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Differentiability Inside Sets with
Minkowski Dimension One

Michael Dymond & Olga Maleva

Abstract. We investigate Minkowski, or box-counting, dimension of
universal differentiability sets of Lipschitz functions. Whilst existing
results concern the Lebesgue measure and Hausdorff dimension of
these fractal sets, the Minkowski dimension is stronger than Haus-
dorff, and we demonstrate that the lower bound one on Minkowski
dimension is tight for any Euclidean space. Spaces other than the real
line allow for a further refinement of the bound: the 1-Hausdorff mea-
sure of such sets must be infinite.

1. Introduction

Background and Overview of Main Results

In the present paper, we answer a natural question pointed out by Olsen in 2009,
whether there is a universal differentiability set of Minkowski dimension one.
Our answer is affirmative: a compact universal differentiability set with upper
and lower Minkowski dimension one in R

d , for all d , is constructed explicitly.
Namely, we prove a stronger statement:

Theorem (Theorem 5.6(1)). For every d ≥ 1, there exists a compact subset S ⊆
R

d of Minkowski dimension one such that for any Lipschitz function g : Rd → R,
the set of points x ∈ S such that g is Fréchet differentiable at x is a dense subset
of S.

Recall that Lipschitz functions on Banach spaces have rather strong differentia-
bility properties. The classical Rademacher theorem says that Lipschitz functions
f : Rd → R are differentiable almost everywhere with respect to the Lebesgue
measure. For d = 1, the converse statement also holds: Each subset N of R with
Lebesgue measure zero admits a Lipschitz function nowhere differentiable on N ;
see [14; 7]. However, Preiss [11] proved that all Euclidean spaces of dimension
higher than one contain Lebesgue null sets that capture a point of differentiability
of every Lipschitz function on the space.

Sets containing a point of differentiability of every Lipschitz function are said
to have the universal differentiability property and are called universal differen-
tiability sets (UDS). The result of [11] has sparked a modern investigation into
the nature of such sets. Clearly, the set S in Theorem 5.6 quoted is a UDS.
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One of the central questions about universal differentiability sets is how small
they can be. To detect smaller universal differentiability sets, we must appeal
to various other notions of size in addition to the Lebesgue measure. Doré and
Maleva [2; 4] prove that every Euclidean space contains compact universal dif-
ferentiability sets of Hausdorff dimension one. This result is also shown to be
optimal: any set of Hausdorff dimension smaller than one fails to be a UDS. See
also [3; 13] for further investigation of the universal differentiability property in
infinite-dimensional spaces and for mappings with higher-dimensional codomain.

The Minkowski dimension is a much finer tool for distinguishing between
small sets than the Hausdorff dimension. Indeed, dimH (A) ≤ dimM(A) ≤
dimM(A) for any set A. Sets where the lower Minkowski dimension dimM(A)

and upper Minkowski dimension dimM(A) coincide with value p are said to have
Minkowski dimension p. Universal differentiability sets constructed in [11] are
dense in R

d and have Hausdorff dimension 1 and Minkowski dimension d . In [4;
3], the UDS are compact but still have Hausdorff dimension 1 and Minkowski
dimension d . The methods employed in [11; 4; 3] fail to achieve a breakthrough
on Minkowski dimension. This motivates a new way to construct fractal sets de-
veloped in the present paper.

In addition to uncovering universal differentiability sets, which are, in the sense
of the Minkowski dimension, smaller than all previous known examples, we also
establish a new restriction on the minimal possible size of UDS. We prove in
Theorem 2.2 and Corollary 2.3 that any universal differentiability set must have
infinite one-dimensional Hausdorff measure.

Theorem (Theorem 2.2). Let S ⊆ R
d , where d ≥ 2, be an H1-measurable set of

finite one-dimensional Hausdorff measure

H1(S) = lim inf
ε→0+

{∑
diam(Si) : S ⊆

∞⋃
i=1

Si and diam(Si) ≤ ε

}
.

Then S is a nonuniversal differentiability set.

This indicates that our main result is optimal in the following sense: Denoting,
for a set S ⊆ R

d , the minimal number of ε-cubes (defined in (4.1)) needed to
cover S by Nε(S), the universal differentiability set U that we construct satisfies
lim supε→0 Nε(U)εp = 0 whenever p > 1. In contrast, any universal differentia-
bility set E must satisfy lim infε→0 Nε(E)ε = ∞.

This naturally leads to a question: describe all exact dimension functions f (x),
asymptotically (as x → 0) between x and xp for all p > 1, that necessarily deter-
mine a nonuniversal differentiability set. See [10] for more information on exact
dimension functions.

The Idea of Construction

To get a universal differentiability set of Minkowski dimension one, it is necessary
to control the number Nδ as δ → 0. The set we construct will be defined by an
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inductive procedure. The final set is the intersection of the sets described in the
nth step, over all n ≥ 1.

Let us explain first how to get the lower Minkowski dimension, in other words,
to only control Nδ for a specific sequence δ = δn ↘ 0. Assume that p > 1 is a
fixed number and we want to make sure that the set to be constructed has lower
Minkowski dimension less than p. Imagine that we have reached the nth step of
the construction where we require Nδnδ

p
n < 1. The idea for the next step is to

divide each δn-cube by a Kn × · · · × Kn grid into smaller δn+1 = δn/Kn-cubes.
If Kn is big enough, then since δ

p
n /δ

p

n+1 = K
p
n , we are free to choose inside the

given δn-cube any number of δn+1-cubes up to K
p
n . We then have that the product

Nδn+1δ
p

n+1 is bounded by 1 from above as well. Since this is satisfied for all n, we
conclude that dimM(S) ≤ p. Since this is true for every p > 1, we obtain a set of
lower Minkowski dimension 1.

Getting the inequality for the upper dimension dimM(S) ≤ 1 is more intricate.
As n grows, the sequence Kn must tend to infinity. Otherwise, we would get
many points of porosity inside S (see below for the definition and discussion of
porosity). In order to prove that dimM(S) ≤ p, we should be able to show that
there exists δ0 > 0 such that for every δ ∈ (0, δ0), the set S can be covered by
a controlled number Nδ of δ-cubes. In other words, Nδδ

p should stay bounded
for all δ below a certain threshold. Choosing n such that δn+1 < δ ≤ δn gives
Nδδ

p ≤ Nδn+1δ
p
n = Nδn+1δ

p

n+1K
p
n , and the factor K

p
n → ∞ makes it impossible

to have a constant upper estimate for Nδδ
p . The idea here is that we need to leave

a “gap” for an unbounded sequence in the upper estimate for Nδn+1δ
p

n+1 and to
make sure that K

p
n fits inside that gap. The realization of that gap is inequality

(4.18).
The success of the construction of course depends on being able to show that

the set obtained has universal differentiability property. This is achieved by mak-
ing sure that the set satisfies the “layering property”, proved to be sufficient for
universal differentiability in Section 3. The latter requires that the set is closed
and that arbitrarily close to each of its points the set contains, at all scales below
a certain threshold, line segments of length proportional to their distance to the
point. We achieve this by carefully positioning such line segments at each step
of the construction and defining the final set as an intersection of closed tubular
neighborhoods of these. The difficulty of the construction arises due to the ne-
cessity of including tubes of length bounded from below whilst controlling upper
estimates for Nδ .

To conclude, let us briefly explain why we should be concerned about poros-
ity points. A set W is called porous if there is λ ∈ (0,1) such that for all x ∈ W

and ε > 0, there is y such that 0 < ‖y‖ < ε and B(x + y,λ‖y‖) ∩ W = ∅. If
W is porous, then the distance to W , f (·) = dist(·,W), is a 1-Lipschitz function
not differentiable at every x ∈ W . Since our aim is to construct a universal dif-
ferentiability set, we try to avoid as much as possible constructions that lead to
a set with many porosity points. More information about porous and σ -porous
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sets (countable unions of porous sets) can be found in the survey [15], and a fur-
ther discussion of relations between problems about differentiability of Lipschitz
functions and the theory of porous and σ -porous sets is presented in the recent
book [8].

