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1. Introduction

In any robust surface theory, it is essential to have a large collection of interest-
ing examples. An interesting class of surfaces to study is the zero-mean curvature
surfaces of mixed type in the Lorentz–Minkowski three-space R3

1, which, roughly
speaking, are smooth surfaces of mixed causal type with mean curvature, wher-
ever well-defined, equal to zero.

Several authors have found examples of such surfaces [12; 6; 14; 11; 3; 4],
all having simple topology. The main goal of this article is to provide a concrete
example of a family of such surfaces with nontrivial topology.

The motivation for the method of our construction is the fact that fold singu-
larities of spacelike maximal surfaces have real analytical extensions to timelike
minimal surfaces (see [6; 7; 8; 11; 9; 4], and, especially, [4], which is an exposi-
tory article on this subject). Main ingredients are the spacelike maximal analogues
in R3

1 of the Schwarz P surfaces and the Schwarz D surfaces in R3, which were
remarked upon in the previous work [5] by the authors. The Schwarz P-type max-
imal surfaces admit cone-like singularities, whereas the Schwarz D-type maximal
surfaces admit fold singularities (cf. Figure 1). By extending the Schwarz D-type
(spacelike) maximal surfaces to timelike minimal surfaces, we obtain the follow-
ing main result of this article.

Theorem A. The one-parameter family of Schwarz D-type spacelike maximal
surfaces {Xa}0<a<1 has a unique analytic extension

X̃a : �a → R3
1/�a (0 < a < 1)

to embedded zero-mean-curvature surfaces, where R3
1/�a is a torus given by a

suitable three-dimensional lattice �a , and �a is a closed orientable 2-manifold
of genus three (cf. Figure 2).
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Figure 1 Schwarz P-type (left) and D-type maximal surfaces (right)

Figure 2 Embedded triply periodic zero-mean curvature-surfaces of
mixed type constructed in this article for a = 0.1 (left), a = (

√
3 −

1)/
√

2 ≈ 0.52 (center), and a = 0.9 (right). The spacelike parts are
indicated by grey shades, and the timelike parts are indicated by black
shades

In so doing, we provide a concrete description of the family of triply periodic
maximal surfaces containing the Schwarz P-type and D-type maximal surfaces.

2. Triply Periodic Maximal Surfaces

In this section, we construct triply periodic maximal surfaces in R3
1 based on the

Schwarz P and D minimal surfaces in R3. We use either t , x, y or x0, x1, x2 to
denote the standard coordinates of R3

1.
Take the hyperelliptic Riemann surface

Ma := {(z,w) ∈ (C ∪ {∞})2;w2 = z8 + (a4 + a−4)z4 + 1}
of genus 3, where a ∈ (0,1) is a real constant. Take the Weierstrass data

G := z, ηθ := eiθ dz

w

(
θ ∈ [0,π), i := √−1

)
on Ma , and set

f̂a,θ := Re
∫

(1 − G2, i(1 + G2),2G)ηθ . (2.1)

Then f̂a,θ gives a minimal surface in R3. When a = (
√

3 − 1)/
√

2, that is, when
a4 + a−4 = 14, f̂a,0 (resp. f̂a,π/2) is called the Schwarz P surface (resp. the
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Schwarz D surface). Also, for a ∈ (0,1), f̂a,0 (resp. f̂a,π/2) is called the Schwarz
P family (resp. the Schwarz D family). For the period computation for those min-
imal surfaces, we refer to [13].

Now, for the same Riemann surface Ma and the Weierstrass data (G,ηθ ) as
above, we set

fa,θ := Re
∫

�θ : M̃a −→ R3
1,

where

�θ := (−2G,1 + G2, i(1 − G2))ηθ . (2.2)

Then fa,θ gives a maxface (i.e. a maximal surface with admissible singularities,
see [4] and [15]) in the Lorentz–Minkowski 3-space R3

1 of signature (−,+,+).
A point p ∈ Ma is a singular point if and only if |G(p)| = 1, and a singular point p

is a cuspidal edge point if and only if Im(dG/(G2η)) �= 0 at p (see [5, Fact 1.3]).
Using this, one can easily check that fa,θ admits only cuspidal edge singularities
whenever θ �= 0,π/2 for each a ∈ (0,1). On the other hand, if θ = 0, then fa,0

admits only cone-like singularities (see [5, Lemma 2.3]). Later, we will show that
fa,0 is triply periodic. Since fa,0 has the same Weierstrass data as the Schwarz
P surface in the Euclidean 3-space, we call fa,0 the Schwarz P-type maximal
surface.

