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1. Introduction

The study of the spectra of quantum groups for generic deformation parameters
was initiated twenty years ago by Joseph [20; 21] and Hodges–Levasseur–Toro
[18] who obtained a number of important results on them. One of the long-term
goals was to understand these spectra geometrically in terms of symplectic fo-
liations in an attempt to extend the orbit method [9] to more general classes of
algebras and Poisson manifolds. This grew into a very active area of studying
the ring theoretic properties of quantum analogues of universal enveloping alge-
bras of solvable Lie algebras. The quantum Schubert cell algebras, defined by De
Concini–Kac–Procesi [8] and Lusztig [25], comprise one of the major families
of algebras in this area. There is one such algebra U−[w] for every simple Lie
algebra g and an element w of the Weyl group W of g. It is a subalgebra of the
quantized universal enveloping algebra Uq(g) and a deformation of the universal
enveloping algebra U(n− ∩ w(n+)), where n± are the nilradicals of a pair of op-
posite Borel subalgebras b± of g. From another perspective, the algebra U−[w]
is a deformation of the coordinate ring of the Schubert cell corresponding to w of
the full flag variety of g, equipped with the standard Poisson structure [14]. These
algebras played important roles in many different contexts in recent years such
as the study of coideal subalgebras of Uq(b−) and Uq(g) [17; 16] and quantum
cluster algebras [10].

There are two very different approaches to the study of the spectra of U−[w].
One is purely ring theoretic and is based on the Cauchon procedure of deleting
derivations [6]. The second is a representation theoretic one and builds on the
above mentioned methods of Joseph, Hodges, Levasseur, and Toro [21; 18]. Each
of these methods has a number of advantages over the other, and relating them
is an important open problem with many potential applications. Previously there
were no connections between them even for special cases of the algebras U−[w],
such as the algebras of quantum matrices.

In this paper we unify the ring theoretic and the representation theoretic ap-
proaches to the study of SpecU−[w]. Furthermore, we resolve several other open
problems on the deleting derivation procedure and the spectra of U−[w], the two
being questions posed by Cauchon and Mériaux [27]. Before we proceed with the
statements of these results, we need to introduce some additional background.
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There is a canonical action of the torus Tr = (K∗)×r on U−[w] by algebra
automorphisms, where K is the base field and r is the rank of g. By a general
stratification result of Goodearl and Letzter [13], one has a partition

SpecU−[w] =
⊔

I∈Tr-SpecU−[w]
SpecI U−[w].

Here Tr-SpecU−[w] denotes the set of Tr -invariant prime ideals. By two general
results of [13], Tr-SpecU−[w] is finite and each stratum

SpecI U−[w] =
{
L ∈ SpecU−[w]

∣∣∣ ⋂
t∈Tr

t · L = I

}
is homeomorphic to the spectrum of a (commutative) Laurent polynomial ring.
The problem of the description of the Zariski topology of SpecU−[w], however,
is wide open.

The Cauchon method of deleting derivations is a multistage recursive proce-
dure [6] beginning with an iterated Ore extension A of length l (of a certain
general type) equipped with a compatible Tr -action and ending with a quan-
tum affine space algebra A with a Tr -action. Cauchon constructed in [6] a set-
theoretic embedding of SpecA into SpecA. It induces a set-theoretic embedding
Tr-SpecA ↪→ Tr-SpecA. The Tr -invariant prime ideals of A are then parame-
trized by some of the subsets of [1, l], called Cauchon diagrams. The Tr -prime
ideal of A corresponding to a Cauchon diagram D ⊆ [1, l] will be denoted by
JD . The problem of determining which subsets of [1, l] arise in this way (i.e.,
are Cauchon diagrams) is the essence of the method and is very difficult for each
particular class of algebras. It was solved for the algebras of quantum matrices by
Cauchon [6] and for all algebras U−[w] by Cauchon and Mériaux [27]. To state
the latter result, we denote the set of simple roots of g by � and the corresponding
simple reflections of W by sα , α ∈ �. A word i = (α1, . . . , αl) in the alphabet �

will be called a reduced word for w if sα1 · · · sαl
is a reduced expression of w.

Each reduced word i for w gives rise to a presentation of U−[w] as an iterated
Ore extension of length l. The subsets of [1, l] are index sets for the subwords of
i by the assignment {j1 < · · · < jn} �→ (αj1 , . . . , αjn). We will denote by ≤ the
(strong) Bruhat order on W and set W≤w = {y ∈ W | y ≤ w}. For each y ∈ W≤w ,
there exists a unique left positive subword of i corresponding to y (see §2.2 for its
definition and details on Weyl group combinatorics). Its index set will be denoted
by LP i(y). The Cauchon–Mériaux classification theorem states the following:

For all Weyl group elements w ∈ W and reduced words i for w, consider
the presentation of U−[w] as an iterated Ore extension corresponding to i. The
Cauchon diagrams of the Tr -prime ideals of U−[w] are precisely the index sets
LP i(y) for y ∈ W≤w .

