ3μ(λ + μ)2 and eC

∗
(Nvir

�2
) =

−λ3μ2(λ + μ). So

〈pt,β8〉0,2,β2+β3 = −λ2μ(λ + μ)λ(λ + μ)

λ3μ(λ + μ)2
+ −λ2μ(λ + μ)λμ

−λ3μ2(λ + μ)
= 0.

If we take AD for point class and the point B in the standard representative for
β9, then we see that 〈pt,β9〉0,2,β = 0 for d �= 2. For d = 2, the nonzero terms in
the localization formula come from the connected components described by the
following graphs:

� �
1 1BD

2
CD

1
AD
��1 ��

AD

1
AB

2
1

�2

The virtual normal bundles are eC
∗
(Nvir

�1
) = −λ3μ2(λ + μ) and eC

∗
(Nvir

�2
) =

−λ3μ2(λ + μ). So, by the localization formula,

〈pt,β9〉0,2,β2+β3 = −λ2μ(λ + μ)λμ

−λ3μ2(λ + μ)
+ −λ2μ(λ + μ)λμ

−λ3μ2(λ + μ)
= 2. �

Here the invariants 〈pt,β5〉0,2,β and 〈pt,β7〉0,2,β when β = dβ1 + (β2 − β1) +
(β3 − β1) are not treated because of families of invariant curves. We will come
back to these in the last section.

For the pairs (d2, d3) = (3,0), (1,1), the second-type decomposition 3 + 3 is
dealt with in the following:

Proposition 3.7. (i) For β = dβ1 + 3(β2 − β1), 〈βi,βj 〉0,2,β = 0 for i, j =
1,2,3 and any d ;

(ii) For β = dβ1 + (β2 − β1) + (β3 − β1), 〈β1, β2〉0,2,β = 0 for any d , 〈β2,

β2〉0,2,β = 〈β2, β3〉0,2,β = 0 for any d �= 2, but for d = 2, 〈β2, β2〉0,2,β = −1
and 〈β2, β3〉0,2,β = 1.

Proof. (i) Let β = dβ1 +3(β2 −β1). If we take the invariant curve [B1,B2] for β1,
then it stays away from any nodal invariant curve of degree β . So 〈β1, βj 〉0,2,β = 0
for j = 1,2,3.



Gromov–Witten Invariants of the Hilbert Scheme 695

If we take [AB,BC] for one representative of β2 and [AD,CD] for another
representative of β2, then the two representatives do not touch any invariant curve
of degree β simultaneously. So 〈β2, β2〉0,2,β = 0.

If we still take [AB,BC] for the representative of β2 and [AD,BD] for the
representative of β3, then again, for the same reason, 〈β2, β3〉0,2,β = 0.

If we take [BC,BD] for one representative of β3 and [AC,AD] for another
representative of β3, then , for the same reason, 〈β3, β3〉0,2,β = 0.

(ii) Then we consider the case where β = dβ1 + (β2 − β1) + (β3 − β1). If we
take [B1,B2] for β1 and [AD,CD] for β2, then we see that 〈β1, β2〉0,2,β = 0.

When d �= 2, we take [AB,BC] and [AD,CD] for two representatives of β2
and [AD,BD] for β3. Then we see that 〈β2, β2〉0,2,β = 〈β2, β3〉0,2,β = 0.

Let us now assume that d = 2. For 〈β2, β2〉0,2,β2+β3 , the nonzero terms in
the localization formula come from the components described by the following
graphs:

� �
AB

1
AD

2
1

�1 ��
CD

2
BC

1
1

�2

We have eC
∗
(Nvir

�1
) = −λ3μ2(λ + μ) and eC

∗
(Nvir

�2
) = λ3μ(λ + μ)2. With local-

ization,

〈β2, β2〉0,2,β2+β3 = −λμ2λμ(λ + μ)

−λ3μ2(λ + μ)
+ −λμ(λ + μ)λ(λ + μ)2

λ3μ(λ + μ)2
= −1.

To compute 〈β2, β3〉0,2,β2+β3 , we take [AB,BC] for β2 and [AD,BD] for
β3. Three nonzero terms appear in the localization formula from the following
components:

� �
AB

1
AD

2
1

�1 ��
AB

1
BD

2
1

�
BC 1

�2

� �
1 1BD

2
AB

1
BC
��3

From the work done before, eC
∗
(Nvir

�1
) = −λ3μ2(λ + μ), eC

∗
(Nvir

�2
) = λ3μ(λ +

μ)2, and eC
∗
(Nvir

�3
) = −λ3μ2(λ + μ). So, by the localization formula,

〈β2, β3〉0,2,β2+β3 = −λμ2λ2(λ + μ)

−λ3μ2(λ + μ)

+ −λμ(λ + μ)λ2(λ + μ)

λ3μ(λ + μ)2
+ −λμ2λ2(λ + μ)

−λ3μ2(λ + μ)
= 1. �

Note that for β = dβ1 + (β2 −β1)+ (β3 −β1), 〈β1, β1〉, 〈β1, β3〉, and 〈β3, β3〉 are
not computable by this method.

For the pairs (d2, d3) = (2,0), (0,1), we have virdimM0,2(F
[2], β) = 5,

which can be decomposed as either 1 + 4 or 2 + 3 . For the first type, one in-
sertion has to be a point class.

Proposition 3.8. (i) For β = dβ1 + 2(β2 − β1), 〈pt,βj 〉0,2,β = 0 for j =
10,11,12 and any d ;
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(ii) For β = dβ1 + (β3 −β1), 〈pt,βj 〉0,2,β = 0, for j = 10,11,12 and d �= 1; for
d = 1, 〈pt,β10〉0,2,β3 = 0, 〈pt,β11〉0,2,β3 = 2, and 〈pt,β12〉0,2,β3 = 0.

Proof. By the axiom of divisors, 〈pt,βj 〉0,2,β = βj · β〈pt〉0,1,β , where the in-
tersection product of βj with β can be determined by the results in (2.1), and
〈pt〉0,1,β is determined in Proposition 3.2. �

For the second type, we have the following:

Proposition 3.9. (i) For β = dβ1 + 2(β2 − β1), 〈βi,βj 〉0,2,β = 0 for i =
1,2,3, j = 4, . . . ,9, and any d ;

(ii) For β = dβ1 + (β3 − β1), 〈β1, βj 〉0,2,β = 0 for j = 5,7,8,9 and any d ;
〈β2, βj 〉0,2,β = 0 for j = 5,7 and any d ; 〈β2, βj 〉0,2,β = 0 for j = 8,9
and d �= 1, but 〈β2, β8〉0,2,β3 = 〈β2, β9〉0,2,β3 = 1; 〈β3, βj 〉0,2,β = 0 for j =
4,5,7,8,9 and any d ; 〈β3, β6〉0,2,β = 0 for d �= 1, but 〈β3, β6〉0,2,β3 = 2.