As pointed out in [10, Definition 2.1] and [4, Proposition 2.14], there exists
a duality between fold singularities and generalized cone-like singularities via
conjugation of maximal surfaces. Since fa,π/2 is the conjugate surface of fa,0,
we can conclude that fa,π/2 admits only fold singularities (see [4]). Later, we also
show that fa,π/2 is triply periodic. Since fa,π/2 has the same Weierstrass data as
the Schwarz D surface in the Euclidean 3-space, we call fa,π/2 the Schwarz D-
type maximal surface.

The surface fa,0 has the following symmetries.

Lemma 2.1. It holds that

ϕ∗
1 (�0)

T =
⎛⎝1 0 0

0 1 0
0 0 −1

⎞⎠ (�0)
T
, ϕ∗

2 (�0)
T =

⎛⎝−1 0 0
0 −1 0
0 0 −1

⎞⎠ (�0)
T ,

ϕ∗
3 (�0)

T =
⎛⎝−1 0 0

0 0 1
0 −1 0

⎞⎠ (�0)
T , ϕ∗

4 (�0)
T =

⎛⎝−1 0 0
0 −1 0
0 0 1

⎞⎠ (�0)
T ,

where (�0)
T is the transpose of �0, and ϕ∗

j (�0)
T (j = 1,2,3,4) is the pull-back

of the C3-valued 1-form (�0)
T by the maps ϕj : Ma → Ma given by

ϕ1(z,w) := (z̄, w̄), ϕ2(z,w) := (z,−w),

ϕ3(z,w) := (iz,w), ϕ4(z,w) :=
(

1

z
,
w

z4

)
.
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In the following discussion, we apply only the symmetry with respect to ϕ3. Using
this, we examine the period of fa,θ . We set

b := a4 + a−4.

We define the following four oriented regular arcs on Ma :

c1(t) := (−it,
√

t8 + bt4 + 1
)
, t ∈ [−∞,0],

c2(t) := (
t,

√
t8 + bt4 + 1

)
, t ∈ [0,+∞],

c3(t) := (−it,
√

t8 + bt4 + 1
)
, t ∈ [−1,1],

c4(t) := (
eit ,−e2it

√
2 cos 4t + b

)
, t ∈

[
−π

2
,
π

2

]
,

where all the four square roots take positive real values. We then define two ori-
ented loops γ1 : [−∞,+∞] → Ma and γ2 : [−2,π] → Ma by

γ1(s) :=
{

c1(s) if s ∈ [−∞,0],
c2(s) if s ∈ [0,∞];

(2.3)

γ2(s) :=
{

c3(s + 1) if s ∈ [−2,0],
c4(s − π/2) if s ∈ [0,π].

The fundamental group π1(Ma) of Ma is generated by eight loops

γk, ϕ3 ◦ γk, (ϕ3)
2 ◦ γk := ϕ3 ◦ ϕ3 ◦ γk, (ϕ3)

3 ◦ γk := ϕ3 ◦ ϕ3 ◦ ϕ3 ◦ γk

(k = 1,2).

One can easily prove the next lemma following the computations in [13].

Lemma 2.2. We have∮
γ1

�0 = (−q1(a), q2(a), q2(a)),

∮
γ2

�0 = (iq3(a),−iq4(a), q2(a)),

where qj (a) (j = 1,2,3,4) are positive real numbers given by

q1(a) :=
∫ ∞

0

4ds√
(b + 2)s4 − 2(b − 6)s2 + b + 2

=
∫ 1

0

8t√
t8 + bt4 + 1

dt,

q2(a) :=
∫ ∞

0

ds√
s4 + s2 + (b + 2)/16

=
∫ 1

0

2(1 + t2)√
t8 + bt4 + 1

dt,

q3(a) :=
∫ ∞

0

4ds√
(b + 2)s4 + 2(b − 6)s2 + b + 2

=
∫ π/2

−π/2

2dt√
2 cos 4t + b

,

q4(a) :=
∫ ∞

0

ds√
s4 − s2 + (b + 2)/16

.
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We define two 3 × 4 matrices

Pk := Re

(∮
γk

eiθ (�0)
T ,

∮
ϕ3◦γk

eiθ (�0)
T ,∮

(ϕ3)
2◦γk

eiθ (�0)
T ,

∮
(ϕ3)