The representation theoretic approach [28] to the spectra SpecU−[w] relies
on a family of surjective Tr -equivariant antihomomorphisms φw : Rw

0 → U−[w],
where Rw

0 are certain quotients of subalgebras of the quantum groups Rq [G]. The
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algebras Rw
0 were introduced by Joseph [21] as quantizations of the coordinate

rings of w-translates of the open Schubert cell of the flag variety of g, see §2.3
for details. Via these maps one can transfer back and forward questions on the
spectra of U−[w] to questions on the spectra of quantum function algebras. The
latter can be approached via representation theoretic methods, building on the
works of Joseph [20; 21], Gorelik [15], and Hodges–Levasseur–Toro [18]. This
leads to an explicit picture for Tr-SpecU−[w]. First, the Tr -invariant prime ideals
of U−[w] are parametrized by W≤w , and the ideal Iw(y) corresponding to y ∈
W≤w is explicitly given in terms of Demazure modules using the maps φw , see
Theorem 2.2 for a precise statement. Second, each of the strata SpecIw(y) U−[w]
consists of ideals constructed by contractions from localizations of U−[w]/Iw(y)

by explicit small multiplicative sets of normal elements.
Each of the above two methods has many advantages over the other. Using the

representation theoretic approach, it was proved that all ideals Iw(y) are poly-
normal, it was established that U−[w] are catenary and satisfy Tauvel’s height
formula, the containment problem for Tr-SpecU−[w] = {Iw(y) | y ∈ W≤w} was
solved, and theorems for separation of variables for U−[w] were established (see
[28; 30; 31]). In the special case of the algebras of quantum matrices, catenarity
and ideal containment were proved earlier [7; 23] within the framework of the
ring theoretic approach (though with more complicated arguments), but there was
no progress on polynormality or proofs of these results for more general U−[w]
algebras. On the other hand, using the ring theoretic approach, it was proved that
for all Tr -primes JD of U−[w] the factor U−[w]/JD always has a localization
that is a quantum torus, its center (which is closely related to the structure of
the stratum SpecJD

U−[w]) was described, and in the case of quantum matrices,
Tr -primes were related to total positivity (see [6; 2; 11]).

Our first result resolves Question 5.3.3 of Cauchon and Mériaux [27] and uni-
fies the two approaches to Tr-SpecU−[w].
Theorem 1.1. Let K be an arbitrary base field, q ∈ K∗ be a non-root of unity,
g be a simple Lie algebra, w be an element of the Weyl group of g, and i be
a reduced word for w. Consider the presentation of the quantum Schubert cell
algebra U−[w] as an iterated Ore extension corresponding to i.

Then, for all Weyl group elements y ≤ w, the Cauchon diagram of the Tr -
prime ideal Iw(y) of U−[w] (from the representation theoretic approach from
Theorem 2.2 (i)) is equal to LP i(y), the index set of the left positive subword of i
whose total product is y.

Thus the Tr -prime ideals of U−[w] from the representation theoretic approach
are related to the ideals JD from the ring theoretic approach via

Iw(y) = JLP i(y).

Furthermore, we prove a theorem that explicitly describes the behavior of the rep-
resentation theoretic ideals Iw(y) of U−[w] in each stage of the Cauchon deleting
derivation procedure. This appears in Theorem 4.5 and will not be stated in the
introduction since it requires additional background.
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With the help of Theorem 1.1, one can now combine the strengths of the two
approaches to the spectra of the quantum Schubert cell algebras. We expect that
the combination of the two methods will lead to substantial progress in the study
of the topology of SpecU−[w]. We use Theorem 1.1 and previous results of the
second author to resolve Question 5.3.2 of Cauchon and Mériaux [27], thereby
solving the containment problem for the ideals

{JLP i(y) | y ∈ W≤w}
of the classification of [27].

Theorem 1.2. In the setting of Theorem 1.1, the map

W≤w → Tr-SpecU−[w] given by y �→ JLP i(y)

is an isomorphism of posets with respect to the (strong) Bruhat order and the
inclusion order on ideals.

Finally, Theorem 1.1 also gives a new, independent proof of the Cauchon–Mériaux
classification [27] described above. (The proof of Theorem 1.1 does not use re-
sults from [27].)

Let us return to the general case of Cauchon’s method of deleting derivations. It
relates the prime ideals of an initial iterated Ore extension A to the prime ideals of
the final algebra A, the Cauchon quantum affine space algebra associated to A. In
order to study these ideals, one needs an explicit description of A as a subalgebra
of the ring of fractions Fract(A). We obtain such a description for all algebras
U−[w], establishing yet another relationship between the two approaches to the
structure of the algebras U−[w]. Given a reduced word i = (α1, . . . , αl) for w,
define a successor function κ : [1, l] → [1, l] 	 {∞} by

κ(j) = min{k | k > j,αk = αj } if ∃k > j such that αk = αj ,

κ(j) = ∞ otherwise.

For j ∈ [1, l], denote by �i,j ∈ U−[w] the element obtained by evaluating the
quantum minor corresponding to the fundamental weight �αj

and the Weyl group
elements sα1 · · · sαj−1 , w ∈ W on the R-matrix Rw corresponding to w. We refer
to §2.3 and §3.1 for details and the description of these elements in the framework
of the antiisomorphisms φw : Rw

0 → U−[w].
Theorem 1.3. In the setting of Theorem 1.1, for all Weyl group elements w and
reduced words i = (α1, . . . , αl) for w, the generators x1, . . . , xl of the correspond-
ing Cauchon quantum affine space algebras are given by

xj =
{

(q−1
αj

− qαj
)−1�−1

i,κ(j)
�i,j if κ(j) �= ∞,

(q−1
αj

− qαj
)−1�i,j if κ(j) = ∞

for the standard powers qαj
∈ K∗ of q , see § 2.1.

This theorem establishes a connection between the initial cluster for the cluster
algebra structure on U−[w] of Geiß–Leclerc–Schröer and Cauchon’s method of
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deleting derivations. We will present a deeper study of this in a forthcoming pub-
lication. Theorem 1.3 is also an important ingredient in a very recent proof [32]
of the second author of the Andruskiewitsch–Dumas conjecture [1].

The paper is organized as follows. Section 2 contains background on the quan-
tum Schubert cell algebras and the representation theoretic and ring theoretic ap-
proaches to the study of their spectra. Section 3 contains the proof of Theorem 1.3.
Theorems 1.1 and 1.2 are proved in Section 4, where we also establish a theorem
describing the behavior of the ideals Iw(y) under the iterations of the deleting
derivation procedure.