Proof. (i) If we take [B1,B2] as the representative for β1 and the standard rep-
resentatives of βj , where we make free choices for f and pt, then we see that
〈β1, βj 〉0,2,β = 0 for j = 4, . . . ,9 and any d .

If we take [AB,BC] for β2, then 〈β2, βj 〉0,2,β = 0 for j = 4,5,8,9 and any d ,
where in the standard representatives of β5, β8, and β9, we take f to be f∞ and
pt to be the point D. Also, 〈β2, β6〉0,2,β = 〈β2, β7〉0,2,β = 0 when d �= 2.

So we need to consider the cases where d = 2. For 〈β2, β6〉0,2,2β2 , the nonzero
terms in the localization formula come from the following components:

� �
AB

1
BC

2
2

�1 ��
BC

1
AB

2
2

�2

� �
AB

1, 2
BC2

�3 ��
BC

1, 2
AB 2

�4

� �
1 1AB

1
AB

2
BC
��5 ��

AB

1
AB

2
1

�
BC 1

�6

� �
1 1AB

1
AB

2
BC
��7 ��

AB

1, 2
AB 1

�
BC

�8

� �
1 1AB AB

1, 2
BC
��9 ��

BC

1
BC 11

�
AB

2
�10

� �
1 1BC

1
BC

2
AB
��11 ��

BC

1
BC

2
1

�
AB 1

�12

� �
1 1BC

1, 2
BCAB

��13 ��
BC

1, 2
BC 1

�
AB 1

�14
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Here as examples we only work out the equivariant Euler classes of the normal
bundles for �1 and �9. The other components can be dealt with either similarly
or as before.

For �1, eC
∗
(Bm

1 ) = 1 and eC
∗
(Bm

4 ) = 1. Since the induced action on the in-
variant line from AB to BC has weights 1

2λ and − 1
2λ at the two ends because of

the double cover, using K-theoretic localization, we have

χ(f ∗T F [2]) = tλ + tμ + tλ + t−μ

1 − t (−1/2)λ
+ tλ + t−μ + t−λ + tλ+μ

1−(−1/2)λ

= tλ + t−λ + t−μ +(−1/2)λ +t (−1/2)λ − t (1/2)λ+μ + 1.

From this we have eC
∗
(Nvir

�1
) = − 1

2
λ5μ

λ+2μ
.

For �9, eC
∗
(Bm

1 ) = λ2 and eC
∗
(Bm

4 ) = (−λ−e3)(−λ−e4) = (λ+e3)(λ+e4),
where e3 and e4 are the Euler classes of the respective cotangent line bundles over
M0,4, which correspond to the nodal points of the component represented by the
vertex BC with the components represented by two edges from AB to BC. By
K-theoretic localization and using normalization sequence as before, we have

χ(f ∗T F [2]) = 3tλ + t−λ + t−μ − tλ+μ + 2.

So eC
∗
(Nvir

�9
) = λ2μ(λ + e3)(λ + e4)/(λ + μ).

All the equivariant Euler classes of the normal bundles are listed as follows:

eC
∗
(Nvir

�1
) = −1

2

λ5μ

λ + 2μ
,

eC
∗
(Nvir

�2
) = −1

2

λ5μ

λ + 2μ
,

eC
∗
(Nvir

�3
) = 1

2

λ5μ

λ + 2μ
,

eC
∗
(Nvir

�4
) = 1

2

λ5μ

λ + 2μ
,

eC
∗
(Nvir

�5
) = λ5μ

λ + μ
,

eC
∗
(Nvir

�6
) = λ5μ

λ + μ
,

eC
∗
(Nvir

�7
) = −2

λ5μ

λ + μ
,

eC
∗
(Nvir

�8
) = −2

λ5μ

λ + μ
,

eC
∗
(Nvir

�9
) = λ2μ(λ + e3)(λ + e4)

λ + μ
,

eC
∗
(Nvir

�10
) = −2λ5,

eC
∗
(Nvir

�11
) = λ5,
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eC
∗
(Nvir

�12
) = λ5,

eC
∗
(Nvir

�13
) = −2λ5,

eC
∗
(Nvir

�14
) = −λ2(λ − e3)(λ − e4).

Using the localization formula, we have

〈β2, β6〉0,1,2β2 = −2
λμ3(λ + μ)(λ + 2μ)

λ5μ
+ λμ4(λ + 2μ)

λ5μ

+ λμ2(λ + μ)2(λ + 2μ)

λ5μ
+ λμ3(λ + μ)2

λ5μ

+ λμ3(λ + μ)2

λ5μ
+ λμ4(λ + μ)

−2λ5μ

+ λμ4(λ + μ)

−2λ5μ
+ 1

2

∫
M0,4

λμ2(λ + μ)3

λ2μ(λ + e3)(λ + e4)

+ λμ2(λ + μ)2

−2λ5
+ λμ3(λ + μ)

λ5

+ λμ3(λ + μ)

λ5
+ λμ2(λ + μ)2

−2λ5

− 1

2

∫
M0,4

λμ4

λ2(λ − e3)(λ − e4)
= 0,

where the factor 2 in front of the first term in the sum takes care of terms from �1
and �2. Here we used the fact that

∫
M0,4

e3 = ∫
M0,4

e4 = 1.
From now on, since all the computational steps can be carried out similarly as

before, we omit the details for evaluating the invariants, just being content with
listing the graphs for the connected components of the fixed loci.

Let us turn to 〈β2, β7〉0,2,2β2 . We still take [AB,BC] for β2. The nonzero terms
in the localization formula are from the following components:

� �
1 1AB

1
AB

2
BC
��1 ��

AB

1, 2
AB 1

�
BC 1

�2

� �
1 1BC

1, 2
BCAB

��3 ��
BC

1
BC 11

�
AB

2
�4

� �
AB

1
BC

2
2

�5 ��
BC

1
BC

2
1

�
AB 1

�6

� �
AB BC

1, 2
2

�7

If we take [BC,BD] for β3 and the standard representatives for β4, β5, and β8,
where we take f to be f∞, then 〈β3, βj 〉0,2,β = 0 for j = 4,5,8 and any d ; if we
take [AC,BC] for β3 and the standard representative for β9 where we assign D

to pt, then we see that 〈β3, β9〉0,2,β = 0. Now we keep the invariant line between
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BC and BD for β3. It is not hard to see that 〈β3, β6〉0,2,β = 〈β3, β7〉0,2,β = 0
when d �= 2.