3◦γk

eiθ (�0)
T

)
for k = 1,2. Then fa,θ is triply periodic if and only if the eight column vectors of
(P1,P2) belong to some lattice of R3

1.
Now we consider the case where θ = 0. Since∮

(ϕ3)
j ◦γk

(�0)
T =

∮
γk

((ϕ3)
j )∗(�0)

T (j = 1,2,3; k = 1,2),

Lemma 2.1 yields that

P1|θ=0 =
⎛⎝−q1 q1 −q1 q1

q2 q2 −q2 −q2
q2 −q2 −q2 q2

⎞⎠ , (2.4)

P2|θ=0 =
⎛⎝ 0 0 0 0

0 q2 0 −q2
q2 0 −q2 0

⎞⎠ , (2.5)

where qj = qj (a) (j = 1, . . . ,4) are as in Lemma 2.2. Since each column vector
of P1|θ=0 and P2|θ=0 is contained in the lattice


 :=
⎧⎨⎩m0

⎛⎝q1
0
0

⎞⎠ + m1

⎛⎝ 0
q2
0

⎞⎠ + m2

⎛⎝ 0
0
q2

⎞⎠ ;m0,m1,m2 ∈ Z

⎫⎬⎭ , (2.6)

the surface
fa,0 : Ma −→ R3

1/


gives a maximal surface for all a ∈ (0,1). The left-hand side of Figure 1 is the
figure of fa,0 for a = (

√
3 − 1)/

√
2.

Now we consider the case where θ = π/2. By similar computations we have
that

P1|θ=π/2 = O, P2|θ=π/2 =
⎛⎝−q3 q3 −q3 q3

q4 0 −q4 0
0 −q4 0 q4

⎞⎠ .

Since each column of P2|θ=π/2 is contained in the lattice


′ :=
⎧⎨⎩m0

⎛⎝q3
q4
0

⎞⎠ + m1

⎛⎝q3
0
q4

⎞⎠ + m2

⎛⎝ q3
0

−q4

⎞⎠ ;m0,m1,m2 ∈ Z

⎫⎬⎭ ,

the surface
fa,π/2 : Ma −→ R3

1/

′

gives a maximal surface for all a ∈ (0,1). The right-hand side of Figure 1 corre-
sponds to the figure of fa,π/2 for a = (

√
3 − 1)/

√
2.
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Figure 3 Two different views of the Gyroid-type maximal surface
with a ≈ 0.346014 and θ ≈ 0.73073 ≈ 41.8685◦ mentioned in Re-
mark 2.3

Remark 2.3. Numerical experiments suggest that there exists a triply periodic
member in the family with θ ∈ (0,π/2), as an analogue of the Gyroid, which
appears to have no self-intersections. See Figure 3. It would be interesting to
theoretically confirm this observation.

Remark 2.4. Here we consider the limit of fa,θ as a → 1. The Riemann surface
Ma collapses to two spheres with four singular points at (z,w) = (±e±πi/4,0),
and the limit of fa,θ is divided into two congruent maximal surfaces with the
Weierstrass data

G = z, ηθ = ±eiθ dz

z4 + 1
(θ ∈ [0,π))

on M ′ := (C∪{∞})\{±e±πi/4}. The limit of fa,0 is a subset of the triply periodic
real analytic maximal surface

S+ := {(t, x, y) ∈ R3
1; cos t = cosx cosy}

called spacelike Scherk surface, which contains singular lightlike lines (see [2]
and [4] for the whole figure of S+). On the other hand, the limit of fa,π/2 is a
subset of the zero-mean-curvature entire graph

S0 := {(t, x, y) ∈ R3
1; et coshx = coshy},

given by Osamu Kobayashi [12] (see also [2] and [4]). S0 also contains four dis-
joint timelike minimal surfaces as subsets. See Figure 4.

Remark 2.5. Here we consider the limit of fa,θ as a → 0. We first rescale the
surface as

√
a4 + a−4fa,θ and then take the limit as a → 0. The Riemann surface

Ma collapses as a → 0 to two spheres with two singular points at (z,w) = (0,0),
(∞,∞), and the limit of fa,θ is divided into two congruent maximal surfaces
with the Weierstrass data

G = z, ηθ = ±eiθ dz

z2
(θ ∈ [0,π))
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Figure 4 The spacelike Scherk surface (left) and the spacelike part
of the surface S0 in Remark 2.4 (right)

Figure 5 The spacelike elliptic catenoid (left) and the spacelike el-
liptic helicoid (right)

on M ′ := C \ {0}. The limits of fa,0 and of fa,π/2 as a → 0 are the spacelike
elliptic catenoid and the spacelike elliptic helicoid, respectively. See Figure 5.