Structure of the Paper

We begin, in Section 2, by proving Theorem 2.2, which implies that any univer-
sal differentiability set in R

d , with d ≥ 2, has infinite one-dimensional Hausdorff
measure. From this we show that our next main result, the existence of a universal
differentiability set with Minkowski dimension one, is optimal in many respects.
In Section 3, we establish a sufficient condition for the universal differentiability
property, which we use later in Section 5. Section 4 is devoted to the construction
of a family of nested closed sets of Minkowski dimension one for which we later
verify the universal differentiability property. Finally, in Section 5, we apply the
result established in Section 3 to describe a compact universal differentiability
set of Minkowski dimension 1 and obtain our main result, Theorem 5.6, which
guarantees the existence of a universal differentiability set S of Minkowski di-
mension 1 in which any Lipschitz function is differentiable on a dense subset. We
moreover obtain the following quantitative estimate on the set S we construct:

Theorem (Theorem 5.6(2)). For any pair of integer sequences sk , Pk satisfying
sk,Pk → ∞, a universal differentiability set S ⊆ R

d , satisfying Theorem 5.6(1),
can be constructed so that for each n ≥ 1, the set S may be covered by 1

δ

∏n
k=1 s

Pk

k

boxes with side δ = Q−(s1+···+sn), where Q ∈ (1,2] is fixed.

2. Optimality

We begin by defining the key notion of Lipschitz condition and of differentiability
of a real-valued function f on a Banach space X.

A function f : X → R is said to be Fréchet differentiable at a point x ∈ X if
the limit

f ′(x, e) = lim
t→0

f (x + te) − f (x)

t

exists uniformly in e ∈ B(0,1) and is a bounded linear map.
A function f : X → R is called Lipschitz if there exists L > 0 such that

|f (y) − f (x)| ≤ L‖y − x‖X for all x, y ∈ X with y �= x. If f : X → R is a Lips-
chitz function, then the number

Lip(f ) = sup

{ |f (y) − f (x)|
‖y − x‖X

: x, y ∈ X,y �= x

}
is finite and is called the Lipschitz constant of f .

An analytic set S in a separable space X is called a universal differentiability
set if for every Lipschitz function f : X → R, there exists x ∈ S such that f

is Fréchet differentiable at x. A set S ⊆ X for which one can find a Lipschitz
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function not Fréchet differentiable at any x ∈ S is referred to as a nonuniversal
differentiability set.

Before turning our attention to verifying the existence of a compact universal
differentiability set of Minkowski dimension one in R

d , let us first demonstrate
that, in many ways, this result is the best possible.

Firstly, we emphasise that there are no universal differentiability sets that have
Minkowski dimension, or even Hausdorff dimension, smaller than one; from [4,
Lemma 1.2] we have that any universal differentiability set S ⊆ R

d satisfies
dimM(S) ≥ dimH (S) ≥ 1.

Supposing that there exists a universal differentiability set S with Minkowksi
dimension equal to one, we have that lim supε→0 Nε(S)εp = 0 whenever p > 1.
It is then natural to ask whether we can do better: Can we find S with
lim supε→0 Nε(S)ε = 0 or even lim infε→0 Nε(S)ε < ∞? In the present section,
we prove that when d ≥ 2, these stronger conditions are impossible to achieve and
that any universal differentiability set in R

d must have infinite one-dimensional
Hausdorff measure. In other words, if f (x) = x is an exact dimension function
(see [10]) for a set E, then E must be a nonuniversal differentiability set.

The following lemma is a general statement about universal differentiability
sets.

Lemma 2.1. If X is a Banach space and A,B ⊆ X are such that A is a nonuni-
versal differentiability set and there is a nonzero continuous linear mapping
P : X → R such that the Lebesgue measure of P(B) is zero, then the union
S = A ∪ B is a nonuniversal differentiability set.

Proof. Since A is a nonuniversal differentiability set, there exists a (nonzero) Lip-
schitz function f : X → R that is not Fréchet differentiable at any x ∈ A.

Since C = P(B) ⊆ R has measure zero, there exists a Gδ set C′ ⊇ C of mea-
sure zero. By [7, Thm. 1]1 there exists a Lipschitz function g : R → R that is
differentiable everywhere outside C′ and for every x ∈ C′,

g′+(t) = lim sup
s→t

g(s) − g(t)

s − t
= 1 and g′−(t) = lim inf

s→t

g(s) − g(t)

s − t
= −1.

Let e ∈ X be such that Pe = 1. Define the Lipschitz function f̃ : X → R by

f̃ (x) = 1

2‖e‖Lip(f )
f (x) + g(P (x)).

Note that if x ∈ S and P(x) ∈ C′, then f̃ ′+(x, e) − f̃ ′−(x, e) ≥ 1, where f̃ ′±(x, e)

denote directional upper/lower derivatives of f̃ . Thus, f̃ is not Fréchet differen-
tiable at x.

If x ∈ S and P(x) /∈ C′, then x ∈ A, which implies that f is not Fréchet dif-
ferentiable at x. However, P(x) /∈ C′ means that g(P (·)) is differentiable at x, so
that f̃ is not Fréchet differentiable at x.

1Paper [7] gives a new proof of the characterisation of sets of nondifferentiability points of Lipschitz
functions on R. This characterisation was first given by Zahorski [14]. The existence of the
function g follows from the proof of [14, Lemma 8].



618 Michael Dymond & Olga Maleva

This implies that the Lipschitz function f̃ is not Fréchet differentiable at any
x ∈ S, and hence S is a nonuniversal differentiability set. �

Theorem 2.2. Let S ⊆ R
d , where d ≥ 2, be an H1-measurable set of finite one-

dimensional Hausdorff measure

H1(S) = lim inf
ε→0+

{∑
diam(Si) : S ⊆

∞⋃
i=1

Si and diam(Si) ≤ ε

}
.

Then S is a nonuniversal differentiability set.

Proof. Since H1(S) < ∞, by Federer’s structure theorem [6, 3.3.13] S can be
decomposed into a union S = A′ ∪B ′, where A′ is H1-rectifiable, and B ′ has pro-
jection of one-dimensional Lebesgue measure zero for almost all one-dimensional
subspaces of Rd .

The fact that A′ is H1-rectifiable means that there exists a countable collec-
tion of one-dimensional Lipschitz curves γi : [0,1] → R

d such that H1(A′ \⋃∞
i=1 �i) = 0, where �i = γi([0,1]). Note that the union of curves A = ⋃∞

i=1 �i

is a σ -porous set (in fact, a countable union of closed porous sets) since each �i

is porous (and closed). By [1, Thm. 6.48] (see also [12]) we can conclude that A

is a nonuniversal differentiability set.
Define now B = B ′ ∪ (A′ \ A). Fix any line L such that the projection of B ′

onto L, projL(B ′), has one-dimensional Lebesgue measure zero. Since H1(A′ \
A) = 0, we conclude that projL(B) has one-dimensional Lebesgue measure zero
too.

It remains to apply Lemma 2.1 to A,B ⊆ R
d and P = projL and to note that

S ⊆ A ∪ B to get that S is a nonuniversal differentiability set. �

Corollary 2.3. Let S ⊆ R
d , where d ≥ 2, be a universal differentiability set.

Then lim infε→0 Nε(S)ε = ∞, where Nε(S) is defined according to Defini-
tion 4.1.

Proof. We see that lim infε→0 Nε(S)ε ≥ 1
2H1(S), and the latter must be infinite

for a universal differentiability set by Theorem 2.2. �

Remark. The proof of Corollary 2.3 works if Nε(S) is the minimal number of
Euclidean balls of radius ε needed to cover the set S. We will later switch to
covering the set by ε-cubes (see Definition 4.1) that are rotated �∞-balls of ra-
dius ε and prove that for the compact universal differentiability set, we construct,
limε→0 Ncubes

ε (S)εp = 0 for every p > 1. Note that since

NEucl. balls
ε ≥ Ncubes

ε ≥ NEucl. balls
ε
√

d
,

we get lim infε→0 Ncubes
ε (S)ε = ∞ for any universal differentiability set in R

d ,
d ≥ 2. However, for the compact universal differentiability set, we construct we
have limε→0 NEucl. balls

ε (S)εp = 0 for every p > 1.
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3. Differentiability

In this section, we prove a sufficient condition for a set to have the universal
differentiability property. Proposition 3.2 is based on [3, Lemma 3.5] and says
that the universal differentiability property is satisfied for all sets S that can be
decomposed into layers with the geometric property that every point in S can
be approximated, in a special way, by line segments contained in a nearby layer
of S. We prove this theorem in any Banach space with separable dual and use it
for X = R

d in Section 5 to show that the sets (4.17) constructed in Section 4 are
in fact closed universal differentiability sets of Minkowski dimension one.