We will use the following notation throughout the paper. Given a K-algebra
A, we will denote its center by Z(A). For a K-subspace V of A and a, b ∈ A, we
will write a = b mod V if a − b ∈ V . Set N := {0,1, . . .} and Z+ := {1,2, . . .}.
For m,n ∈ Z set [m,n] = {m, . . . , n} if m ≤ n and [m,n] = ∅ otherwise.

2. Quantum Schubert Cells

2.1. Quantized Universal Enveloping Algebras

We will mostly follow the notation of Jantzen’s book [19]. Let g be a complex
simple Lie algebra with the root system 	 and the Weyl group W . Choose a basis
� of 	. Let 〈·, ·〉 be the invariant bilinear form on R� normalized by 〈α,α〉 = 2
for short roots α ∈ 	. For α ∈ 	, denote by α∨ and sα ∈ W the corresponding
coroot and reflection. Let {�α | α ∈ �} be the fundamental weights of g. Denote
the root lattice of g by Q = Z	 and set Q+ = N	. Let P be the weight lattice
of g and P+ = N{�α | α ∈ �} be the set of dominant integral weights of g. For a
subset I ⊆ �, set QI = ZI . Recall the standard partial order on P : for ν1, ν2 ∈P ,
set ν1 ≥ ν2 if ν2 = ν1 − γ for some γ ∈Q+. Let ν1 > ν2 if ν1 ≥ ν2 and ν1 �= ν2.

Throughout the paper K will denote a base field (of arbitrary characteristic) and
q ∈ K∗ will denote an element which is not a root of unity. Denote by Uq(g) the
quantized universal enveloping algebra of g over K with deformation parameter q .
It has generators K±1

α , Eα , Fα , α ∈ � and relations [19, §4.3]. The algebra Uq(g)

has a unique Hopf algebra structure with comultiplication, antipode, and counit
satisfying

�(Kα) = Kα ⊗ Kα, �(Eα) = Eα ⊗ 1 + Kα ⊗ Eα,

�(Fα) = Fα ⊗ K−1
α + 1 ⊗ Fα

and

S(Kα) = K−1
α , S(Eα) = −K−1

α Eα, S(Fα) = −FαKα,

ε(Kα) = 1, ε(Eα) = ε(Fα) = 0.

The subalgebras of Uq(g) generated by {Eα | α ∈ �}, {Fα | α ∈ �}, and {K±1
α |

α ∈ �} will be denoted by U+, U−, and U0, respectively.
Denote by ≤ the (strong) Bruhat order on W and by 
 : W → N the standard

length function. For w ∈ W , set W≤w = {y ∈ W | y ≤ w}. Let Bg be the braid
group of g and {Tα | α ∈ �} be its standard generating set. We will use Lusztig’s
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action of Bg on Uq(g) by algebra automorphisms in the version given in [19,
§8.14] by eqs. 8.14 (2), (3), (7), and (8).

We will use the following notation for q-integers and factorials:

[n]q := qn − q−n

q − q−1
, [n]q ! := [1]q · · · [n]q, n ∈ N.

For α ∈ �, define [n]α := [n]qα and [n]α! := [n]qα !, where qα := q〈α,α〉/2.

2.2. Weyl Group Combinatorics and Quantum Schubert Cell Algebras

Fix w ∈ W . A word i = (α1, . . . , αl) in the alphabet � is called a reduced word
for w if sα1 · · · sαl

is a reduced expression of w (in particular, 
(w) = l). Given a
reduced word i = (α1, . . . , αl) for w, define

w(i)≤j := sα1 · · · sαj
and w(i)>j := sαj+1 · · · sαl

for j ∈ [0, l]. (2.1)

Thus w(i)≤0 = 1 and w(i)≤l = w. There is a bijection between the set of subwords
of i and the subsets of [1, l], which associates to a subword (αj1 , . . . , αjn) of i its
index set {j1 < · · · < jn} ⊆ [1, l]. Given D ⊆ [1, l], for j ∈ [1, l] set sD

j = sαj
if

j ∈ D, and sD
j = 1 otherwise. Define

w(i)D≤j := sD
1 · · · sD

j and w(i)D>j := sD
j+1 · · · sD

l for j ∈ [1, l]. (2.2)

Let
w(i)D := w(i)D≤l = sD

1 · · · sD
l .

Following [26] we call a subword of i (right) positive if its index set D ⊆ [1, l]
has the property that

w(i)D≤j sαj+1 > w(i)D≤j for all j ∈ [1, l − 1].
A subword of i will be called left positive if its index set D ⊆ [1, l] has the prop-
erty that

sαj
w(i)D>j > w(i)D>j for all j ∈ [1, l − 1]. (2.3)

Some authors refer to the left positive subwords of i as Cauchon diagrams as-
sociated to i. However, we will use the term Cauchon diagrams for the general
Cauchon procedure of deleting derivations in iterated Ore extensions (see §2.4),
and using the same term for different notions will easily lead to confusions.

The map (αj1 , . . . , αjn) �→ (αjn, . . . , αj1) establishes a bijection between the
left positive subwords of i and the right positive subwords of the reduced word
(αl, . . . , α1) of w−1. Since the map y �→ y−1 is a bijection between W≤w and
W≤w−1

, Lemma 3.5 of Marsh–Rietsch [26] gives that for each y ∈ W≤w there
exists a unique left positive subword of i such that its index set D ⊆ [1, l] satisfies
w(i)D = y. Denote this index set D by LP i(y).