When d = 2, for 〈β3, β6〉0,2,β , the nonzero terms in the localization formula
come from the fixed point loci described by the following graphs:

� �
1 1AB AB

1, 2
BC
��1 ��

AB

1
AB

2
1

�
BC 1

�2

� �
1 1BC

1, 2
BCAB

��3 ��
BC

1
BC 11

�
AB

2
�4

� �
1 1BC

1
BCAB

��5
2

��
BC

1, 2
AB 2

�6

� �
AB

2
BC

1
�7

2

For 〈β3, β7〉0,2,2β2 , we keep the representative for β3. Then the connected com-
ponents with nonzero terms in the localization formula are described by the fol-
lowing graphs:

� �
1 1AB AB

1, 2
BC
��1 ��

BC

1
BC 11

�
AB

2
�2

� �
1 1BC

1, 2
BCAB

��3 ��
BC

1, 2
AB 2

�4

(ii) When β = dβ1 + (β3 − β1), we take the invariant line between C1 and C2
for β1 and the standard representatives for βj , where we take f to be f0 and pt to
be A, then we see that 〈β1, βj 〉0,2,β = 0 for j = 5,7,8,9 and any d .

Also, if we take the invariant line between AD and CD for β2 and the standard
representative for β5, where f is taken to be f0, then 〈β2, β5〉0,2,β = 0 for any d .

Now we take the invariant line from AB to BC for the representative for β2.
Then 〈β2, β7〉0,2,β = 0 if d �= 1. When d = 1, the nonzero terms appearing in
the localization formula are given by the connected components described by the
following graphs:

� �
BC

1
AC

2
1

�1 ��
ACBC

1, 2
1

�2

� �
BC

1
BD

2
1

�3 ��
BDBC

1, 2
1

�4

To compute 〈β2, β8〉0,2,β , we still take the invariant line from AB to BC for
the representative for β2 and the standard representative for β8, where f is taken
to be f∞. Then we see that 〈β2, β8〉0,2,β = 0 if d �= 1. When d = 1, there is only
one nonzero term in the localization from the component described by the graph

� �
AC

2
BC

1
1

�
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To compute 〈β2, β9〉0,2,β , we still take the invariant line from AB to BC for the
representative for β2 and the standard representative for β9, where pt is taken to
be D. Then we see that 〈β2, β9〉0,2,β = 0 if d �= 1. When d = 1, there is only
one nonzero term in the localization formula given by the connected component
described by the graph

� �
BC

1
BD

2
1

�

If we take the invariant line between BC and BD for β3, we see that
〈β3, βj 〉0,2,β = 0 for j = 4,5 and all d , where we can take either f0 or f∞ for f

in the representative of β5.
Now we fix the representative for β3 to be the invariant line between BC and

BD. Then 〈β3, β6〉0,2,β = 0 for all d �= 1. For d = 1, there are nonzero terms
in the localization from the connected components described by the following
graphs:

� �
BC

2
BD

1
1

�1 ��
BDBC

1, 2
1

�2

� �
AD

2
BD

1
1

�3 ��
ACBC

1, 2
1

�4

To compute 〈β3, βj 〉0,2,β for j = 7,8,9, we take the invariant line from CD

to D2 for β3 − β1 and the standard representatives for βj , where f is taken to be
f0 and pt to be B . Then we see that 〈β3 − β1, βj 〉0,2,β = 0 for any d . However,
〈β1, βj 〉0,2,β = 0, so 〈β3, βj 〉0,2,β = 0 for j = 7,8,9. �

In this proposition, four sequences of invariants are left untreated, which are
〈β1, β4〉0,2,β , 〈β2, β4〉0,2,β , 〈β1, β6〉0,2,β , and 〈β2, β6〉0,2,β for β = dβ1 + (β3 −
β1), because they involve higher degrees on β1 and thus encounter the problem of
the families of invariant curves. They will be determined in the next section.

For the last pair (d2, d3) = (1,0), the virtual dimension of the moduli space
is equal to 4. The degree decomposition of the two insertions has to be 1 + 3 or
2 + 2. For the first type, we have the following:

Proposition 3.10. For β = dβ1 + (β2 − β1),

(i) 〈β1, βj 〉0,2,β = 0 for j = 10,11,12 and all d ;
(ii) 〈βi,βj 〉0,2,β = 0 for i = 2,3, j = 10,11,12, and d �= 1; when d = 1,

〈β2, β10〉0,2,β2 = 0, 〈β2, β11〉0,2,β2 = 1, 〈β2, β12〉0,2,β2 = −1, 〈β3,

β10〉0,2,β2 = 0, 〈β3, β11〉0,2,β2 = −1, and 〈β3, β12〉0,2,β2 = 1.

Proof. By the axiom of divisors and Proposition 3.3. �

When (d2, d3) = (1,0), we have the second type of degree decomposition of the
two insertions 2 + 2.

Proposition 3.11. For β = dβ1 + (β2 − β1), we have

(i) 〈β4, β6〉0,2,β = 〈β5, β6〉0,2,β = 0 for any d ;
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(ii) 〈β6, βk〉0,2,β = 0 for k = 6,7,8 and d �= 1, but 〈β6, β6〉0,2,β2 = 1, 〈β6,

β7〉0,2,β2 = −2, and 〈β6, β8〉0,2,β2 = 1;
(iii) 〈βk,β9〉0,2,β = 0 for k = 4, . . . ,9 and any d .

Proof. (i) If we take the standard representatives for β4, β5, and β6, where f is
taken to be f0 for β5, then we see that 〈β4, β6〉0,2,β = 〈β5, β6〉0,2,β = 0.

(ii) Also, we can see that when d �= 1, 〈β6, β6〉0,2,β = 0. Now we compute
〈β6, β6〉0,2,β when d = 1. There are eight nonzero terms in the localization for-
mula from fixed point loci described by the following graphs:

� �
AB

1
BC

2
1

�1 ��
CD

1
AD

2
1

�2

� �
AB

2
BC

1
1

�3 ��
CD

2
AD

1
1

�4

�

1, 2
�

AB BC1
�5 ��

1, 2
CDAD 1

�6

� �

1, 2
AB BC1

�7 ��
CDAD 1
1, 2

�8

Using the standard representative for β7, we see that when d �= 1, 〈β6,

β7〉0,2,β = 0. When d = 1, nonzero terms in the localization formula are given
by the fixed point locus described by the following graphs:

�

1
�

2
AB BC1

�1 �

1
�

2
CDAD 1

�2

� �
AB BC

1, 2
1

�3 ��
CDAD

1, 2
1

�4

We take f0 for f in the representative for β8. Then 〈β6, β8〉0,2,β = 0 for d �= 1.
When d = 1, there are nonzero terms in the localization formula from fixed point
loci given by the following graphs:

�

1
�

2
AB BC1

�1 �

1
�

2
BCAB 1

�2

� �
AB BC

1, 2
1

�3 ��
BCAB

1, 2
1

�4

(iii) If we use the above representative for β8 and the standard representative
for β9, where pt is taken to be D, then we see that 〈β8, β9〉0,2,β = 0 for any d . If
we take a different representative for β9, where pt is taken to be B , then we see
that 〈β9, β9〉0,2,β = 0 for any d . Also, 〈β4, β9〉0,2,β = 〈β5, β9〉0,2,β = 0 for any d ,
where we use f∞ for f and B for pt in the standard representatives for β5 and
β9.