Let (M,‖ · ‖) be a normed space. We call the set WM := M3 of triples from
M the wedge space of M , and we define the metric on WM by

d(t ′, t) = max
1≤i≤3

‖t ′i − ti‖

for t = (t1, t2, t3) and t ′ = (t ′1, t ′2, t ′3). Of course, the distance d depends on the
norm chosen on M .

Given t ∈WM , we call the union of segments W(t) = [t1, t2]∪[t2, t3] a wedge.
Note that triples (t1, t2, t3) and (t3, t2, t1) correspond to the same wedge for any
t1, t2, t3 ∈ M although the distance between them is not zero in general.

For α > 0 and subsets S1, S2 ⊆ M , we say that S1 is an α-wedge approximation
for S2 if for any t ∈ WM with W(t) ⊆ S2, there exists t ′ ∈ WM with W(t ′) ⊆ S1
and d(t ′, t) ≤ α.

Lemma 3.1 is a restatement of [3, Lemma 3.5].

Lemma 3.1. Let X be a Banach space with separable dual, and (W, d) =
(WX,d) be the wedge space equipped with the standard wedge distance. Sup-
pose that the nested collection (Tλ)0≤λ≤1 of nonempty closed subsets of X satis-
fies the condition that for any η > 0, λ ∈ (0,1], and x ∈ ⋃

0≤λ′<λ Tλ′ , there is a
δ1 = δ1(η,λ, x) > 0 such that for all δ ∈ (0, δ1) the set Tλ is an ηδ-wedge approx-
imation for Bδ(x).

Then, for each λ ∈ (0,1], the set Tλ is a closed universal differentiability set.
Furthermore, for every Lipschitz function g : X → R, the set Dg,λ of points x ∈ Tλ

where g is Fréchet differentiable is dense in Tλ. Moreover, for any 0 ≤ λ′ < λ ≤ 1,
x ∈ Tλ′ , r > 0, and any nonzero continuous linear map P : X → R, there exists
a bounded open interval I containing Px such that the set I \ P(Dg,λ ∩ Br(x))

has Lebesgue measure 0.

Proposition 3.2. Let X be a Banach space with separable dual. Suppose that
(Uλ)λ∈[0,1] is a family of closed subsets of X satisfying Uλ1 ⊆ Uλ2 whenever 0 ≤
λ1 ≤ λ2 ≤ 1. Suppose further that for any η ∈ (0,1), λ ∈ [0,1), and ψ ∈ (0,1 −
λ), there exists

�1 = �1(η,λ,ψ) > 0

such that whenever x ∈ Uλ, δ ∈ (0,�1), and v1, v2, v3 are in the open unit ball
in X, there exist v′

1, v
′
2, v

′
3 ∈ X such that ‖v′

i − vi‖ ≤ η and [x + δv′
1, x + δv′

3] ∪
[x + δv′

3, x + δv′
2] ⊆ Uλ+ψ . Then, for each λ ∈ (0,1], the set Uλ is a universal
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differentiability set, and for every Lipschitz function g : X → R, the set Dg,λ of
points x ∈ Uλ where g is Fréchet differentiable is dense in Uλ.

Proof. Define Tλ := Uλ, a nested collection of nonempty closed subsets of X.
Let η > 0, λ ∈ (0,1], and x ∈ Tλ′ = Uλ′ for some λ′ ∈ [0, λ) be fixed; let ψ =
λ − λ′ and δ1 = �1(η,λ,ψ). We show that for every δ ∈ (0, δ1), the set Tλ is an
ηδ-wedge approximation of Bδ(x). Indeed, take any wedge W(t) ⊆ Bδ(x) and
let vi = (ti − x)/δ. Since δ ∈ (0,�1) and ‖vi‖ < 1, there exist v′

1, v
′
2, v

′
3 ∈ X

such that ‖v′
i − vi‖ ≤ η and [x + δv′

1, x + δv′
3] ∪ [x + δv′

3, x + δv′
2] ⊆ Uλ′+ψ =

Uλ = Tλ. Denoting t ′i = x + δv′
i , we get W(t ′) ⊆ Tλ and d(t ′, t) = δ sup‖v′

i −
vi‖ ≤ ηδ. Hence, Lemma 3.1 proves the statement. �

Remark 3.3. The “moreover” property from Lemma 3.1 is also satisfied for Uλ.

4. The Set

We let d ≥ 2 and construct a universal differentiability set of upper Minkowski
dimension one in R

d . There are many equivalent ways of defining the (upper and
lower) Minkowski dimension of a bounded subset of Rd ; several examples can
be found in [9, p. 41–45]. The equivalent definition given further will be most
convenient for our use. We let Sd−1 denote the unit sphere in R

d . By an ε-cube
with center x ∈ R

d , parallel to e ∈ Sd−1, we mean any subset of Rd of the form

C(x, ε, e) =
{
x +

d∑
i=1

tiei : e1 = e, ti ∈ [−ε, ε]
}
, (4.1)

where e2, . . . , ed ∈ Sd−1 and 〈ei, ej 〉 = 0 whenever 1 ≤ i �= j ≤ d .

Definition 4.1. Given a bounded subset A of Rd and ε > 0, we denote by Nε(A)

the minimum number of (closed) ε-cubes required to cover A. That is, Nε(A) is
the smallest integer n for which there exist ε-cubes C1,C2, . . . ,Cn such that

A ⊆
n⋃

i=1

Ci.

We define the upper Minkowski dimension (respectively lower Minkowski dimen-
sion) of A by

dimM(A) = inf
{
s > 0 : lim sup

ε→0+
Nε(A)εs = 0

}
(

respectively dimM(A) = inf
{
s > 0 : lim inf

ε→0+ Nε(A)εs = 0
})

.

For a point x ∈ R
d and w > 0, we shall write Bw(x) for the closed ball with center

x and radius w with respect to the Euclidean norm. For a bounded subset V of
R

d , we let Bw(V ) = ⋃
x∈V Bw(x). The cardinality of a finite set F is denoted

by |F |. Given a real number α, we write [α] for the integer part of α.
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Fix two sequences of positive integers (sk) and (Mk) such that the following
conditions are satisfied:

4 ≤ Mk + 1 ≤ sk, Mk, sk → ∞,
Mk log sk

sk
→ 0, (4.2)

and there exists a sequence s̃k ≥ sk such that

s̃k − s̃k−1

sk
→ 0. (4.3)

Remark 4.2. Before we explain how sequences sk and Mk satisfying (4.2) and
(4.3) can be chosen, we note that in order to prove that the set Uλ as in (4.17) is a
universal differentiability set, we only use that

sk,Mk → ∞ and Mk/sk → 0.

This can be seen from the proof of Lemma 5.4. The rest of conditions in (4.2)
and (4.3) are needed to prove that the Minkowski dimension of the set Uλ is equal
to 1.

Note that if there exists a sequence s̃k ≥ sk such that the sequence (s̃k − s̃k−1)k≥2
is bounded and sk → ∞, then (4.3) is satisfied. Hence, an example of sequences
(sk), (s̃k) satisfying (4.2) and (4.3) is s̃k = ak + b with a > 0 and any integer
sequence sk → ∞ such that 3 ≤ sk ≤ s̃k .

We also remark that if sk → ∞ is such that
sk

sk+1
→ 1, (4.4)

then (4.3) is satisfied with s̃k = sk . Indeed, in such case, (s̃k − s̃k−1)/sk = 1 −
sk−1/sk → 0.