The support of w ∈ W is defined by

S(w) := {α ∈ � | sα ≤ w}. (2.4)

Its complement is given by

� \ S(w) = {α ∈ � | w�α = �α}, (2.5)
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see [29, Lemma 3.2 and eq. (3.2)].
The quantum Schubert cell algebras U±[w], w ∈ W were defined by De Con-

cini, Kac, and Procesi [8], and Lusztig [25, §40.2] as follows. Given a reduced
word i = (α1, . . . , αl) for w, define the roots

βj := w(i)≤(j−1)αj , j ∈ [1, l] (2.6)

and the Lusztig root vectors

Eβj
:= Tα1 · · ·Tαj−1(Eαj

), Fβj
:= Tα1 · · ·Tαj−1(Fαj

), j ∈ [1, l], (2.7)

see [25, §39.3]. By [8, Proposition 2.2] and [25, Proposition 40.2.1] the subalge-
bras U±[w] of U± generated by Eβj

, j ∈ [1, l] and Fβj
, j ∈ [1, l] do not depend

on the choice of a reduced word i for w and have the PBW bases

{(Eβl
)nl · · · (Eβ1)

n1 | n1, . . . , nl ∈ N} and
(2.8){(Fβl

)nl · · · (Fβ1)
n1 | n1, . . . , nl ∈N},

respectively.
The algebra Uq(g) is Q-graded by degKα = 0, degEα = α, degFα = −α,

∀α ∈ �. This induces a Q-grading on U±[w]. The corresponding graded compo-
nents will be denoted by (Uq(g))γ and (U±[w])γ . One has

Z{γ ∈ Q | (U±[w])γ �= 0} = QS(w), (2.9)

see for example [29, eq. (2.44) and Lemma 3.2 (ii)].
Recall that there is a unique algebra automorphism ω of Uq(g) such that

ω(Eα) = Fα, ω(Fα) = Eα, ω(Kα) = K−1
α , ∀α ∈ �.

It satisfies ω(Tα(u)) = (−1)〈α∨,γ 〉q−〈α,γ 〉Tα(ω(u)) for all γ ∈ Q, u ∈ (Uq(g))γ ,
see [19, eq. 8.14 (9)]. In other words, if ρ is the sum of all fundamental weights
of g and ρ∨ is the sum of all fundamental coweights of g, then ω(Tα(u)) =
(−1)〈sα(γ )−γ,ρ∨〉q−〈sα(γ )−γ,ρ〉Tα(ω(u)) for u ∈ (Uq(g))γ . Thus,

ω(Ty(u)) = (−1)〈y(γ )−γ,ρ∨〉q−〈y(γ )−γ,ρ〉Ty(ω(u))

for all y ∈ W,γ ∈Q, u ∈ (Uq(g))γ ,

see [19, eq. 8.18 (5)] for an equivalent formulation of this fact. In particular, the
restrictions of ω induce the isomorphisms

ω : U+[w] ∼=→ U−[w], ω(Eβj
) = (−1)〈βj −αj ,ρ∨〉q−〈βj −αj ,ρ〉Fβj

,
(2.10)∀j ∈ [1, 
(w)].

To each γ ∈ Q associate the character of Tr = (K∗)×r

t �→ tγ :=
∏
α∈�

t 〈γ,�α〉
α , t = (tα)α∈� ∈ Tr . (2.11)

Define the rational Tr -action on Uq(g) by algebra automorphisms

t · x = tγ x, x ∈ (Uq(g))γ . (2.12)

It preserves the subalgebras U±[w]. We will denote by Tr-SpecU−[w] the space
of Tr -prime ideals of U−[w].
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Fix a reduced word i for w and consider the roots (2.6). Equation (2.9) implies
that for all j ∈ [1, 
(w)] there exists a unique tj = (tj,α)α∈� ∈ Tr such that

t
βk

j = q〈βk,βj 〉 ∀k ≤ j and tj,α = 1 ∀α ∈ � \ S(w(i)≤j ), (2.13)

recall (2.11). The Levendorskii–Soibelman straightening law is the following
commutation relation in U−[w]:
Fβj

Fβk
− q−〈βk,βj 〉Fβk

Fβj

=
∑

n=(nk+1,...,nj−1)∈N×(j−k−2)

pn(Fβj−1)
nj−1 · · · (Fβk+1)

nk+1 , pn ∈ K, (2.14)

for all k < j , see for example [5, Proposition I.6.10]. The following lemma is a
direct consequence of (2.8), (2.13), and (2.14).

Lemma 2.1. For all base fields K, q ∈ K∗ that is not a root of unity, Weyl group
elements w ∈ W of length l, reduced words i = (α1, . . . , αl) for w, and j ∈ [1, l],
we have:

(i) The subalgebra of U−[w] generated by Fβ1, . . . ,Fβj
is equal to

U−[w(i)≤j ].
(ii) The algebra U−[w(i)≤j ] is isomorphic to the Ore extension

U−[w(i)≤(j−1)][xj , σj , δj ], where σj = (tj ·) ∈ Aut(U−[w(i)≤(j−1)]) and δj is
a locally nilpotent (left) σj -skew derivation of U−[w(i)≤(j−1)] satisfying σj δj =
q−2
αj

δj σj . This isomorphism is given by the identity map on U−[w(i)≤(j−1)] and

Fβj
�→ xj . Furthermore, U−[w(i)≤0] = U−[1] ∼= K, σ1 = id, and δ1 = 0.

(iii) The eigenvalues tj · Fβj
= q−2

αj
Fβj

are not roots of unity.

The σj -skew derivation δj of U−[w(i)≤(j−1)] in part (ii) of the lemma is explicitly
given by

δj (x) := Fβj
x − q〈βj ,γ 〉xFβj

for x ∈ (U−[w(i)≤(j−1)])γ , γ ∈ Q (2.15)

and is computed using (2.14).
The isomorphisms from part (ii) give rise to the Ore extension presentations

U−[w(i)≤j ] = U−[w(i)≤(j−1)][Fβj
, σj , δj ], 1 ≤ j ≤ l.