We keep the representative for β9, where pt is taken to B . Then we see that
when d �= 1, 〈β6, β9〉0,2,β = 〈β7, β9〉0,2,β = 0. When d = 1, for 〈β6, β9〉0,2,β , the
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connected components appearing as nonzero terms in the localization formula are
the same as for 〈β6, β8〉0,2,β .

For 〈β7, β9〉0,2,β , we have the following connected components:

�

1, 2
�

BC AB1
�1 ��

BC

1
AB

2
1

�2 �

The invariants 〈β4, β4〉0,2,β , 〈β4, β5〉0,2,β , 〈β4, β7〉0,2,β , 〈β4, β8〉0,2,β , 〈β5, β5〉0,2,β ,
〈β5, β7〉0,2,β , 〈β5, β8〉0,2,β , 〈β7, β7〉0,2,β , 〈β7, β8〉0,2,β , and 〈β8, β8〉0,2,β are left
untouched because of the existence of continuous families of invariant curves.
They will be dealt with in the next section.

4. Other Two-Pointed Gromov–Witten Invariants

In this section, we first compute the quantum product of generators of the coho-
mology ring of the Hilbert scheme and then make use of the associativity law of
the quantum product to determine other two-pointed Gromov–Witten invariants
remaining from the localization method.

4.1. Quantum Product of Generators

The dual basis of our standard basis β0, β1, . . . , β12, β13 is β13, − 1
2β10, β12, β11 +

β12, − 1
2β5, − 1

2β4 − 1
2β5, 1

2β7, 1
2β6 + 1

2β7 + 1
2β8, 1

2β7 +β8, β9, − 1
2β1, β3, β2 +β3,

β0.
With the computational results in Subsections 3.2 and 3.3, the quantum product

of β10, β11, β12 can be computed. First, by definition,

β10 ∗ β10 = β2
10 +

∑
β �=0

∑
i

〈β10, β10, Ti〉βqβT i

= β2
10 + (β3 · β10)

2〈pt〉β3q1q3 + (β2 · β10)
2〈β2〉β2q1q2β12

+ (β2 · β10)
2〈β3〉β2q1q2(β11 + β12)

+
∑
d �=0

(dβ1 · β10)
2〈β4〉dβ1q

d
1

(
−1

2
β5

)

+
∑
d �=0

(dβ1 · β10)
2〈β5〉dβ1q

d
1

(
−1

2
β4 − 1

2
β5

)

= β2
10 +

∑
d �=0

(−2d)2 −2

d
qd

1

(
−1

2
β5

)

+
∑
d �=0

(−2d)2 −4

d
qd

1

(
−1

2
β4 − 1

2
β5

)

= β2
10 + 8

∑
d �=0

dqd
1 β4 + 12

∑
d �=0

dqd
1 β5,
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where 〈β10, β10, Ti〉β means GW-invariant of genus 0 and curve class β , and so
on. We omit the number of insertions in the notation from now on. Also, here and
subsequently, summations over d �= 0 or just d in fact mean over d > 0 or d ≥ 0.
In these equalities, we use the axiom of divisors to reduce the 3-pointed GW-
invariants to 1-pointed ones and omit trivial terms because either the invariants
involved are zero or the intersections β2 · β10 = β3 · β10 = 0. The fact that β1 ·
β10 = −2 is also used. Similarly, other products can also be calculated and are
summarized here:

β10 ∗ β10 = β2
10 + 8

∑
d �=0

dqd
1 β4 + 12

∑
d �=0

dqd
1 β5,

β10 ∗ β11 = β10β11,

β10 ∗ β12 = β10β12,

β11 ∗ β11 = β2
11 + q1q2β11 + 2q1q3,

β11 ∗ β12 = β11β12 − q1q2β11,

β12 ∗ β12 = β2
12 + q1q2β11.

(4.1)

Furthermore,

β9 ∗ β10 = β9β10 +
∑
β �=0

∑
i

〈β9, β10, Ti〉βqβT i

= β9β10 +
∑
d

〈β9, β10,pt〉dβ1+(β2−β1)+(β3−β1)q
d
1 q2q3

+
∑
d

〈β9, β10, β2〉dβ1+(β3−β1)q
d
1 q3β12 = β9β10.

Here 〈β9,pt〉dβ1+(β2−β1)+(β3−β1) and 〈β9, β2〉dβ1+(β3−β1) are nontrivial only
when d = 2 and d = 1 by Propositions 3.6 and 3.9, respectively, but the terms
involving them also vanish by the axiom of divisors since (β2 + β3) · β10 =
β3 · β10 = 0. Similarly, β9 ∗ β11 and β9 ∗ β12 can be computed. The results are
listed as follows:

β9 ∗ β10 = β9β10,

β9 ∗ β11 = β9β11 + q1q3β12,

β9 ∗ β12 = β9β12 + 2q2
1q2q3.

(4.2)

4.2. Associativity of Quantum Product

Gromov–Witten invariants enjoy strong relations arising from the associativity
of the quantum product. In this section, we use the associativity relations among
generators of the cohomology ring to derive all the remaining two-pointed invari-
ants.

First we have the following:

Lemma 4.1. There are identities of quantum product associated to divisor
classes:
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(1) 2β4 ∗ β12 + 3β5 ∗ β12 − β7 ∗ β12 − 2β8 ∗ β12 − 2β9 ∗ β12 + 4
∑

d �=0 dqd
1 β4 ∗

β12 + 6
∑

d �=0 dqd
1 β5 ∗ β12 = β5 ∗ β10;

(2) β7 ∗ β10 + 2q1q2β4 = 2β5 ∗ β12;
(3) β8 ∗ β10 + β9 ∗ β10 − 2q1q2β4 = 2β4 ∗ β12;
(4) β4 ∗ β12 = β5 ∗ β11.

Proof. For (1), we begin with the identity β10 ∗ (β10 ∗ β12) = (β10 ∗ β10) ∗ β12.
From the quantum product equalities in (4.1) in Subsection 4.1 and intersec-
tion product results (2.2) in Subsection 2.1, the left-hand side is equal to β10 ∗
(β10β12) = β10 ∗ (2β5) = 2β5 ∗ β10; the right-hand side is equal to(

β2
10 + 8

∑
d �=0

dqd
1 β4 + 12

∑
d �=0

dqd
1 β5

)
∗ β12

=
(

4β4 + 6β5 − 2β7 − 4β8 − 4β9 + 8
∑
d �=0

dqd
1 β4 + 12

∑
d �=0

dqd
1 β5

)
∗ β12

= 4β4 ∗ β12 + 6β5 ∗ β12 − 2β7 ∗ β12 − 4β8 ∗ β12 − 4β9 ∗ β12

+ 8
∑
d �=0

dqd
1 β4 ∗ β12 + 12

∑
d �=0

dqd
1 β5 ∗ β12,

where we use the identity β2
10 = 4β4 + 6β5 − 2β7 − 4β8 − 4β9 from (2.2). Then

equating the two sides, we obtain the first identity.
Then we look at the associativity identity β10 ∗ (β12 ∗β12) = (β10 ∗β12) ∗β12.