An example of an integer sequence sk → ∞ satisfying condition (4.4) is sk =
max{3, [F(k)]}, where F(x) has the form F(x) = ∑

λ∈
 aλx
λ where 
 is a finite

subset of R, aλ ∈R, and both max
 > 0 and amax
 > 0. Also, whenever sk → ∞
satisfies condition (4.4), the sequence s′

k = [log sk] also satisfies this condition and
tends to infinity.

Once (sk) is defined, there is much freedom to choose (Mk). For example, we
may take Mk = max{3, [sα

k ]} with α ∈ (0,1) or Mk = max{3, [log sk]}, et cetera.
Having defined the sequences (sk) and (Mk), we fix a number Q ∈ (1,2] and

introduce the sequence (wk) defined by

w1 = Q−s1 , wk = Q−skwk−1, k ≥ 2. (4.5)

We further fix two integer sequences (Ak) and (Bk) such that 1 ≤ Ak , Bk ≤ sk ,
Ak,Bk → ∞, and Mk/Bk → 0.

For each k ≥ 1, let Ek be a maximal 1/Ak-separated subset of Sd−1. We note
the following two properties of the sets Ek :

|Ek| ≤ A2d
k and ∀e ∈ Sd−1 ∃e′ ∈ Ek s.t. ‖e − e′‖ ≤ 1

Ak

. (4.6)
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Definition 4.3. Given a line segment l = x + [a, b]e ⊆ R
d and 0 < w <

length(l)/2, define Fw(l) to be a finite collection of w-cubes of the form
C(xi,w, e), defined by (4.1), with xi ∈ l, such that

Bw(l) ⊆
⋃

C∈Fw(l)

C and |Fw(l)| < length(l)

w
. (4.7)

Let l1 be a line segment in R
d of length greater than 2w1 and set L1 = {l1}. We

refer to the collection L1 as “the lines of level 1”.
Suppose that k ≥ 2 and that we have defined the collections Lr of lines of

level r for integers r = 1,2, . . . , k − 1. Before we describe how to construct the
lines of the kth level, let us first explain roughly how these line segments take
part in the construction of our final set. Our final set is defined as the intersection
of countably many layers, where the kth layer can be thought of as the union of
wk-neighborhoods of the lines in the collection Lk . To calculate the Minkowski
dimension of this intersection, we compute, for each k, the number of wk-cubes
needed to cover the kth layer.

The collection Lk will be partitioned into exactly Mk + 1 classes. Having con-
structed the lines of class m, we construct the lines of class m + 1 with the in-
tention of providing “good” approximations of wedges in a wk−1-neighborhood
of each line of class m, in the spirit of Section 3. The precise meaning of “good”
here depends on the level k of the construction: At level k, we add line segments
that provide αkwk-wedge approximations, and we ensure that αk ↘ 0 as k → ∞.
In the context of Lemma 3.1, the sequence wk ↘ 0 will be used to approximate δ

whilst the sequence αk ↘ 0 corresponds to η.
Each class of line segments in the collection Lk will be further partitioned into

categories according to the length of the lines. This will allow for the control and
the calculation of the Minkowski dimension of our set. Each category consists
of lines of equal length, and the length of these line segments governs the density
with which they should occur: the wedge approximation property of Section 3 can
be achieved if line segments of length δ occur with density proportional to δ. Thus,
it is natural to group the line segments based on their lengths, and the partition of
Lk into categories enables the efficient computation of the number of wk-cubes
needed to cover the kth layer.

We first define the collections of lines of level k, class 0, by

L(k,0) = Lk−1. (4.8)

We will say that all lines of level k, class 0, have the empty category.

Definition 4.4. Given a bounded line segment l ⊆ R
d , an integer j ≥ 1 with

length(l) ≥ Qjwk/Bk , and a direction e ∈ Sd−1, we define a collection of line
segments Rl,k(j, e) as follows: Let � ⊆ l be a maximal Qjwk/Bk-separated set
and define

Rl,k(j, e) = {φx : x ∈ �},
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where φx is the line given by

φx = x + [−1,1]Qjwke. (4.9)

We note for future reference that

|Rl,k(j, e)| ≤ 2Bk length(l)

Qjwk

. (4.10)

For j ∈ {1,2, . . . , sk}, we define the collection of lines of level k, class 1, category
(j), by

L(j)

(k,1) =
⋃

l∈L(k,0)

⋃
e∈Ek

Rl,k(j, e). (4.11)

We emphasise that all the lines in L(j)

(k,1)
have the same length. Indeed, from Def-

inition 4.4 we get

length(l) = 2Qjwk for all lines l ∈ L(j)

(k,1).

The collection L(k,1) is now defined by

L(k,1) =
⋃

1≤j≤sk

L(j)

(k,1).

Suppose that 1 ≤ m < Mk and that we have defined the collection L(k,m). Assume
that this collection is partitioned into categories

L(j1,...,jm)

(k,m)

where the ji are integers satisfying

1 ≤ ji+1 ≤ ji ≤ sk for all i. (4.12)

For an integer sequence (j1, . . . , jm, jm+1) satisfying (4.12), we define the col-
lection of lines of level k, class (m + 1), category (j1, . . . , jm+1), by

L(j1,...,jm+1)

(k,m+1) =
⋃

l∈L(j1,...,jm)

(k,m)

( ⋃
e∈Ek

Rl,k(jm+1, e)

)
, (4.13)

and we set

L(k,m) =
⋃

(j1,...,jm+1)

L(j1,...,jm+1)

(k,m+1) .

Finally, the collection of lines of level k is defined by

Lk =
⋃

0≤m≤Mk

L(k,m).

This completes the construction of lines of all levels, classes, and categories.
For k ≥ 1, we let

Ck =
⋃
l∈Lk

Fwk
(l).
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It is immediate from Definition 4.3 that Ck is a cover of the set⋃
l∈Lk

Bwk
(l).

Lemma 4.5. For all k ≥ 2, 0 ≤ m ≤ Mk , and (j1, . . . , jm), the collection
L(j1,...,jm)

(k,m)
satisfies ∑

l∈L(j1,...,jm)

(k,m)

length(l) ≤ 2|Ck−1|(4sk|Ek|)mQskwk.

Proof. Using the definition of the collections L(k,0) and Ck−1, we may conclude
that every line l ∈ L(k,0) is covered by cubes in Fwk−1(l) ⊆ Ck−1. Each cube in
Fwk−1(l) intersects l in a line segment of length at most 2wk−1. Therefore, we
have that ∑

l∈L(k,0)

length(l) ≤ 2|Ck−1|wk−1 = 2|Ck−1|Qskwk.

Hence, the statement of the lemma holds for m = 0.
Suppose that m ≥ 0 and that the statement of the lemma holds for m. Using

(4.13) and (4.10), we deduce

|L(j1,...,jm+1)

(k,m+1)
| ≤ 2Bk|Ek|w−1

k Q−jm+1
∑

l∈L(j1,...,jm)

(k,m)

length(l)

≤ |Ck−1|(4Bk|Ek|)m+1Qsk−jm+1 . (4.14)

Each line in the collection L(j1,...,jm+1)

(k,m+1) has length 2Qjm+1wk . Therefore, the total
length may be estimated by∑

l∈L(j1,...,jm+1)

(k,m+1)

length(l) ≤ |L(j1,...,jm+1)

(k,m+1)
|2Qjm+1

≤ 2|Ck−1|(4Bk|Ek|)m+1Qskwk. �

In the next lemma, we establish an upper bound on the size of the collection Ck .

Lemma 4.6. For each k ≥ 2, the collection Ck satisfies

|Ck| ≤ 2(Mk + 1)|Ck−1|(4skA
2d
k Bk)

MkQsk . (4.15)

Proof. Using (4.7) and Lemma 4.5, we may write

|Ck| ≤
∑

0≤m≤Mk

∑
(j1,...,jm)

∑
l∈L(j1,...,jm)

(k,m)

|Fwk
(l)|

≤ 1

wk

∑
0≤m≤Mk

∑
(j1,...,jm)

( ∑
l∈L(j1,...,jm)

(k,m)

length(l)

)
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≤ 1

wk

∑
0≤m≤Mk

∑
(j1,...,jm)

(2|Ck−1|(4Bk|Ek|)mQskwk)

≤ 2(Mk + 1)|Ck−1|(4skBk|Ek|)MkQsk .