When those are iterated, for each reduced word i for w, one obtains a presentation
of U−[w] as an iterated Ore extension

U−[w] = K[Fβ1 ][Fβ2;σ2, δ2] · · · [Fβl
;σl, δl]. (2.16)

2.3. The Prime Spectrum of U−[w] via Demazure Modules

We proceed with the realization of the algebras U−[w] in terms of quantum func-
tion algebras and the description of the spectra of U−[w] via Demazure modules
from [28].

The q-weight spaces of a Uq(g)-module V are defined by

Vν := {v ∈ V | Kαv = q〈ν,α〉v,∀α ∈ �}, ν ∈ P .
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A Uq(g)-module is called a type one module if V = ⊕
ν∈P Vν . The category of

(left) finite-dimensional type one Uq(g)-modules is semisimple (see [19, Theo-
rem 5.17] and the remark on p. 85 of [19]). It is closed under taking tensor prod-
ucts and duals (defined as left modules using the antipode of Uq(g)). Denote by
V (λ) the irreducible type one Uq(g)-module of highest weight λ ∈P+. Those ex-
haust all irreducible finite-dimensional type one modules, see [19, Theorem 5.10].

For algebraically closed fields K of characteristic 0, we will denote by G the
connected, simply connected algebraic group with a Lie algebra g. For all base
fields K and deformation parameters q ∈ K∗ that are not roots of unity, the quan-
tum group Rq [G] is defined as the Hopf subalgebra of the restricted dual (Uq(g))◦,
spanned by the matrix coefficients of the modules V (λ), λ ∈ P+. The latter are
given by

cλ
ξ,v ∈ (Uq(g))◦, cλ

ξ,v(x) := ξ(xv), v ∈ V (λ), ξ ∈ V (λ)∗, x ∈ Uq(g).

(2.17)
Because we work with arbitrary base fields, in the notation Rq [G], G is just a
symbol.

For each λ ∈P+, fix a highest weight vector vλ of V (λ). Set for brevity

cλ
ξ := cλ

ξ,vλ
, λ ∈P+, ξ ∈ V (λ)∗.

Define the subalgebra

R+ := Span{cλ
ξ | λ ∈P+, ξ ∈ V (λ)∗}

of Rq [G].
The braid group Bg acts on the finite-dimensional type one Uq(g)-modules V

by

Tα(v) :=
∑
l,m,n

(−1)mqm−ln
α

[l]α! [m]α! [n]α!E
l
αFm

α En
αv, v ∈ Vμ,μ ∈ P, (2.18)

where the sum is over l,m,n ∈ N such that −l + m − n = 〈μ,α∨〉, cf. [19, §8.6]
and [25, §5.2]. This action and the Bg-action on Uq(g) are compatible by

Tw(x · v) := (Twx) · (Twv), ∀w ∈ W,x ∈ Uq(g), v ∈ V (λ),λ ∈ P+, (2.19)

see [19, eq. 8.14 (1)]. Moreover, Tw(V (λ)μ) = V (λ)wμ, ∀w ∈ W , λ ∈P+, μ ∈P .
In particular, dimV (λ)wλ = 1, ∀w ∈ W , λ ∈P+.

For α ∈ �, denote by Uα the subalgebra of Uq(g) generated by Eα , Fα , and
K±1

α :

Uα = K〈Eα,Fα,K±1
α 〉. (2.20)

It is canonically isomorphic to Uqα (sl2). We will later need the following formulas
for the irreducible type one finite-dimensional Uα-modules. For all m,N ∈ N,
m ≤ N , we have

TαvN�α = (−qα)N

[N ]α! FN
α vN�α , T −1

α vN�α = 1

[N ]α!F
N
α vN�α , (2.21)
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and

Em
α Fm

α vN�α = [m]α! [N ]α!
[N − m]α! vN�α , (2.22)

by [19, eqs. 8.6 (6), (7), and Lemma 1.7].
For λ ∈ P+ and w ∈ W , let ξw,λ ∈ (V (λ)∗)−wλ be the unique vector such that

〈ξw,λ, T
−1
w−1vλ〉 = 1. (2.23)

For y,w ∈ W and λ ∈P+, define the quantum minors

eλ
y,w := cλ

ξy,λ,T −1
w−1 vλ

∈ Rq [G] and eλ
w := eλ

1,w = cλ
ξw,λ

∈ R+. (2.24)

Using the second equality in (2.21) one easily shows that they coincide with the
quantum minors of Berenstein and Zelevinsky from [4, eq. (9.10)]. If one works
with Tw instead of T −1

w−1 , then additional scalars arise from the first equality in
(2.21). This is why we use the latter throughout the paper.

We have

eλ1
w eλ2

w = eλ1+λ2
w = eλ2

w eλ1
w , ∀λ1, λ2 ∈P+,w ∈ W, (2.25)

which is proved analogously to [29, eq. (2.18)] using one more time the sec-
ond equality in (2.21). Joseph proved that the multiplicative sets Ew = {eλ

w | λ ∈
P+} ⊂ R+ are Ore sets, see [21, Lemma 9.1.10]. Joseph’s proof works for all
base fields K and q ∈ K∗ that is not a root of unity, see [31, §2.2]. Define the
quotient algebras

Rw := R+[E−1
w ], w ∈ W

and their subalgebras

Rw
0 := {cλ

ξ (eλ
w)−1 | λ ∈ P+, ξ ∈ V (λ)∗} (2.26)

introduced by Joseph [21, §10.4.8]. One does not need to take a span in the right-
hand side of the above formula, cf. [21, §10.4.8] or [30, eq. (2.18)]. The algebra
Rw

0 is Q-graded by

(Rw
0 )γ := {cλ

ξ (eλ
w)−1 | λ ∈P+, ξ ∈ (V (λ)∗)γ+w(λ)}, γ ∈ Q.