Then, again by (4.1) and (2.2), the left-hand side is equal to β10 ∗ (β2
12 +

q1q2β11) = β10 ∗ β7 + q1q2β10 ∗ β11 = β7 ∗ β10 + q1q2β10β11 = β7 ∗ β10 +
2q1q2β4; and the right-hand side is equal to (β10β12) ∗ β12 = 2β5 ∗ β12. This
gives rise to identity (2).

Similarly, from the associativity identity β10 ∗ (β11 ∗ β12) = (β10 ∗ β11) ∗ β12

we get the left-hand side to be equal to β10 ∗ (β11β12 − q1q2β11) = β10 ∗ (β8 +
β9) − q1q2β10 ∗ β11 = β8 ∗ β10 + β9 ∗ β10 − 2q1q2β4, the right-hand side to be
equal to (β10β11) ∗ β12 = 2β4 ∗ β12, and thus the third identity.

Finally, in the identity (β10 ∗ β11) ∗ β12 = β11 ∗ (β10 ∗ β12), the left hand-
side has been worked out before; the right-hand side equals β11 ∗ (β10β12) =
β11 ∗ (2β5) = 2β5 ∗ β11, and thus we get the fourth identity. �

For each identity, when expanded by the definition of quantum product, the terms
at the two sides corresponding to the same cohomology class and the same power
of the parameters should be equal to each other, so that we get relations among
GW-invariants. We first consider the terms corresponding to the cohomology class
1 and qd

1 q2q3.
Beginning with identity (2) in Lemma 4.1, we get the equation

〈β7, β10,pt〉dqd
1 q2q3 = 2〈β5, β12,pt〉dqd

1 q2q3,

where 〈β5, β12,pt〉d means the genus 0 invariants at the curve class β =
dβ1 + (β2 − β1) + (β3 − β1), and so on. However, by the axiom of divisors,
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〈β7, β10,pt〉d = −2(d − 2)〈β7,pt〉d , 〈β5, β12,pt〉d = 〈β5,pt〉d , so we have

〈β5,pt〉d = −(d − 2)〈β7,pt〉d ∀d. (4.3)

From Lemma 4.1(1) we get

2
∑
d

〈β4, β12,pt〉dqd
1 q2q3 + 3

∑
d

〈β5, β12,pt〉dqd
1 q2q3

−
∑
d

〈β7, β12,pt〉dqd
1 q2q3 − 2

∑
d

〈β8, β12,pt〉dqd
1 q2q3

− 2
∑
d

〈β9, β12,pt〉dqd
1 q2q3 + 4

∑
l �=0

lql
1

∑
k

〈β4, β12,pt〉kqk
1q2q3

+ 6
∑
l �=0

lql
1

∑
k

〈β5, β12,pt〉kqk
1q2q3 =

∑
d

〈β5, β10,pt〉dqd
1 q2q3.

However, for any d , 〈β4, β12,pt〉d = 〈β8, β12,pt〉d = 0 since, by Proposition 3.6,
〈β4,pt〉d = 〈β8,pt〉d = 0 and, for any d �= 2, 〈β9, β12,pt〉d = 〈β9,pt〉d = 0, but
when d = 2, 〈β9, β12,pt〉d = 2. With these in place, the last equation simplifies
to ∑

d

(2d − 1)〈β5,pt〉dqd
1 q2q3 −

∑
d

〈β7,pt〉dqd
1 q2q3

+ 6
∑
l �=0

lql
1

∑
k

〈β5,pt〉kqk
1q2q3 − 4q2

1q2q3 = 0.

Let ad = 〈β5,pt〉d . Then∑
l �=0

lql
1

∑
k

〈β5,pt〉kqk
1q2q3 =

∑
d

(ad−1 + 2ad−2 + · · · + da0)q
d
1 q2q3.

Substituting this in the above equation, making use of relation (4.3), equating the
terms in front of the monomial qd

1 q2q3, with d > 2, and simplifying, we obtain
the recursive relation

ad = − 6(d − 2)

(2d − 3)(d − 1)
(ad−1 + 2ad−2 + · · · + da0). (4.4)

This is summarized in the following:

Proposition 4.2. Let β = dβ1 + (β2 − β1) + (β3 − β1), and let 〈·, ·〉d denote the
GW-invariants with respect to the curve class β .

(1) Let 〈β5,pt〉d = ad . Then, for d > 2, 〈β5,pt〉d can be recursively calculated
by (4.4) with the initial data 〈β5,pt〉0 = 0, 〈β5,pt〉1 = 1, 〈β5,pt〉2 = 0;

(2) 〈β7,pt〉d = − 1
d−2ad for d �= 2 with 〈β7,pt〉2 = 2.

Proof. In (1), the initial data can be obtained directly by the localization formula.
(2) follows from (4.3) with 〈β7,pt〉2 = 2 directly calculated. �

This finishes the computations left out in Proposition 3.6.
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Next, we consider the terms corresponding to the second-degree cohomology
classes and monomials qd

1 q2 from the associative identities. First, we equate the
two sides of identity (1) in Lemma 4.1 with the class β4 inserted:

2
∑
d

〈β4, β12, β4〉dqd
1 q2 + 3

∑
d

〈β5, β12, β4〉dqd
1 q2

−
∑
d

〈β7, β12, β4〉dqd
1 q2 − 2

∑
d

〈β8, β12, β4〉dqd
1 q2

− 2
∑
d

〈β9, β12, β4〉dqd
1 q2 + 4

∑
l �=0

lql
1

∑
k

〈β4, β12, β4〉kqk
1q2

+ 6
∑
l �=0

lql
1

∑
k

〈β5, β12, β4〉kqk
1q2 =

∑
d

〈β5, β10, β4〉dqd
1 q2,

where 〈β4, β12, β4〉d , means the genus 0 invariants at the curve class β = dβ1 +
(β2 − β1), and so on. With β = dβ1 + (β2 − β1), β · β12 = 1, β · β10 = −2(d −
1), and 〈β9, β12, β4〉d = 〈β9, β4〉d = 0 by Proposition 3.11, we can simplify the
expression as

2
∑
d

〈β4, β4〉dqd
1 q2 +

∑
d

(2d + 1)〈β5, β4〉dqd
1 q2

−
∑
d

〈β7, β4〉dqd
1 q2 − 2

∑
d

〈β8, β4〉dqd
1 q2

+ 4
∑
l �=0

lql
1

∑
k

〈β4, β4〉kqk
1q2 + 6

∑
l �=0

lql
1

∑
k

〈β5, β4〉kqk
1q2 = 0.