It remains to apply (4.6) to get the final estimate. �

Remark 4.7. Since Ak,Bk ≤ sk and 4 ≤ Mk + 1 ≤ sk , we have that

|Ck|
|Ck−1| ≤ s

(3+2d)Mk+2
k Qsk . (4.16)

In fact, Lemma 4.6 proves a much better estimate since Ak , Bk may be chosen to
grow substantially slower than sk .

We now define a collection of closed sets (Uλ)λ∈[0,1]. Eventually, we will show
that each Uλ with λ ∈ (0,1] is a compact universal differentiability set of
Minkowski dimension one.

Definition 4.8. For λ ∈ [0,1], we let

Uλ =
∞⋂

k=1

( ⋃
0≤mk≤λMk

( ⋃
l∈L(k,mk)

Bλwk
(l)

))
. (4.17)

We emphasise that the single line segment l1 of level 1 is contained in the set
Uλ for every λ ∈ [0,1]. Hence, every Uλ is nonempty. Note also that Uλ1 ⊆ Uλ2

whenever 0 ≤ λ1 ≤ λ2 ≤ 1. Finally, since the unions in (4.17) are finite, it is clear
that for each 0 ≤ λ ≤ 1, the set Uλ is closed.

Lemma 4.9. For λ ∈ [0,1], the set Uλ has Minkowski dimension one.

Proof. For any λ ∈ [0,1], we have that Uλ contains a line segment. Hence, each
of the sets Uλ has lower Minkowski dimension at least one. We also have Uλ ⊆ U1
for all λ ∈ [0,1]. Therefore, to complete the proof, it suffices to show that the set
U1 has upper Minkowski dimension one.

To show dimM(U1) ≤ 1, it suffices to argue that dimM(U1) ≤ p for all p > 1.
Fix an arbitrary p ∈ (1,2).

Using Definition 4.8, we see that, for each k ≥ 1,

U1 ⊆
⋃
l∈Lk

Bwk
(l),

whilst the latter set is covered by the cubes in the collection Ck . Therefore, we
have that Ck is also a cover of U1. By Definition 4.1 this means

Nwk
(U1) ≤ |Ck| for all k ≥ 1.

We claim that the sequence |Ck|wk
pQpsk is bounded, that is, there exists H > 0

such that
|Ck|wk

pQpsk ≤ H ∀k ≥ 1. (4.18)
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Assume that the claim is valid. Fix an arbitrary w ∈ (0,w1). There exists an in-
teger k ≥ 1 such that wk+1 ≤ w < wk . This implies Nw(U1) ≤ Nwk+1(U1), so
that

Nw(U1)w
p ≤ Nwk+1(U1)w

p
k = Nwk+1(U1)w

p

k+1Q
psk+1 ≤ H. (4.19)

Hence, the sequence Nw(U1)w
p is uniformly bounded from above by a fixed

constant H . Since this is true for any arbitrarily small w ∈ (0,w1), we conclude
that dimM(U1) ≤ p.

It only remains to establish the claim (4.18). We prove a more general state-
ment, namely, that the sequence |Ck|wp

k Qps̃k tends to zero for any sequence
s̃k ≥ sk satisfying condition (4.3).

Indeed, using (4.16), we obtain

|Ck|wp
k Qps̃k

|Ck−1|wp

k−1Q
ps̃k−1

≤ s
(3+2d)Mk+2
k Q−(p−1)skQp(s̃k−s̃k−1)

≤ Q(p−1)sk/2Q−(p−1)skQp(s̃k−s̃k−1) (4.20)

for k sufficiently large. The latter inequality follows from

((3 + 2d)Mk + 2) log sk

sk
<

(p − 1) logQ

2
,

which is true by (4.2) for k sufficiently large. We then see that the product of the
three terms in (4.20) tends to zero as k → ∞ since (4.3) implies that

p(s̃k − s̃k−1) <
(p − 1)sk

4
for k sufficiently large. �

5. Main Result

The objective of this section is to prove Theorem 5.6, which guarantees, in every
finite-dimensional space, the existence of a compact universal differentiability set
S of Minkowski dimension one. In Section 2, we established that this result is
optimal. Note that we will always assume that d ≥ 2 since the case d = 1 is trivial
(we can simply take S = [0,1]).

We first establish several lemmas. The statements we prove typically concern
a line l of level k, class m, category (j1, . . . , jm), where 0 ≤ m ≤ Mk . When
m = 0, we interpret the category (j1, . . . , jm) as the empty category and assume
that j ≤ jm for all integers j .

Lemma 5.1. Let k ≥ 2, 0 ≤ m < Mk , and l ∈ L(j1,...,jm)

(k,m) . Let e ∈ Ek and 1 ≤
jm+1 ≤ jm ≤ sk . If x ∈ l, then there exists x′ ∈ l such that ‖x′−x‖ ≤ Qjm+1wk/Bk

and
l′ = x′ + [−1,1]Qjm+1wke ∈ L(j1,...,jm,jm+1)

(k,m+1)
.

Proof. By definition the collection Rl,k(jm+1, e) has an element l′ satisfying the
conclusions of this lemma. �
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Lemma 5.2. Let k ≥ 2 and suppose 1 ≤ m ≤ Mk . Let x ∈ l ∈ L(j1,...,jm)

(k,m) , and im
be an integer with jm < im ≤ sk . Then there exist an integer sequence sk ≥ i1 ≥
· · · ≥ im−1 ≥ im and a line l′ ∈ L(i1,...,im)

(k,m) such that l′ is parallel to l and there

exists a point x′ ∈ l′ with ‖x′ − x‖ ≤ mQimwk/Bk .

Proof. Suppose that either

(i) n = 1, or
(ii) 2 ≤ n ≤ Mk and the statement of Lemma 5.2 holds for m = 1, . . . , n − 1.

We prove that in both cases, the statement of Lemma 5.2 holds for m = n. The
proof will then be complete by induction.

Let the line l, integers j1, . . . , jn, in, and point x ∈ l be given by the hypothesis
of Lemma 5.2 when we set m = n. Let e ∈ Ek be the direction of l. By (4.11) in
case (i), or (4.13) in case (ii), there exists a line l(n−1) of level k, class n − 1, cat-
egory (j1, . . . , jn−1), such that the line l belongs to the collection Rl(n−1),k(jn, e).

By Definition 4.4 the line l has the form

l = z + [−1,1]Qjnwke,

where z ∈ l(n−1). Therefore, we may write

z = x + βe, (5.1)

where

|β| ≤ Qjnwk. (5.2)

We now distinguish between two cases. First, suppose that in ≤ jn−1. Note that
this is certainly the case if n = 1. Setting ia = ja for a = 1, . . . , n − 1, we get
that sk ≥ i1 ≥ · · · ≥ in−2 ≥ in−1 ≥ in. The line l(n−1) ∈ L(i1,...,in−1)

(k,n−1) , the direc-

tion e ∈ Ek , the integer in, and the point z ∈ l(n−1) now satisfy the conditions of
Lemma 5.1. Hence, there is a line l′ of level k, class n, category (i1, . . . , in), and
a point z′ with

‖z′ − z‖ ≤ Qinwk

Bk

(5.3)

such that the line segment l′ is given by

l′ = z′ + [−1,1]Qinwke.

Finally, set

x′ = z′ − βe,

so that x′ ∈ l′, using (5.2). We deduce, using (5.3) and (5.1), that ‖x′ − x‖ ≤
Qinwk/Bk ≤ nQinwk/Bk . This completes the proof for the case in ≤ jn−1.