3. Analytic Extensions of Schwarz D-Type Maximal Surfaces to
Triply Periodic Zero-Mean-Curvature Surfaces

When a maximal surface has fold singularities, we can analytically extend the
maximal surface to a timelike surface with mean curvature zero. This fact has
been observed in [4, Theorem 2.15]. In the previous section, we observed that the
Schwarz D-type surface fa,π/2 admits only fold singularities for each 0 < a < 1.
The image of the singular set of fa,π/2 is a lightlike curve

γa(s) :=
∫ s

0
ξa(t)(1,− cos t,− sin t) dt(

ξa(t) := 2√
2 cos 4t + a4 + a−4

)
. (3.1)
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Then

f̃a(u, v) := 1

2
(γa(u + v) + γa(u − v))

is a timelike minimal surface (that is, a timelike surface with mean curvature zero;
see Figure 2) such that

f̃a(u,0) = γa(u), (3.2)

and f̃a is the analytic extension of the maximal surface fa,π/2 (see Section 2 of
[4]).

The following assertion holds.

Lemma 3.1. The surface f̃a(u, v) is an immersion on R × (0,π).

Proof. Since

∂f̃a

∂u
= 1

2
(γ ′

a(u + v) + γ ′
a(u − v)),

∂f̃a

∂v
= 1

2
(γ ′

a(u + v) − γ ′
a(u − v)),

(u, v) is a singular point of f̃a (that is, a point where f̃a is not an immersion) if
and only if

γ ′
a(u + v) = ξa(u + v)(1,− cos(u + v),− sin(u + v))

and
γ ′
a(u − v) = ξa(u − v)(1,− cos(u − v),− sin(u − v))

are linearly dependent, where γ ′
a is the derivative of the curve γa . The linear de-

pendency of two vectors γ ′
a(u + v) and γ ′

a(u − v) is equivalent to the validity of
the two equalities

cos(u + v) = cos(u − v) and sin(u + v) = sin(u − v),

that is, v ≡ 0 (mod π), proving the lemma. �

Lemma 3.2. The timelike surface f̃a contains three line segments. More pre-
cisely,

(1) f̃a(u,π/2) (u ∈ R) is a straight line parallel to the x0-axis;
(2) f̃a(0, v) (0 < v < π ) is a line segment parallel to the x2-axis;
(3) f̃a(π/4, v) (0 < v < π ) is a line segment parallel to the line {x0 = x1 + x2 =

0}.
Proof. By (3.1),

∂f̃a

∂u

(
u,

π

2

)
= 1

2

(
γ ′
a

(
u + π

2

)
+ γ ′

a

(
u − π

2

))
= 1

2
ξa

(
u + π

2

)(
1,− cos

(
u + π

2

)
,− sin

(
u + π

2

))
+ 1

2
ξa

(
u − π

2

)(
1,− cos

(
u − π

2

)
,− sin

(
u − π

2

))
= ξa(u)(1,0,0)
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because ξa(u+π/2) = ξa(u−π/2) = ξa(u). Thus, (1) is proved. Similarly, direct
computations show that

∂f̃a

∂v
(0, v) = −2 sinv√

2 cos 4v + a4 + a−4
(0,0,1),

∂f̃a

∂v

(
π

4
, v

)
=

√
2 sinv√−2 cos 4v + a4 + a−4

(0,1,−1).

Thus, (2) and (3) hold. �

Like minimal surfaces in R3, both spacelike maximal surfaces and timelike mini-
mal surfaces have reflection principles as follows.

Fact 3.3 (cf. [1, Theorem 3.10] and [9, Lemmas 4.1 and 4.2]).

(1) Suppose that a spacelike maximal surface contains a spacelike line. Then the
surface is symmetric with respect to the line.

(2) Suppose that a spacelike maximal surface is perpendicular to a timelike plane.
Then the surface is symmetric with respect to the plane.

(3) Suppose that a timelike minimal surface contains a spacelike line or a timelike
line. Then the surface is locally symmetric with respect to the line.

(4) Suppose that a timelike minimal surface is perpendicular to a spacelike plane
or a timelike plane. Then the surface is locally symmetric with respect to the
plane.