For μ = λ1 − λ2 ∈P , λ1, λ2 ∈ P+, set

eμ
w := eλ1

w (eλ2
w )−1 ∈ Rw

0 . (2.27)

It follows from (2.25) that this does not depend on the choice of λ1, λ2 and that
e
μ1
w e

μ2
w = e

μ1+μ2
w for all μ1,μ2 ∈ P .

The U±U0-submodules U±V (λ)yλ = U±Tyvλ of V (λ), where y ∈ W , are
called Demazure modules. They give rise to the quantum Schubert cell ideals
of R+

Q(y)± := Span{cλ
ξ | λ ∈ P+, ξ ∈ V (λ)∗, ξ ⊥ U±Tyvλ}, y ∈ W.

Their counterparts in the algebras R0
w are the ideals

Q(y)±w := {cλ
ξ e−λ

w | λ ∈ P+, ξ ∈ V (λ)∗, ξ ⊥ U±Tyvλ}
= Q(y)±E−1

w ∩ Rw
0 . (2.28)
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Analogously to (2.26), one does not need to take a span in (2.28), see [15; 28]. For
γ ∈ Q+ \ {0}, define mw(γ ) = dim(U+[w])γ = dim(U−[w])−γ . Let {uγ,i}mw(γ )

i=1

and {u−γ,i}mw(γ )

i=1 be dual bases of (U+[w])γ and (U−[w])−γ with respect to the
Rosso–Tanisaki form, see [19, Ch. 6]. The quantum R matrix corresponding to w

is given by

Rw := 1 ⊗ 1 +
∑

γ∈Q+,γ �=0

mw(γ )∑
i=1

uγ,i ⊗ u−γ,i ∈ U+ ⊗̂ U−, (2.29)

where U+⊗̂U− is the completion of U+ ⊗ U− with respect to the descending
filtration [25, §4.1.1]. Finally, we recall that there is a unique graded algebra an-
tiautomorphism τ of Uq(g) defined by

τ(Eα) = Eα, τ(Fα) = Fα, τ(Kα) = K−1
α , α ∈ �, (2.30)

see [19, Lemma 4.6 (b)]. It satisfies

τ(Twx) = T −1
w−1(τ (x)), ∀x ∈ Uq(g),w ∈ W, (2.31)

see [19, eq. 8.18 (6)].
The next theorem summarizes the representation theoretic approach to

SpecU−[w] via quantum function algebras and Demazure modules.

Theorem 2.2. For all base fields K, q ∈ K∗ that is not a root of unity, simple Lie
algebras g, and Weyl group elements w ∈ W , the following hold:

(i) The maps

φw : Rw
0 → U−[w], φw(cλ

ξ e−λ
w ) := (cλ

ξ,T −1
w−1 vλ

⊗ id)(τ ⊗ id)Rw,

(2.32)
λ ∈ P+, ξ ∈ V (λ)∗

are well defined surjective Q-graded algebra antihomomorphisms with kernels
kerφw = Q(w)+w .

(ii) For y ∈ W≤w , the ideals

Iw(y) = φw(Q(w)+w + Q(y)−w) = φw(Q(y)−w)

are distinct, Tr -invariant, completely prime ideals of U−[w]. All Tr -prime ideals
of U−[w] are of this form.

(iii) The map y ∈ W≤w �→ Iw(y) ∈ Tr-SpecU−[w] is an isomorphism of
posets with respect to the Bruhat order on W≤w and the inclusion order on
Tr-SpecU−[w].
Part (i) is [29, Theorem 2.6]. It was first proved in [28] for another version of
the Hopf algebra Uq(g) equipped with the opposite coproduct, a different braid
group action and Lusztig’s root vectors. Theorem 2.6 in [29] used Tw in place of
T −1

w−1 in equations (2.23) and (2.32). The two formulations are equivalent since
dimV (λ)wλ = 1 and Tw(V (λ)μ) = V (λ)wμ for all w ∈ W , λ ∈ P+, μ ∈ P . Parts
(ii)–(iii) of Theorem 2.2 are proved in [31, Theorem 3.1 (a)] relying on results
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of Gorelik [15] and Joseph [20]. These statements were earlier proved in [28,
Theorem 1.1 (a)–(b)] under slightly stronger conditions on K and q .

Recall (2.24). The elements

bλ
y,w := φw(eλ

ye−λ
w ) = (eλ

y,wτ ⊗ id)Rw, λ ∈ P+

are nonzero normal elements of U−[w]/Iw[y]:
bλ
y,wx = q−〈(w+y)λ,γ 〉xbλ

y,w, ∀λ ∈P+, γ ∈QS(w), x ∈ (U−[w]/Iw(y))γ

(2.33)

by [30, Theorem 3.1 (b) and eq. (3.1)]. Here and below we denote by the same
symbols the images of elements of U−[w] and Rq [G] in their factors, which is a
standard notational convention. The R-matrix commutation relations in R+ (see
e.g. [5, Theorem I.8.15]) and (2.25) imply that for all λ1, λ2 ∈ P+, b

λ1
y,wb

λ2
y,w =

q−〈λ1,λ2−y−1wλ2〉bλ1+λ2
y,w . Thus,

By,w := K∗{bλ
y,w | λ ∈ P+}

is a multiplicative subset of U−[w]/Iw(y) consisting of normal elements. The
quotient ring Ry,w := (U−[w]/Iw(y))[B−1

y,w] is Tr -simple. Its center is a Laurent
polynomial ring of dimension dim ker(w + y). The prime spectrum of U−[w] is
partitioned into