Now suppose that in > jn−1. In this situation, we must be in case (ii). We set
in−1 = in > jn−1. The conditions of Lemma 5.2 are now readily verified for z ∈
l(n−1) ∈ L(j1,...,jn−1)

(k,n−1) and the integer in−1. Therefore, by (ii) and Lemma 5.2 there
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exist an integer sequence sk ≥ i1 ≥ · · · ≥ in−2 ≥ in−1 and a line l′′ ∈ L(i1,...,in−1)

(k,n−1)

such that l′′ is parallel to l(n−1), and there exists a point y′′ ∈ l′′ such that

‖y′′ − z‖ ≤ (n − 1)Qin−1wk

Bk

. (5.4)

The conditions of Lemma 5.1 are now readily verified for the line l′′ ∈ L(i1,...,in−1)

(k,n−1) ,
the direction e ∈ Ek , the integer in, and the point y′′ ∈ l′′. Hence, there exist a line
l′ ∈ L(i1,...,in)

(k,n)
and a point y′ ∈ l′ such that

‖y′ − y′′‖ ≤ Qinwk

Bk

, (5.5)

and the line l′ is given by

l′ = y′ + [−1,1]Qinwke.

We set

x′ = y′ − βe.

Using (5.2) and in > jn, we get that x′ ∈ l′. Moreover, using (5.1), (5.4), and (5.5),
we obtain ‖x′ − x‖ ≤ nQinwk/Bk . �

Lemma 5.3. Let λ ∈ [0,1), ψ ∈ (0,1−λ), and suppose that x ∈ Uλ. Suppose that
the integers n ≥ 1, t ∈ {0,1, . . . , sn − 1}, and a number δ > 0 satisfy

ψQt−1wn < δ ≤ ψQtwn and
Q

Bn

< ψ. (5.6)

Let f ∈ En and suppose that y ∈ l ∈ L(h1,...,hr )
(n,r) , where

r ≤ (λ + ψ)Mn − 2, hr = t + 1. (5.7)

Then there exist a line l′ ∈ L(h1,...,hr ,t+1)
(n,1+r) and a point y′ ∈ l such that

‖y′ − y‖ ≤ Q2

ψBn

δ, (5.8)

l′ = y′ + [−1,1]Qt+1wnf , (5.9)

and y′ + [−1,1]τf ⊆ Uλ+ψ ∩ l′ whenever

0 ≤ τ ≤
(

Q − Q2

ψBn

)
δ − ‖y − x‖. (5.10)

Proof. Choose a sequence of integers (mk)k≥1 with 0 ≤ mk ≤ λMk and a se-
quence (lk)k≥1 of line segments such that lk ∈ L(k,mk) is a line of level k, class
mk , and

x ∈
∞⋂

k=1

Bλwk
(lk). (5.11)
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Note that Qδ < ψwnQ
t+1 ≤ ψwnQ

sn = ψwn−1 ≤ ψwk for all k ≤ n − 1. This,
together with (5.11), implies that

BQδ(x) ⊆ B(λ+ψ)wk
(lk) for 1 ≤ k ≤ n − 1. (5.12)

Now, the line l ∈ L(h1,...,hr )
(n,r) , the direction f ∈ En, the integer t + 1, and the point

y ∈ l satisfy the conditions of Lemma 5.1. Therefore, there exist a line l′ of level
n, class 1+ r , category (h1, . . . , hr , t +1), and a point y′ ∈ l′ such that (5.9) holds
and

‖y′ − y‖ ≤ Qt+1wn

Bn

= Q2

ψBn

ψQt−1wn ≤ Q2

ψBn

δ. (5.13)

Recall that l′ is a line of level n. Hence, from (4.8) we have that l′ is a line of level
k, class 0, for all k ≥ n + 1. We now set

l′k = l′ for all k ≥ n and l′k = lk for 1 ≤ k ≤ n − 1. (5.14)

Then for each k ≥ 1, we have that l′k is a line of level k, class m′
k , where

m′
k =

⎧⎪⎨
⎪⎩

mk if 1 ≤ k ≤ n − 1,

1 + r if k = n,

0 if k ≥ n + 1.

From mk ≤ λMk and (5.7) we have that 0 ≤ m′
k ≤ (λ + ψ)Mk for all k. Hence,

by Definition 4.8,
∞⋂

k=1

B(λ+ψ)wk
(l′k) ⊆ Uλ+ψ. (5.15)

Suppose τ is a real number satisfying (5.10) (note that by (5.6) we have that
ψ − Q/Bn is nonnegative). Since ψ < 1,

0 ≤ τ ≤ Qt+1
(

ψ − Q

Bn

)
wn ≤ Qt+1wn.

Hence, y′ + [−1,1]τf ⊆ l′ by (5.9).
From (5.12), (5.13), and (5.10) we have that, for all 1 ≤ k ≤ n − 1,

y′ + [−1,1]τf ⊆ l′ ∩ BQδ(x) ⊆ l′ ∩ B(λ+ψ)wk
(lk).

Putting this together with (5.14) and (5.15), we conclude that

y′ + [−1,1]τf ⊆ Uλ+ψ ∩ l′

since l′ ⊆ B(λ+ψ)wk
(l′) = B(λ+ψ)wk

(lk) for all k ≥ n. �

The next lemma represents the crucial step toward our main result, Theorem 5.6.

Lemma 5.4. Let λ ∈ (0,1), ψ ∈ (0,1 − λ), and η ∈ (0,1/2). Then there exists a
real number

δ0 = δ0(λ,ψ,η) > 0 (5.16)

such that for any x ∈ Uλ, e ∈ Sd−1, and δ ∈ (0, δ0), there exist e′ ∈ Sd−1, integers
n ≥ 1, t ∈ {0,1, . . . , sn −1}, and a pair (x′, l′), consisting of a point and a straight
line segment, with x′ ∈ l′ ∈ L(h1,...,hr )

(n,r) , satisfying the following properties:
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(i) Condition (5.6) of Lemma 5.3 is satisfied;
(ii) The condition

r ≤ (λ + ψ)Mn − 4, hr = t + 1 (5.17)

is satisfied (a stronger version of (5.7));
(iii) ‖x′ − x‖ ≤ ηδ, ‖e′ − e‖ ≤ η, and

x′ + [−1,1]δe′ ⊆ Uλ+ψ ∩ l′. (5.18)

Moreover, δ0 can be chosen to be independent of Q ∈ (1,2].
Proof. We will find δ′

0 = δ′
0(λ,ψ,η) such that for any x ∈ Uλ, e ∈ Sd−1, and

δ ∈ (0, δ′
0), conclusions (i), (ii), and (iii) of Lemma 5.4 are valid when (5.18) is

replaced by the weaker statement

x′ + [−1,1] δ
2
e′ ⊆ Uλ+ψ ∩ l′. (5.19)

Then, defining δ0 = 1
2δ′

0(λ,ψ,η/2), we will get that the conclusion of this lemma,
including (5.18), is satisfied.

Since (wk)k≥1 is strictly decreasing, and the sequences (Ak), (Bk), and (Mk)

satisfy Ak,Bk,Mk → ∞, Mk/Bk → 0, we may choose δ′
0 ∈ (0,

ψ
2 w1) small

enough so that whenever ψwk ≤ 2δ′
0, we have

1

Ak

≤ ηψ

8
,

1

Bk

≤ ηψ

8(Mk + 3)
, ψMk ≥ 6.

Since Q ∈ (1,2], this implies that whenever ψwk ≤ Qδ′
0, we have

1

Ak

≤ ηψ

2Q2
,

1

Bk

≤ ηψ

2Q2(Mk + 3)
, ψMk ≥ 6. (5.20)

Let x ∈ Uλ and fix δ ∈ (0, δ′
0). Choose a sequence of integers (mk)k≥1 with

0 ≤ mk ≤ λMk and a sequence (lk)k≥1 of line segments such that lk ∈ L(k,mk) is a
line of level k, class mk , and

x ∈
∞⋂

k=1

Bλwk
(lk).