We know that f̃a(u,0) (u ∈ R) consists of fold singularities (cf. (3.2)). Since
f̃a(u,π/2) (u ∈ R) is a straight line, (3) of Fact 3.3 implies that each point of
f̃a(u,π) (u ∈ R) is also a fold singularity, and by Lemma 3.2 we can analytically
extend f̃a to the Schwarz D-type maximal surface. Also, by Lemma 3.2 we can
consider


min
a :=

{
f̃a(u, v) ∈ R3

1;0 ≤ u ≤ π

4
,0 < v ≤ π

2

}
(3.3)

to be a fundamental piece of f̃a because the whole timelike minimal immersion
f̃a(u, v) (u ∈ R, 0 < v < π ) can be obtained by reflections of 
min

a . Note that
by Lemma 3.1 
min

a is immersed. The boundary ∂
min
a of 
min

a consists of three
straight line segments

Lmin
A :=

{
f̃a(0, v) ∈ R3

1;0 < v ≤ π

2

}
,

Lmin
B :=

{
f̃a

(
π

4
, v

)
∈ R3

1;0 < v ≤ π

2

}
,

Lmin
C :=

{
f̃a

(
u,

π

2

)
∈ R3

1;0 ≤ u ≤ π

4

}
,

and the singular curve γa(s) (0 ≤ s ≤ π/4).

Proof of Theorem A. For simplicity, we denote fa,π/2 by fa , where fa,π/2 was
defined in Section 2.
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By Lemma 2.1 and Fact 3.3 we can consider


max
a :=

{
fa(z) ∈ R3

1;0 ≤ |z| < 1,0 ≤ arg z ≤ π

4

}
(3.4)

to be a fundamental piece of fa . We note that 
max
a is immersed. The boundary

∂
max
a of 
max

a consists of two straight line segments, which correspond to

{z ∈ C;0 ≤ |z| < 1, arg z = 0} and

{
z ∈ C;a ≤ |z| < 1, arg z = π

4

}
,

a planar curve, which corresponds to{
z ∈ C;0 ≤ |z| ≤ a, arg z = π

4

}
,

and the singular curve γa(s) (0 ≤ s ≤ π/4). We set


1
a := 
max

a ∪
{
γa(s);0 ≤ s ≤ π

4

}
∪ 
min

a . (3.5)

Since 
max
a and 
min

a match analytically through γa(s) (0 ≤ s ≤ π/4), 
1
a is im-

mersed (see [4, Section 2] for the details). We define

Lmax
A := {fa(z) ∈ R3

1;0 ≤ |z| < 1, arg z = 0},
Lmax

B :=
{
fa(z) ∈ R3

1;a ≤ |z| < 1, arg z = π

4

}
,

Lmax
C :=

{
fa(z) ∈ R3

1;0 ≤ |z| ≤ a, arg z = π

4

}
.

It can be easily checked that Lmax
A is parallel to the x2-axis and Lmax

B is parallel to
the line

{(x0, x1, x2) ∈ R3
1;x0 = 0, x1 + x2 = 0},

and Lmax
C is contained in a plane which is parallel to the plane

{(x0, x1, x2) ∈ R3
1;x1 = x2}.

Thus, Lmax
A and Lmin

A , as well as Lmax
B and Lmin

B , are collinear.
We set LA := Lmax

A ∪ Lmin
A and LB := Lmax

B ∪ Lmin
B . Then the image of the

projection of the boundary ∂
1
a of 
1

a into the x1x2-plane is an isosceles right
triangle. See Figure 6. We denote this isosceles right triangle with its interior
by �. We also denote the length of the segment Lmin

C by |Lmin
C |.

We have already seen that 
1
a is immersed. Furthermore, we have the following

proposition, which will be proved in Section 4.

Proposition 3.4. For each a ∈ (0,1), 
1
a is embedded and contained in the clo-

sure of a vertical prism over the isosceles right triangle � with height |Lmin
C |.