(4.5)

From identity (4) in Lemma 4.1 we get∑
d

〈β4, β12, β4〉dqd
1 q2 =

∑
d

〈β5, β11, β4〉dqd
1 q2,

which implies that, for any d , 〈β5, β4〉d = −〈β4, β4〉d .
From Lemma 4.1(2), noting that β4 = 2(− 1

2β5) − 2(− 1
2β4 − 1

2β5), we have∑
d

〈β7, β10, β4〉dqd
1 q2 + 4q1q2 = 2

∑
d

〈β5, β12, β4〉dqd
1 q2

or

−
∑
d

(d − 1)〈β7, β4〉dqd
1 q2 + 2q1q2 =

∑
d

〈β5, β4〉dqd
1 q2,

from which we learn that when d > 1, 〈β7, β4〉d = 1
d−1 〈β4, β4〉d .

From Lemma 4.1(3) we get∑
d

〈β8, β10, β4〉dqd
1 q2 +

∑
d

〈β9, β10, β4〉dqd
1 q2 − 4q1q2

= 2
∑
d

〈β4, β12, β4〉dqd
1 q2
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or ∑
d

(d − 1)〈β8, β4〉dqd
1 q2 + 2q1q2 = −

∑
d

〈β4, β4〉dqd
1 q2.

From this we know that when d > 1, 〈β8, β4〉d = − 1
d−1 〈β4, β4〉d .

Substituting all these into (4.5), we obtain an equation for 〈β4, β4〉d . Let bd =
〈β4, β4〉d . Simplification of this equation gives rise to the recursive relation

bd = − 2(d − 1)

d(2d − 3)
(bd−1 + 2bd−2 + · · · + db0), d > 1. (4.6)

These results are included in the following:

Proposition 4.3. Let β = dβ1 + (β2 − β1), and let 〈·, ·〉d denote the GW-
invariants of curve class β .

(1) Let 〈β4, β4〉d = bd . Then, for d > 1, 〈β4, β4〉d can be recursively calculated
by (4.6) with the initial data 〈β4, β4〉0 = 1, 〈β4, β4〉1 = −2;

(2) 〈β4, β5〉d = −bd and 〈β5, β5〉d = bd for any d ;
(3) 〈β4, β7〉d = 1

d−1bd for d > 1 with 〈β4, β7〉0 = −1 and 〈β4, β7〉1 = 0;

(4) 〈β4, β8〉d = − 1
d−1bd for d > 1 with 〈β4, β8〉0 = 1 and 〈β4, β8〉1 = 0;

(5) 〈β5, β7〉d = −〈β4, β7〉d and 〈β5, β8〉d = −〈β4, β8〉d for any d ;
(6) 〈β7, β7〉d = 〈β8, β8〉d = 1/(d − 1)2bd for d > 1 with 〈β7, β7〉0 = 1, 〈β7,

β7〉1 = 2, 〈β8, β8〉0 = 1, and 〈β8, β8〉1 = −1;
(7) 〈β7, β8〉d = −1/(d − 1)2bd for d > 1 with 〈β7, β8〉0 = −1 and 〈β7, β8〉1 =

0.

Proof. From identity (4) in Lemma 4.1 we get, for any d ,

〈β4, β12, β5〉d = 〈β5, β11, β5〉d,

〈β4, β12, β7〉d = 〈β5, β11, β7〉d,

〈β4, β12, β8〉d = 〈β5, β11, β8〉d,

or

〈β4, β5〉d = −〈β5, β5〉d ,

〈β4, β7〉d = −〈β5, β7〉d ,

〈β4, β8〉d = −〈β5, β8〉d .

Making use of identity (2) of the lemma, we get, for any d ,

〈β7, β10, β7〉d = 2〈β5, β12, β7〉d ,

〈β7, β10, β8〉d = 2〈β5, β12, β8〉d ,

or

−(d − 1)〈β7, β7〉d = 〈β5, β7〉d ,

−(d − 1)〈β7, β8〉d = 〈β5, β8〉d ,
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so, when d > 1,

〈β7, β7〉d = 1

(d − 1)2
bd,

〈β7, β8〉d = − 1

(d − 1)2
bd,

with initial values

〈β7, β7〉0 = 1, 〈β7, β7〉1 = 2; 〈β7, β8〉0 = −1, 〈β7, β8〉1 = 0.

From the associativity identity (3) we get

〈β8, β10, β8〉d + 〈β9, β10, β8〉d = 2〈β4, β12, β8〉d ,

or for any d , −(d − 1)〈β8, β8〉d = 〈β4, β8〉d , so, for d > 1, 〈β8, β8〉d =
1/(d − 1)2bd with the initial values 〈β8, β8〉0 = 1 and 〈β8, β8〉1 = −1. �

This completes the computations of Proposition 3.11.
To finish the computations of the remaining invariants in part (ii) in Proposi-

tion 3.7, we continue to work on the associativity law of quantum product, making
use of the equalities in (4.1) and (4.2).

Lemma 4.4. There are identities

(1) 2β4 ∗ β9 = 2β1 ∗ β11 = β2 ∗ β10 + 2q1q3β5,
(2) 2β5 ∗ β9 = 2β1 ∗ β12 = β3 ∗ β10 + 2q2

1q2q3β10,
(3) β9 ∗ (β8 + β9) − q1q2β2 − q2

1q2q3β12 = β3 ∗ β11 + 2q2
1q2q3β11,

(4) β7 ∗β9 +q1q2β2 = β3 ∗β12 +q2
1q2q3β12β6 ∗β9 −β9 ∗ (β8 +β9)+q1q2β2 +

q2
1q2q3β12,

(5) β1 ∗β10 = 2β4 ∗β9 +3β5 ∗β9 −β7 ∗β9 −2β9 ∗ (β8 +β9)+4
∑

d �=0 dqd
1 β4 ∗

β9 + 6
∑

d �=0 dqd
1 β5 ∗ β9.

Proof. First, we look at the identity β9 ∗ (β10 ∗ β11) = (β9 ∗ β10) ∗ β11 = (β9 ∗
β11) ∗ β10. By the computational results before, these terms are, respectively,

β9 ∗ (β10 ∗ β11) = β9 ∗ (β10β11)

= β9 ∗ (2β4) = 2β4 ∗ β9,

(β9 ∗ β10) ∗ β11 = (β9β10) ∗ β11 = 2β1 ∗ β11,

(β9 ∗ β11) ∗ β10 = (β9β11 + q1q3β12) ∗ β10

= β2 ∗ β10 + q1q3β10β12

= β2 ∗ β10 + 2q1q3β5,

thus giving rise to (1).
Now we take the identity β9 ∗ (β10 ∗β12) = β10 ∗ (β9 ∗β12) = (β10 ∗β9)∗β12.