Note that Qδ < ψw1 since Q ≤ 2. Since wk → 0, there is a unique natural num-
ber n ≥ 2 satisfying

ψwn ≤ Qδ < ψwn−1. (5.21)

We remark for further reference that from (5.20), δ ∈ (0, δ′
0), and (5.21) we can

deduce that
Q2

ψAn

δ ≤ η

2
δ ≤ δ

4
(5.22)

and

(Mn + 3)
Q2

ψBn

δ ≤ η

2
δ ≤ δ

4
. (5.23)

Since wn−1 = Qsnwn, by (5.21) there exists t ∈ {0,1, . . . , sn − 1} satisfying

ψQtwn ≤ Qδ < ψQt+1wn.
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Further, from (5.20), δ ∈ (0, δ0), and (5.21) we have that Q/sn ≤ ψ . Hence, δ, n,
and t satisfy (5.6). By (4.6) there exists a direction e′ ∈ En such that ‖e′ − e‖ ≤
1/An, whilst 1/An ≤ η follows from (5.20), δ ∈ (0, δ′

0), and (5.21). Hence, we
have ‖e′ − e‖ ≤ η, as required.

Note that Bλwn(ln) is a tube of level n, class mn, containing the point x. Let
the line ln have category (j1, . . . , jmn). We can write x = z + αg where z ∈ ln,
g ∈ Sd−1, and α ∈ [0, λwn]. Next, using (4.6), pick g′ ∈ En such that ‖g′ − g‖ ≤
1/An. Apply now Lemma 5.1 to z ∈ ln to find a line

l′′′ = z′ + [−1,1]Qwng
′ ∈ L(j1,...,jmn ,1)

(n,1+mn) ,

where z′ ∈ ln and ‖z′ − z‖ ≤ Qwn/Bn. Let x′′′ = z′ + αg′; then, using (5.21), we
have

‖x′′′ − x‖ ≤ ‖z′ − z‖ + α‖g′ − g‖
≤ Qwn

(
1

An

+ 1

Bn

)

≤ Q2

ψ

(
1

An

+ 1

Bn

)
δ. (5.24)

From (5.20), δ ∈ (0, δ′
0), and (5.21) we have ψMn ≥ 6. In particular,

mn + 2 ≤ λMn + 2 ≤ (λ + ψ)Mn − 4,

and (5.17) is satisfied when r = mn + 2 and hr = t + 1.
We will now show that there exist a line l′ of level n, class 2 + mn, category

(j1, . . . , j1+mn, t + 1), and a point x′ ∈ l′ such that

‖x′ − x′′′‖ ≤ (mn + 2)Q2

ψBn

δ and x′ + [−1,1] δ
2
e′ ⊆ Uλ+ψ ∩ l′. (5.25)

Once (5.25) is established, the proof is completed by combining (5.25) and (5.24)
with (5.22) and (5.23) to get

‖x′ − x‖ ≤ Q2

ψ
δ

(
mn + 3

Bn

+ 1

An

)
≤ ηδ. (5.26)

Thus, it only remains to verify (5.25). We distinguish two cases, t = 0 and
t ≥ 1.

If t = 0, then the conditions of Lemma 5.3 are satisfied for λ, ψ , x, δ, t , n,
f = e′, l = l′′′, r = 1 + mn, (h1, . . . , hr ) = (j1, . . . , j1+mn), and y = x′′′ ∈ l′′′.
Therefore, by Lemma 5.3 there exist a line l′ of level n, class 2 + mn, category
(j1, . . . , j1+mn,1), and point x′ ∈ l′ such that

‖x′ − x′′′‖ ≤ Q2

ψBn

δ and (5.27)

x′ + [−1,1]τe′ ⊆ Uλ+ψ ∩ l′ (5.28)

whenever 0 ≤ τ ≤
(

Q − Q2

ψBn

)
δ − ‖x′′′ − x‖.
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Therefore, using (5.23) and (5.24), we get(
Q − Q2

ψsn

)
δ − ‖x′′′ − x‖ ≥

(
Q − 1

4

)
δ >

δ

2
.

Hence, by (5.28) we have x′ + [−1,1] δ
2e′ ⊆ Uλ+ψ ∩ l′, and we obtain (5.25).

Now assume that we are in the remaining case t ≥ 1. Set i1+mn = t + 1, so

that j1+mn = 1 < i1+mn ≤ sn. Observe that the line l′′′ ∈ L(j1,...,j1+mn)

(n,1+mn) , the integer
i1+mn > j1+mn , and the point x′′′ ∈ l′′′ satisfy the conditions of Lemma 5.2. There-
fore, by Lemma 5.2 there exists an integer sequence sk ≥ i1 ≥ · · · ≥ i1+mn ≥ 1
together with a line l′′ of level n, class 1 +mn, category (i1, . . . , i1+mn), such that
l′′ is parallel to l′′′, and there exists a point x′′ ∈ l′′ with

‖x′′ − x′′′‖ ≤ (1 + mn)Q
t+1wn

sn
≤ (1 + mn)

Q2

ψBn

δ. (5.29)

Set i2+mn = t + 1, so that i2+mn = i1+mn . Note that the conditions of Lemma 5.3
are satisfied for λ, ψ , x, δ, t , n, f = e′, l = l′′, r = 1 + mn, (h1, . . . , hr ) =
(i1, . . . , i1+mn), and y = x′′ ∈ l′′. Hence, by Lemma 5.3 there exist a line seg-
ment l′ of level n, class 2 +mn, category (i1, . . . , i1+mn, t + 1), and a point x′ ∈ l′
with

‖x′ − x′′‖ ≤ Q2

ψBn

δ and (5.30)

x′ + [−1,1]τe′ ⊆ Uλ+ψ ∩ l′ (5.31)

whenever 0 ≤ τ ≤
(

Q − Q2

ψBn

)
− ‖x′′ − x‖.

We observe that

‖x′ − x′′′‖ ≤ (mn + 2)Q2

ψBn

δ,

using (5.30) and (5.29). Moreover, combining (5.29) with (5.24) yields

‖x′′ − x‖ ≤ Q2

ψ
δ

(
1

An

+ mn + 2

Bn

)
.

Therefore, by (5.22) and (5.23),(
Q − Q2

ψBn

)
δ − ‖x′′ − x‖ ≥

(
Q − 1

2

)
δ ≥ δ

2
.

We conclude, using (5.31), that x′+[−1,1] δ
2e′ ⊆ Uλ+ψ ∩ l′. We have now verified

(5.25). �

Lemma 5.5. Let η ∈ (0,1), λ ∈ [0,1), and ψ ∈ (0,1 − λ). Then there exists a
number

�1 = �1(η,λ,ψ) > 0
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such that whenever x ∈ Uλ, δ ∈ (0,�1), and v1, v2, v3 are in the open unit ball in
R

d , there exist v′
1, v

′
2, v

′
3 ∈R

d such that

‖v′
i − vi‖ ≤ η and (5.32)

[x + δv′
1, x + δv′

3] ∪ [x + δv′
3, x + δv′

2] ⊆ Uλ+ψ. (5.33)

Moreover, �1 can be chosen to be independent of Q ∈ (1,2].
Proof. Fix positive numbers a, b, c such that

a + 2b + 3c <
1

2
. (5.34)

Using the notation of Lemma 5.4, choose 0 < �1 ≤ δ0(λ,ψ,aη) such that

max

{
1

Ak

,
4

ψBk

}
≤ bη whenever ψwk < 2�1,

implying that

max

{
1

Ak

,
Q2

ψBk

}
≤ bη whenever ψwk < Q�1 (5.35)

since Q ∈ (1,2].
Fix x ∈ Uλ, δ ∈ (0,�1), and v1, v2, v3 in the open unit ball in R

d . We may
assume that

0 < ‖vi‖ ≤ c for each i = 1,2,3 (5.36)

and v1, v2, v3 are distinct vectors.
Set e1 = v1/‖v1‖. Since δ < δ0(λ,ψ,aη), Lemma 5.4 asserts that there exist

e′
1 ∈ Sd−1, integers n, t , and x′ ∈ l′ ∈ L(h1,...,hr )

(n,r) such that (5.6) and (5.17) are
satisfied, together with

‖x′ − x‖ ≤ aηδ,

‖e′
1 − e1‖ ≤ aη, and x′ + [−1,1]δe′

1 ⊆ Uλ+ψ ∩ l′.
(5.37)

Denote l1 := l′ and set

x1 = x′ + δ‖v1‖e′
1 and e3 = v3 − v1

‖v3 − v1‖ . (5.38)

Let e′
3 ∈ En be such that ‖e′

3 − e3‖ ≤ 1/An. Note that (5.35) implies

Q

Bn

≤ Q2

ψBn

≤ bη

since by (5.6) we have ψwn ≤ ψQtwn < Qδ < Q�1. This means we can now
apply Lemma 5.3 to the point x ∈ Uλ, integers n, t found before, δ satisfying
(5.6), f := e′

3, and y := x1 ∈ [x′, x′ + δe′
1] ⊆ l1 ∈ L(h1,...,hr )

(n,r) . Let the point y′ ∈ l1

and the line l′1 ∈ L(h1,...,hr ,hr )
(n,1+r) be given by the conclusion of Lemma 5.3.