SpecU−[w] =
⊔

y∈W≤w

SpecIw(y) U−[w],

where

SpecIw(y) U−[w] := {J ∈ SpecU−[w] | J ⊇ Iw(y) and J ∩ By,w = ∅}.
Moreover, extension and contraction establish the homeomorphisms

SpecZ(Ry,w)
∼=→ SpecRy,w

∼=→ SpecIw(y) U−[w],
and the centers Z(Ry,w) are Laurent polynomial rings. We refer to [30, Theo-
rem 3.1 and Proposition 4.1] for details and proofs of the above statements. The
dimensions of the Laurent polynomial rings Z(Ry,w) were explicitly determined
in [2; 31]. The above results fit to the general framework of Goodearl and Letzter
[13] for reconstruction of the spectra of algebras from their torus invariant prime
spectra. Compared to [13], the above framework for SpecU−[w] is much more
explicit. It deals with explicit Tr -prime ideals and localizations by small sets of
normal elements.

The antihomomorphisms φw : Rw
0 → U−[w] are explicitly given by

φw(cλ
ξ e−λ

w ) =
∑

m1,...,ml∈N

( l∏
j=1

(q−1
αj

− qαj
)mj

q
mj (mj −1)/2
αj

[mj ]αj
!

)
× 〈ξ, (τEβ1)

m1 · · · (τEβl
)ml T −1

w−1vλ〉Fml

βl
· · ·Fm1

β1
(2.34)
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for all λ ∈P+, ξ ∈ V (λ)∗. This follows from (2.32) and the standard formula [19,
eqs. 8.30 (1) and (2)] for the inner product of the pairs of monomials (2.8) with
respect to the Rosso–Tanisaki form.

2.4. Cauchon’s Method of Deleting Derivations

We continue by outlining Cauchon’s ring theoretic approach to the study of
SpecU−[w] via the method of deleting derivations. We follow [6; 27] and the
review in [3, Section 2].

Fix an iterated Ore extension

A := K[x1][x2;σ2, δ2] · · · [xl;σl, δl]. (2.35)

In particular, for j ∈ [2, l], σj is an automorphism and δj is a (left) σj -skew
derivation of the (j − 1)th algebra Aj−1 := K[x1][x2;σ2, δ2] · · · [xj−1;σj−1,

δj−1] in the above chain.

Definition 2.3. An iterated Ore extension A as in (2.35) is called a Cauchon–
Goodearl–Letzter (CGL) extension if it is equipped with a rational action of the
torus Tr = (K∗)×r , r ∈ Z+ by algebra automorphisms satisfying the following
conditions:

(i) The elements x1, . . . , xl are Tr -eigenvectors.
(ii) For every j ∈ [2, l], δj is a locally nilpotent σj -derivation of Aj−1.

(iii) For every j ∈ [1, l], there exists tj ∈ Tr such that σj = (tj ·) as elements
of Aut(Aj−1) and the tj -eigenvalue of xj , to be denoted by qj , is not a root of
unity.

One easily deduces that for all CGL extensions, σj δj = qj δjσj , ∀j ∈ [2, l]. For
1 ≤ i < j ≤ l, define the eigenvalues

tj · xi = qj,ixi .

Given a CGL extension A as in (2.35), for j = l + 1, l, . . . ,2, Cauchon iteratively
constructed in [6] l-tuples of nonzero elements

(x
(j)

1 , . . . , x
(j)
l )

and families of subalgebras

A(j) := K〈x(j)

1 , . . . , x
(j)
l 〉

of the division ring of fractions Fract(A) of A. First, set

(x
(l+1)
1 , . . . , x

(l+1)
l ) := (x1, . . . , xl) and A(l+1) = A.

For j = l, . . . ,2, the l-tuple (x
(j)

1 , . . . , x
(j)
l ) is determined from (x

(j+1)

1 , . . . ,

x
(j+1)
l ) by

x
(j)
i :=

⎧⎨⎩x
(j+1)
i if i ≥ j,∑∞

m=0
(1−qj )−m

(m)qj
! [δm

j σ−m
j (x

(j+1)
i )](x(j+1)

j )−m if i < j.
(2.36)
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Here (0)q = 1, (m)q = (1 − qm)/(1 − q) for m > 0, and (m)q ! = (0)q · · · (m)q
for m ∈ N. For j ∈ [2, l + 1], Cauchon constructed an algebra isomorphism

A(j)
∼=→ K[y1] · · · [yj−1;σj−1, δj−1][yj ; τj ] · · · [yl; τl], (2.37)

where τk denotes the automorphism of K[y1] · · · [yj−1;σj−1, δj−1][yj ; τj ] · · ·
[yk−1; τk−1] such that τk(yi) = qk,iyi for all i ∈ [1, k − 1]. This isomorphism

is given by x
(j)
i �→ yi , i = 1, . . . , l. Define

Sj := {(x(j+1)
j )m | m ∈N}, j ∈ [2, l].

Then Sj is an Ore subset of A(j) and A(j+1). Cauchon proved that A(j)[S−1
j ] =

A(j+1)[S−1
j ].