Now we extend 
1
a by reflection with respect to the planar curve Lmax

C . We denote
the resulting surface by 
2

a , which is two copies of 
1
a . Then 
2

a is also embed-
ded, and the boundary consists of five straight line segments (LB and its reflection
are collinear). See Figure 7.
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Figure 6 Left: 
1
a defined in (3.5). The curve in the middle indi-

cates the singular curve γa(s), and the left-hand side (resp. right-hand
side) is 
max

a (resp. 
min
a ). Right: Another view of 
1

a such that the
line Lmin

C
is viewed as a single point at the bottom. On the top (resp.

bottom) is 
max
a (resp. 
min

a )

Figure 7 Left: 
2
a , that is, 
1

a and its reflection with respect to the
plane of Lmax

C
. The right-hand side of Lmax

C
is 
1

a and the left-hand
side is its reflection. The spacelike parts are indicated by grey shades,
and the timelike parts by black shades. Right: Another view of 
2

a .
The right bottom (resp. left top) is 
1

a (resp. its reflection)

We denote the reflection of LA by L′
A.

We extend 
2
a by two more reflections with respect to LA and L′

A. We denote
the resulting surface by 
8

a , which is four copies of 
2
a . Then 
8

a is embedded,
and the boundary consists of eight straight line segments (four (horizontal) space-
like line segments and four (vertical) timelike line segments). See Figure 8.

We now rotate 
8
a with respect to the x0 axis by angle π/4 so that the hor-

izontal lines in the bottom (which are indicated by LB in Figures 6 and 7) are
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Figure 8 Left: 
8
a , that is, 
2

a with its reflections with respect to LA

and L′
A

. 
2
a is in the front. Right: Another view of 
8

a

Figure 9 
8
a with labels L̂B and L̂C

parallel to the x1-axis. Then the boundary ∂
8
a of 
8

a consists of two (horizontal)
line segments parallel to the x1-axis in the bottom, two (horizontal) line segments
parallel to the x2-axis in the top, and four (vertical) line segments parallel to the
x0-axis. We label one of the (horizontal) line segments, parallel to the x1-axis in
the bottom, as L̂B , and one of the (vertical) line segments, which is parallel to the
x0-axis and connects to L̂B , as L̂C . See Figure 9.

We denote the length of the segment L̂B (resp. L̂C ) by |L̂B | (resp. |L̂C |). We
extend 
8

a by two more reflections with respect to L̂B and L̂C . We denote the
resulting surface by 
32

a , which is four copies of 
8
a . Then 
32

a is still embedded
and is contained in the closure of a rectangular parallelepiped with height 2|L̂C |
over a square of side length 2|L̂B |. See Figure 10.

Then 
32
a and its translation by

(2ε0|L̂C |,2ε1|L̂B |,2ε2|L̂B |), where εj = ±1 (j = 0,1,2),

match analytically since each translation can be obtained by a reflection with re-
spect to some straight line. Therefore,


a := {
32
a + (2m0|L̂C |,2m1|L̂B |,2m2|L̂B |);m0,m1,m2 ∈ Z} ⊂ R3

1
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Figure 10 
32
a , that is, 
8

a with its reflections with respect to L̂B and L̂C

Figure 11 
32
a with a = 0.9 (left) and its limit as a → 1 (right)

is an embedded triply periodic surface. In other words, 
32
a is embedded in a torus

R3
1/�a , where

�a := {(2m0|L̂C |,2m1|L̂B |,2m2|L̂B |) ∈ R3
1;m0,m1,m2 ∈ Z}

is a lattice in R3
1.

We clearly see that this surface 
a is topologically the same as the Schwarz D
minimal surface in R3 (see Figure 2). Thus, 
32

a in the quotient R3
1/�a is a closed

orientable 2-manifold of genus three. �

Remark 3.5. Here we consider the limit as a → 1. In this case, we obtain the
zero-mean-curvature entire graph

S0 = {(t, x, y) ∈ R3
1; et coshx = coshy},

which we already mentioned in Remark 2.4. See Figure 11. See also Figure 12 to
compare this limiting behavior with that of the minimal surfaces in R3.
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Figure 12 Schwarz D surface in R3 with a = 0.9 (left) and the dou-
bly periodic Scherk surface in R3 as a limit of Schwarz D surface as
a → 1 (right)

Figure 13 
32
a in R3

1 with a = 0.1 (left), another view of 
32
a with

a = 0.1 (center), and the limit as a → 0 (right)

Figure 14 Schwarz D surface in R3 with a = 0.1 (left), another view
of the Schwarz D surface in R3 with a = 0.1 (center), and the helicoid
in R3 as a limit as a → 0 with suitable rescaling of the Schwarz D
surface (right)

Remark 3.6. Here we consider the limit as a → 0. We first multiply the surface
by

√
a4 + a−4 to rescale the surface, as we did in Remark 2.5, and then take the

limit as a → 0. In this case, we obtain the zero-mean-curvature surface, which
is exactly the same as the minimal helicoid in R3 [12]. See Figure 13. See also
Figure 14 to compare the limiting behavior with that of the minimal surfaces in
R3.
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4. Proof of the Embeddedness

In this section we present a proof of Proposition 3.4.
We denote by � × Lmin

C the vertical prism over the isosceles right triangle �

with height |Lmin
C | as in Proportion 3.4.