We now define x′
1 = y′ and note that (5.8) and (5.35) imply

‖x′
1 − x1‖ = ‖y′ − x1‖ ≤ bηδ,

so that using (5.36), we get ‖x′
1 − x′‖ ≤ (bη + c)δ.



634 Michael Dymond & Olga Maleva

We claim that the straight line segment [x′
1 − 1

2δe′
3, x

′
1 + 1

2δe′
3] is inside Uλ+ψ .

Indeed, we verify that τ = δ/2 satisfies (5.10). Using

‖x1 − x‖ ≤ ‖x1 − x′‖ + ‖x′ − x‖ ≤ (c + aη)δ (5.39)

and Q > 1, together with (5.34) and 0 < η < 1, we get(
Q − Q2

ψBn

)
δ − ‖x1 − x‖ ≥ (1 − bη)δ − (c + aη)δ >

δ

2
.

Let
x3 = x′

1 + δ‖v3 − v1‖e′
3.

Denote l3 = l′1 and set e2 = (v2 − v3)/‖v2 − v3‖. Find e′
2 ∈ En with ‖e′

2 − e2‖ ≤
1/An and apply Lemma 5.3 to the point x ∈ Uλ, n, t , and δ satisfying (5.6) and
found earlier, f := e′

2, and y := x3 ∈ [x′
1, x

′
1 + δe′

3] ⊆ l3 ∈ L(h1,...,hr ,hr )
(n,1+r) . We note

that condition (5.7) of Lemma 5.3 is satisfied for r + 1 instead of r because of
(5.17). Let the point y′ ∈ l3 and the line l2 ∈ L(h1,...,hr ,hr ,hr )

(n,2+r) be given by the con-
clusion of Lemma 5.3.

Let x′
3 = y′. We now verify that [x′

3 − 1
2δe′

2, x
′
3 + 1

2δe′
2] ⊆ Uλ+ψ . We again

show that τ = δ/2 satisfies (5.10). Indeed, using (5.39), we get

‖x3 − x‖ ≤ ‖x3 − x′
1‖ + ‖x′

1 − x1‖ + ‖x1 − x‖
≤ 2cδ + bηδ + (c + aη)δ = (aη + bη + 3c)δ.

Hence, using (5.34) and 0 < η < 1, we conclude(
Q − Q2

ψBn

)
δ − ‖x3 − x‖ ≥ (1 − bη)δ − (aη + bη + 3c)δ >

δ

2
.

Finally, define
x′

2 = x′
3 + ‖v2 − v3‖δe′

2.

We are now left to see that v′
i , i = 1,2,3, defined according to

x + δv′
i = x′

i ⇐⇒ v′
i = x′

i − x

δ
(5.40)

satisfy the conclusions of Lemma 5.5.
Indeed, let us verify [x′

1, x
′
3] ∪ [x′

3, x
′
2] ⊆ Uλ+ψ . First, we see that x′

3 ∈ l3 and,
by (5.34),

‖x′
3 − x′

1‖ ≤ ‖x′
3 − x3‖ + ‖x3 − x′

1‖ ≤ bηδ + 2cδ <
δ

2
;

hence, [x′
1, x

′
3] ⊆ [x′

1 − 1
2δe′

3, x
′
1 + 1

2δe′
3] ⊆ Uλ+ψ . For the second straight line seg-

ment, we see that ‖x′
2 −x′

3‖ ≤ 2cδ and x′
2 ∈ l2, so that [x′

3, x
′
2] ⊆ [x′

3 − 1
2δe′

2, x
′
3 +

1
2δe′

2] ⊆ Uλ+ψ .
By (5.40) we see that (5.32) is equivalent to

‖(x′
i − xi) − δvi‖ ≤ ηδ for all i = 1,2,3.

We note first that, using (5.34),

‖(x′
1 − x) − δv1‖ ≤ ‖(x1 − x′) − δv1‖ + ‖x′

1 − x1‖ + ‖x′ − x‖
≤ cδ‖e′

1 − e1‖ + (a + b)ηδ ≤ (a + b + ac)ηδ < ηδ.
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Next,

‖(x′
3 − x) − δv3‖ ≤ ‖x′

3 − x3‖ + ‖(x3 − x′
1) − δ(v3 − v1)‖ + ‖(x′

1 − x) − δv1‖
≤ bηδ + δ‖v3 − v1‖‖e′

3 − e3‖ + (a + b + ac)ηδ

≤ (a + 2b + ac + 2bc)ηδ < ηδ

using ‖v3 − v1‖ ≤ 2c and ‖e′
3 − e3‖ ≤ 1/Ak ≤ bη. Finally, using the definition of

x′
2, we get, in a similar way,

‖(x′
2 − x) − δv2‖ = ‖(x′

3 − x) + δ‖v2 − v3‖e′
2 − δv2‖

≤ ‖(x′
3 − x) + δ(v2 − v3) − δv2‖ + δ‖v2 − v3‖‖e′

2 − e2‖
= ‖(x′

3 − x) − δv3‖ + δ‖v2 − v3‖‖e′
2 − e2‖

≤ (a + 2b + ac + 4bc)ηδ < ηδ

since a + 2b + ac + 4bc < 2(a + 2b + 3c) < 1. �

We are now ready to prove our main result.

Theorem 5.6. For every d ≥ 1, there exists a compact subset S ⊆ R
d of

Minkowski dimension one with the universal differentiability property. Moreover,

(1) this set S can be constructed in such a way that for any Lipschitz function
g : Rd → R, the set of points x ∈ S such that g is Fréchet differentiable at x

is a dense subset of S;
(2) for any pair of integer sequences sk , Pk satisfying sk,Pk → ∞, a univer-

sal differentiability set S ⊆ R
d satisfying (1) can be constructed so that,

for each n ≥ 1, the set S may be covered by 1
δ

∏n
k=1 s

Pk

k boxes with side
δ = Q−(s1+···+sn), where Q ∈ (1,2] is fixed.

Proof. From Lemma 5.5 we have that the family of compact sets (Uλ), λ ∈ [0,1],
satisfies the conditions of Proposition 3.2, where X = R

d . Therefore, by Propo-
sition 3.2 the set Uλ is a universal differentiability set with property (1) for each
λ ∈ (0,1]. By Lemma 4.9 these sets have Minkowski dimension one.

Let us now explain how the property described in (2) can be achieved. Given
such sequences sk , Pk , we choose a sequence Mk satisfying (4.2) and

(3 + 2d)Mk + 2 ≤ Pk ∀k ≥ 1.

Using (4.16), we see that, for each λ ∈ (0,1], the universal differentiability sets Uλ

constructed in Section 4, with the sequences sk and Mk , possess property (2). �

Remark (added in proof). While the present paper was being prepared for pub-
lication, the first named author obtained a result [5] that shows that any universal
differentiability set S contains a relatively closed subset ker(S) such that ker(S)

is also a UDS and every Lipschitz function is differentiable on a dense sub-
set of ker(S). This means that if S is a compact universal differentiability set
of Minkowski dimension 1, then ker(S) is also a compact universal differentia-
bility set. The Minkowski dimension of ker(S) must then be equal to 1 by [3,
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Lemma 2.1]. This provides an alternative way to deduce part (1) of Theorem 5.6
from the very fact that S is a UDS of Minkowski dimension 1.
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