The three sides are β9 ∗ (β10 ∗β12) = β9 ∗ (β10β12) = 2β5 ∗β9, β10 ∗ (β9 ∗β12) =
β10 ∗ (β9β12 + 2q2

1q2q3) = β3 ∗ β10 + 2q2
1q2q3β10, (β10 ∗ β9) ∗ β12 = (β9β10) ∗

β12 = 2β1 ∗ β12. This gives (2).
In the identity β9 ∗ (β11 ∗ β12) = β11 ∗ (β9 ∗ β12), the two sides are β9 ∗ (β11 ∗

β12) = β9 ∗ (β11β12 − q1q2β11) = β9 ∗ (β8 + β9) − q1q2β9 ∗ β11 = β9 ∗ (β8 +
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β9) − q1q2(β9β11 + q1q3β12) = β9 ∗ (β8 + β9) − q1q2β2 − q2
1q2q3β12 and β11 ∗

(β9 ∗ β12) = β11 ∗ (β9β12 + 2q2
1q2q3) = β3 ∗ β11 + 2q2

1q2q3β11. From this we
get (3).

Now we consider the identity β9 ∗ (β12 ∗β12) = (β9 ∗β12)∗β12. The two sides
are equal to

β9 ∗ (β12 ∗ β12) = β9 ∗ (β2
12 + q1q2β11)

= β7 ∗ β9 + q1q2β9 ∗ β11

= β7 ∗ β9 + q1q2(β9β11 + q1q3β12)

= β7 ∗ β9 + q1q2β2 + q2
1q2q3β12,

(β9 ∗ β12) ∗ β12 = (β9β12 + 2q2
1q2q3) ∗ β12

= β3 ∗ β12 + 2q2
1q2q3β12,

verifying (4).
Finally, we look at β9 ∗ (β10 ∗ β10) = (β9 ∗ β10) ∗ β10. The right-hand side is

equal to (β9β10) ∗ β10 = 2β1 ∗ β10, and the left-hand side is equal to(
β2

10 + 8
∑
d �=0

dqd
1 β4 + 12

∑
d �=0

dqd
1 β5

)
∗ β9

=
(

4β4 + 6β5 − 2β7 − 4β8 − 4β9 + 8
∑
d �=0

dqd
1 β4 + 12

∑
d �=0

dqd
1 β5

)
∗ β9

= 4β4 ∗ β9 + 6β5 ∗ β9 − 2β7 ∗ β9 − 4β9 ∗ (β8 + β9)

+ 8
∑
d �=0

dqd
1 β4 ∗ β9 + 12

∑
d �=0

dqd
1 β5 ∗ β9,

proving (5). �

From this lemma we collect the following identities:

β4 ∗ β9 = β1 ∗ β11, β5 ∗ β9 = β1 ∗ β12,

β7 ∗ β9 = β3 ∗ β12 − q1q2β2 + q2
1q2q3β12,

β9 ∗ (β8 + β9) = β3 ∗ β11 + q1q2β2 + 2q2
1q2q3β11 + q2

1q2q3β12.

Substituting all these into the right-hand side of identity (5) and simplifying, we
get

2β1 ∗ β11 + 3β1 ∗ β12 − β3 ∗ β12 − 2β3 ∗ β11 − q1q2β2 − 4q2
1q2q3β11

− 3q2
1q2q3β12 + 4

∑
d �=0

dqd
1 β1 ∗ β11 + 6

∑
d �=0

dqd
1 β1 ∗ β12

= β1 ∗ β10. (4.7)
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Now we equate the corresponding terms at the two sides in front of the same
cohomology class − 1

2β10 to get

2
∑
d

〈β1, β11, β1〉dqd
1 q2q3 + 3

∑
d

〈β1, β12, β1〉dqd
1 q2q3

−
∑
d

〈β3, β12, β1〉dqd
1 q2q3 − 2

∑
d

〈β3, β11, β1〉dqd
1 q2q3

+ 4
∑
l �=0

lql
1

∑
k

〈β1, β11, β1〉kqk
1q2q3 + 6

∑
l �=0

lql
1

∑
k

〈β1, β12, β1〉kqk
1q2q3

=
∑
d

〈β1, β10, β1〉dqd
1 q2q3,

where 〈β1, β11, β1〉d means the genus 0 invariants at the curve class β = dβ1 +
(β2 − β1) + (β3 − β1), and so on. Let 〈β1, β1〉d be denoted as cd . Then from
this equation, integrating out β11, β12 and equating the coefficients for monomial
qd

1 q2q3, we get

(2d − 1)〈β1, β1〉d − 〈β3, β1〉d
+ 6(cd−1 + 2cd−2 + · · · + (d − 1)c1 + dc0) = 0.

(4.8)

Carrying out the same process for the identity 2β1 ∗β12 = β3 ∗β10 + 2q2
1q2q3β10

in Lemma 4.4(2), we obtain

2
∑
d

〈β1, β12, β1〉dqd
1 q2q3 =

∑
d

〈β3, β10, β1〉dqd
1 q2q3 − 4q2

1q2q3,

which implies that, for any d , (d − 2)〈β3, β1〉d = −〈β1, β1〉d , that is, for d �= 2,

〈β3, β1〉d = − 1

d − 2
〈β1, β1〉d .

Putting this back into equation (4.8) and simplifying, we get the recursive relation

cd = − 6(d − 2)

(d − 1)(2d − 3)
(cd−1 + 2cd−2 + · · · + (d − 1)c1 + dc0). (4.9)

Proposition 4.5. Let β = dβ1 + (β2 − β1) + (β3 − β1), and let 〈·, ·〉d denote the
GW-invariants of curve class β .

(1) Let 〈β1, β1〉d = cd . Then, for d > 2, 〈β1, β1〉d can be recursively calculated
by (4.9) with the initial data 〈β1, β1〉0 = 0, 〈β1, β1〉1 = 1, 〈β1, β1〉2 = −2;

(2) 〈β1, β3〉d = − 1
d−2cd for d �= 2 with 〈β1, β3〉2 = 0;

(3) 〈β3, β3〉d = 1/(d − 2)2cd for d �= 2 with 〈β3, β3〉2 = 2.