First, we prepare three lemmas.

Lemma 4.1. The piece of surface 
max
a is embedded and contained in the closure

� ×Lmin
C of � ×Lmin

C .

Proof. The projection of 
max
a into the x1x2-plane is represented by

Re
∫

(1 + z2, i(1 − z2))i
dz

w
= Re

∫
(i(1 + z2),−(1 − z2))

dz

w
,

which is the same as the projection of the Schwarz P minimal surface in R3 (see
(2.1)). So 
max

a is a graph over the x1x2-plane. Since the boundary ∂
max
a of


max
a is contained in � ×Lmin

C , 
max
a itself is contained in � ×Lmin

C as well, by

the maximum principle. Thus, 
max
a is embedded and contained in � ×Lmin

C . �

Lemma 4.2. The projection of the singular curve γa(s) (0 ≤ s ≤ 2π ) in (3.1) into
the x1x2-plane is a closed convex curve.

Proof. Let (x1(s), x2(s)) be the projection of γa(s) into the x1x2-plane. It is trivial
to see that (x1(s), x2(s)) is a closed C∞-regular curve of rotation index one. Now
we compute the curvature κa(s) of (x1(s), x2(s)) and see that

κa(s) = ẋ1(s)ẍ2(s) − ẋ2(s)ẍ1(s)

(ẋ2
1(s) + ẋ2

2(s))3/2
= √

ξa(s) > 0,

where ξa was defined in (3.1). So, (x1(s), x2(s)) is a convex curve. �

Lemma 4.3. The intersection 
max
a ∩ 
min

a = {γa(s);0 ≤ s ≤ π/4}, where 
max
a

(resp. 
min
a ) is the closure of 
max

a (resp. 
min
a ).

Proof. We note that f̃a(u, v) is the midpoint of γa(u + v) and γa(u − v). There-
fore, the projection of f̃a(u, v) into the x1x2-plane is the midpoint of the projec-
tions of γa(u + v) and γa(u − v) into the x1x2-plane. Hence, the projection of
f̃a(u, v) into the x1x2-plane is inside the convex curve. The claim follows. �

Thus, to prove Proposition 3.4, it suffices to show that 
min
a is embedded and

contained in the closure � ×Lmin
C of � × Lmin

C , by the above three lemmas. To
this end, we reparameterize γa and f̃a by their height as follows:

We define the diffeomorphism τ : R → R by

τ(s) :=
∫ s

0
ξa(t) dt,
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which is the height function (i.e. the x0-component) of γa(s). Using the inverse
function s = s(τ ) of τ(s), we define the parameter change

γ̃a(τ ) := γa(s(τ ))

of γa(s). We also define (α,β) : R2 → R2 by

(α,β) = (α(u, v),β(u, v)) :=
(

τ(u + v) + τ(u − v)

2
,
τ (u + v) − τ(u − v)

2

)
and

f̌a(α,β) := 1

2
(γ̃a(α + β) + γ̃a(α − β)).

Since γ̃a(α ± β) = γ̃a(τ (u ± v)) = γa(u ± v), we see that f̌a(α,β) and f̃a(u, v)

give the same surface (see [4, Proposition 2.2]). We set

ca := τ(π) =
∫ π

0
ξa(t) dt. (4.1)

Lemma 4.4. Consider the map ψ : R × (0,π) � (u, v) �→ (α,β) ∈ R × (0, ca).
Then, ψ is a diffeomorphism, and the image of the rectangle

0 ≤ u ≤ π

4
, 0 ≤ v ≤ π

2
,

is again a rectangle, which is given by

0 ≤ α ≤ τ

(
π

4

)
, 0 ≤ β ≤ τ

(
π

2

)
= ca

2
.

Proof. It is easy to see that

(u, v) =
(

τ−1(α + β) + τ−1(α − β)

2
,
τ−1(α + β) − τ−1(α − β)

2

)
gives the inverse function for ψ . Since the Jacobian

∂(α,β)

∂(u, v)
= ξa(u + v)ξa(u − v)

is always positive, ψ is a diffeomorphism.
Furthermore, we see that for any n ∈ Z,

β(u, v) = 1

2
(τ (u + v) − τ(u − v)) = 1

2

∫ u+v

u−v

ξa(t) dt,

β

(
u,

nπ

2

)
= 1

2

∫ u+nπ/2

u−nπ/2
ξa(t) dt = 1

2

∫ nπ

0
ξa(t) dt = nτ

(
π

2

)
(

since ξa(t) is periodic with period
π

2

)
,

α(0, v) = 1

2

(∫ v

0
ξa(t) dt +

∫ −v

0
ξa(t) dt

)
= 0 (since ξa(t) is even),

α

(
π

4
, v

)
= 1

2

(∫ π/4+v

0
ξa(t) dt +

∫ π/4−v

0
ξa(t) dt

)
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= 1

2

(∫ π/4

0
+

∫ π/4+v

π/4
+

∫ π/4

0
+

∫ π/4−v

π/4

)
ξa(t) dt

=
∫ π/4

0
ξa(t) dt = τ

(
π

4

)
,

from which the rest of the claim follows. �

By this lemma we have that


min
a =

{
f̌a(α,β) ∈ R3

1;0 ≤ α ≤ τ

(
π

4

)
,0 < β ≤ τ

(
π

2

)}
.

Remark 4.5. The x0-component of f̌a(α,β) is α, that is,

x0 ◦ f̌a(α,β) = 1

2

(∫ α+β

0
dt +

∫ α−β

0
dt

)
= α.

Now we prove the embeddedness of 
min
a . In fact, we can prove the following

stronger lemma.

Lemma 4.6. The surface f̌a(α,β) (α ∈ R, β ∈ (0, ca)) is embedded, where ca was
defined in (4.1).

Proof. Suppose that f̌a(α,β) = f̌a(α
′, β ′), where α,α′ ∈ R and β,β ′ ∈ (0, ca).

Then by Remark 4.5 we have α = α′. Suppose now that β < β ′. Let π0 : R3
1 �

(x0, x1, x2) �→ (x1, x2) ∈ R2 be the projection. By Lemma 4.2, π0 ◦ γ̃a(τ ) is a
closed convex curve. Since π0 ◦ γa(s) is 2π -periodic, we see that π0 ◦ γ̃a(τ ) is
2ca-periodic. Since 0 < β < β ′ < ca ,

π0 ◦ γ̃a(α − β ′), π0 ◦ γ̃a(α − β), π0 ◦ γ̃a(α),

π0 ◦ γ̃a(α + β), π0 ◦ γ̃a(α + β ′)

lie on the curve π0 ◦ γ̃a(τ ) in this order. The assumption that f̌a(α,β) = f̌a(α,β ′)
implies that the midpoint of π0 ◦ γ̃a(α − β ′) and π0 ◦ γ̃a(α + β ′) is equal to the
midpoint of π0 ◦ γ̃a(α − β) and π0 ◦ γ̃a(α + β), which is a contradiction by the
convexity of π0 ◦ γ̃a(τ ). So, β ≥ β ′. In a similar way we can conclude β ′ ≥ β ,
hence β = β ′. This finishes the proof. �

Hence, proving the following lemma completes the proof of Proposition 3.4.

Lemma 4.7. The piece of surface 
min
a is contained in the closure � ×Lmin

C of
� ×Lmin

C .

Proof. Direct computations show that

∂f̌a

∂α
= (1,−2 cosu cosv,−2 sinu cosv),

∂f̌a

∂β
= (1,2 sinu sinv,−2 cosu sinv).
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Because u ∈ (0,π/4), v ∈ (0,π/2), we have

−2 cosu cosv < 0, −2 sinu cosv < 0, 2 sinu sinv > 0, −2 cosu sinv < 0.

Since the boundary ∂
min
a of 
min

a consists of the three straight line segments

Lmin
A :=

{
f̌a(0, β) ∈ R3

1;0 < β ≤ ca

2

}
,

Lmin
B :=

{
f̌a

(
τ

(
π

4

)
, β

)
∈ R3

1;0 < β ≤ ca

2

}
,

Lmin
C :=

{
f̌a

(
α,

ca

2

)
∈ R3

1;0 ≤ α ≤ τ

(
π

4

)}
,

and the singular curve γ̃a(τ ) (0 ≤ τ ≤ τ(π/4)), all contained in � ×Lmin
C , the

claim follows. �
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