Proof. (1) and (2) have been proven before with the initial values computed di-
rectly. For (3), using the identity 2β1 ∗ β12 = β3 ∗ β10 + 2q2

1q2q3β10, we get
2〈β1, β12, β3〉d = 〈β3, β10, β3〉d , so for any d , 〈β1, β3〉d = −(d − 2)〈β3, β3〉d .
Plugging this into (2) induces (3). �

These are the complements to the results of Proposition 3.7.
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Finally, we equate the terms at two sides in front of classes − 1
2β5 and 1

2β7,
respectively, in (4.7) to get

2
∑
d

〈β1, β11, β̃〉dqd
1 q3 + 3

∑
d

〈β1, β12, β̃〉dqd
1 q3

−
∑
d

〈β3, β12, β̃〉dqd
1 q3 − 2

∑
d

〈β3, β11, β̃〉dqd
1 q3

+ 4
∑
l �=0

lql
1

∑
k

〈β1, β11, β̃〉kqk
1q3 + 6

∑
l �=0

lql
1

∑
k

〈β1, β12, β̃〉kqk
1q3

=
∑
d

〈β1, β10, β̃〉dqd
1 q3,

where β̃ is equal to either β4 or β6, and the curve class β = dβ1 + (β3 − β1).
After simplifying, this gives rise to two respective equations for β4 and β6:∑

d

〈β1, β4〉dqd
1 q3 + 2

∑
l �=0

lql
1

∑
k

〈β1, β4〉kqk
1q3

= −
∑
d

(d − 1)〈β1, β4〉dqd
1 q3,

∑
d

〈β1, β6〉dqd
1 q3 + 2

∑
l �=0

lql
1

∑
k

〈β1, β6〉kqk
1q3 − 2q1q3

= −
∑
d

(d − 1)〈β1, β6〉dqd
1 q3,

noting that, for β = dβ1 + (β3 − β1),

β · β10 = −2(d − 1), β · β11 = 1, β · β12 = 0

and, by Proposition 3.9, 〈β3, β4〉d = 0 for all d , 〈β3, β6〉d = 0 for d �= 1 and 2 for
d = 1.

Let fd = 〈β1, β4〉d and gd = 〈β1, β6〉d . Then solving these equations, we get

〈β1, β4〉d = fd = − 2

d
(fd−1 + 2fd−2 + · · · + (d − 1)f1 + df0), ∀d,

〈β1, β6〉d = gd = − 2

d
(gd−1 + 2gd−2 + · · · + (d − 1)g1 + dg0), d > 1.

Their initial values by localization are

〈β1, β4〉0 = 1, 〈β1, β4〉1 = −2; 〈β1, β6〉0 = 1, 〈β1, β6〉1 = 0.

From the identity 2β1 ∗ β11 = β2 ∗ β10 + 2q1q3β5 in Lemma 4.4(1), we again
equate the terms at two sides in front of classes − 1

2β5 and 1
2β7, respectively, to

get

2
∑
d

〈β1, β11, β4〉dqd
1 q3 =

∑
d

〈β2, β10, β4〉dqd
1 q3 − 4q1q3,

2
∑
d

〈β1, β11, β6〉dqd
1 q3 =

∑
d

〈β2, β10, β6〉dqd
1 q3,
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or ∑
d

〈β1, β4〉dqd
1 q3 = −

∑
d

(d − 1)〈β2, β4〉dqd
1 q3 − 2q1q3,

∑
d

〈β1, β6〉dqd
1 q3 = −

∑
d

(d − 1)〈β2, β6〉dqd
1 q3.

So, for any d > 1,

〈β1, β4〉d = −(d − 1)〈β2, β4〉d ,

〈β1, β6〉d = −(d − 1)〈β2, β6〉d ,

and hence

〈β2, β4〉d = − 1

d − 1
fd,

〈β2, β6〉d = − 1

d − 1
gd.

Their initial values are

〈β2, β4〉0 = 1, 〈β2, β4〉1 = 0; 〈β2, β6〉0 = 1, 〈β2, β6〉1 = 1.

Thus the computations in Proposition 3.9 are completed. So, at this point, we have
computed all two-pointed Gromov–Witten invariants of the Hilbert scheme.

Acknowledgments. This paper is the partial results of the Ph.D. thesis of the
author from the University of Illinois. The author would like to express his grat-
itude to his advisor Sheldon Katz for his constant encouragements and helpful
suggestions and would also like to thank one of the referees for suggestions of
improvements for the manuscript.

References

[1] V. V. Batyrev, Quantum cohomology rings of toric varieties, Astérisque 218 (1993),
9–34.

[2] A. Bertram, G. Daskalopoulos, and R. Wenthworth, Gromov invariants for holomor-
phic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996),
no. 2, 529–571.

[3] I. Ciocan-Fontanine, Quantum cohomology of flag varieties, Int. Math. Res. Not.
IMRN 1995, no. 6, 263–277.

[4] D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry, Math. Surveys
Monogr., 68, American Mathematical Society, Providence, RI, 1999.

[5] D. Edidin, W.-P. Li, and Z. Qin, Gromov–Witten invariants of the Hilbert scheme of
3-points on P2, Asian J. Math. 7 (2003), no. 4, 551–574.

[6] Y. Fu, Quantum cohomology of a Hilbert scheme of a Hirzebruch surface, Ph.D.
thesis, University of Illinois at Urbana-Champaign, 2010.

[7] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag,
Berlin, 1984.

[8] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology,
Algebraic geometry—Santa Cruz, 1995, Proc. Sympos. Pure Math., 62, pp. 45–96,
Amer. Math. Soc., Providence, RI, 1997.



Gromov–Witten Invariants of the Hilbert Scheme 713

[9] T. Graber, Enumerative geometry of hyperelliptic plane curves, J. Algebraic Geom.
10 (2001), no. 4, 725–755.

[10] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135
(1999), no. 2, 487–518.

[11] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, Inc.,
1978.

[12] R. Hartshorne, Algebraic geometry, Springer Verlag, New York, 1977.
[13] W.-P. Li and Z. Qin, On 1-point Gromov–Witten invariants of the Hilbert schemes of

points on surfaces, Turkish J. Math. 26 (2002), no. 1, 53–68.
[14] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, Amer. Math. Soc.,

Providence, RI, 1999.
[15] A. Okounkov and R. Pandharipande, Quantum cohomology of the Hilbert scheme of

points of the plane, Invent. Math. 179 (2010), no. 3, 523–557.
[16] D. Pontoni, Quantum cohomology of Hilb2(P 1 ×P 1) and enumerative applications,

Trans. Amer. Math. Soc. 359 (2007), no. 11, 5419–5448.

College of Mathematics and
Statistics

Chongqing University of Technology
Banan District, Chongqing 400054
China

yong-fu@hotmail.com

mailto:yong-fu@hotmail.com

	Introduction
	Background
	The Hilbert Scheme of Two Points over an Algebraic Surface
	Torus Action on Hilbert Schemes
	Invariant Curves

	Computations of Gromov-Witten Invariants
	Connected Components Analysis
	One-Point Gromov-Witten Invariants
	Two-Point Gromov-Witten Invariants

	Other Two-Pointed Gromov-Witten Invariants
	Quantum Product of Generators
	Associativity of Quantum Product

	Acknowledgments
	References
	Author's Addresses