Set qi,i = 1 for i ∈ [1, l] and qi,j = q−1
j,i for 1 ≤ i < j ≤ l. The quantum affine

space algebra Rq[Al] associated to the matrix q := (qi,j )
l
i,j=1 is the K-algebra

with generators y1, . . . , yl and relations yiyj = qi,j yj yi , ∀i, j ∈ [1, l]. We will
call the algebra A(2) obtained at the end of the Cauchon deleting derivation pro-
cedure the Cauchon quantum affine space algebra associated to A and will denote
it by A := A(2). Correspondingly, the final l-tuple of x-elements will be denoted
by (x1, . . . , xl) = (x

(2)
1 , . . . , x

(2)
l ). For j = 2, (2.37) gives an isomorphism

A = A(2)
∼=→ Rq[An], xi = x

(2)
i �→ yi, i ∈ [1, l]. (2.38)

Furthermore, Cauchon constructed set-theoretic embeddings

ϕj : SpecA(j+1) ↪→ SpecA(j), j ∈ [2, l],
which have certain topological properties but are not topological embeddings.
They are given by

ϕj (Jj+1) =
{

Jj+1S
−1
j ∩ A(j) if x

(j+1)
j /∈ Jj+1,

g−1
j (Jj+1/(x

(j+1)
j )) if x

(j+1)
j ∈ Jj+1,

where Jj+1 ∈ SpecA(j+1). Here gj : A(j) → A(j+1)/(x
(j+1)
j ) is the homomor-

phism given by gj (x
(j)
i ) := x

(j+1)
i + (x

(j+1)
j ), i ∈ [1, l]. For this construction one

needs [6] the additional condition x
(j+1)
j /∈ Jj+1 ⇒ Jj+1 ∩ Sj+1 = ∅. This con-

dition is satisfied for all Jj+1 ∈ Tr-SpecA(j+1) since by a result of Goodearl and
Letzter [13, Proposition 4.2] all Tr -prime ideals of a CGL extension are com-
pletely prime (recall (2.37)). A CGL extension A as in Definition 2.3 is called
torsion free if the subgroup of K∗ generated by all qj,i , 1 ≤ i < j ≤ l, is torsion
free. By another result of Goodearl and Letzter [12, Theorem 2.3], all prime ideals
of a torsion-free CGL extension are completely prime. Thus the above mentioned
condition is satisfied for all torsion-free CGL extensions A because of (2.37). By
Lemma 2.1 all algebras U−[w] are torsion-free CGL extensions when q ∈ K∗ is
not a root of unity.

The composition ϕ := ϕ2 · · ·ϕl : SpecA ↪→ SpecA is a set-theoretic embed-
ding, which induces an embedding Tr-SpecA ↪→ Tr-SpecA. Since A is a quan-
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tum affine space algebra, see (2.38), the Tr -prime ideals of A = A(2) are the ideals
KD := A{xi | i ∈ D} for D ⊆ [1, l]. The Cauchon diagram of J ∈ Tr-SpecA is
the unique set D ⊆ [1, l] such that ϕ(J ) = KD . We will denote the Cauchon di-
agram of J by CD(J ). If D ⊆ [1, l] is the Cauchon diagram of a Tr -invariant
prime ideal of A, then this prime ideal will be denoted by

JD := ϕ−1(KD). (2.39)

Let

A′ := K〈x1, . . . , xl−1〉 = K[x1][x2;σ2, δ2] · · · [xl−1;σl−1, δl−1]. (2.40)

So A = A′[xl;σl, δl]. Set

A′′ = K〈x(l)
1 , . . . , x

(l)
l−1〉.

So A(l) = A′′[xl; τl]. Note that A′ and A′′ are Tr -stable subalgebras of A = A(l+1)

and A(l), respectively. They are isomorphic via the following Tr -equivariant al-
gebra isomorphism (recall (2.36)):

θ : A′ ∼=→ A′′, θ(a′) =
∞∑

m=0

(1 − ql)
−m

(m)ql
! [δm

l σ−m
l (a′)]x−m

l . (2.41)

It satisfies θ(xi) = x
(l)
i , i ∈ [1, l − 1]. For an ideal J of A, define its leading

part consisting of the leading terms of the elements of J written as left or right
polynomials in xl with coefficients in A′:

lt(J ) := {a′ ∈ A′ | ∃a ∈ J,m ∈ N such that a − a′xm
l ∈ A′xm−1

l + · · · + A′}
= {a′ ∈ A′ | ∃a ∈ J,m ∈ N such that

a − xm
l a′ ∈ xm−1

l A′ + · · · + A′}. (2.42)

(The equality holds because σl is locally finite.)
The proof of the following lemma is analogous to [22, Lemma 4.7] and is left

to the reader.

Lemma 2.4. Let x be a regular element of the K-algebra A for which there exist
two K-linear maps σ, δ : A → A such that σ is locally finite, δ is locally nilpotent,
σδ = qδσ for some q ∈K∗, and

xa = σ(a)x + δ(a), ∀a ∈ A.

Then the set � = {1, x, x2, . . .} is an Ore subset of A and

GK dim(A[�−1]) = GK dimA.

We will need the following facts for a recursive computation of Cauchon diagrams
and Gelfand–Kirillov dimensions of quotients.

Proposition 2.5. Assume that J is a Tr -prime ideal of a CGL extension A given
by (2.35).
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(i) If xl /∈ J , then

JS−1
l =

⊕
m∈Z

θ(lt(J ))xm
l , ϕl(J ) =

⊕
m∈N

θ(lt(J ))xm
l , (2.43)

CD(J ) = CD(lt(J )), and

GK dim

(
A

J

)
= GK dim

(
A′

lt(J )

)
+ 1. (2.44)

(ii) If xl ∈ J , then ϕl(J ) = θ(J ∩A′)+A(l)xl , CD(J ) = CD(J ∩A′)	{l}, and
we have the Tr -equivariant algebra isomorphisms A/J ∼= A(l)/ϕl(J ) ∼= A′/(J ∩
A′) ∼= A′′/(ϕl(J ) ∩ A′′). In particular, GK dim(A/J ) = GK dim(A′/(J ∩ A′)).

Here the Cauchon diagrams CD(lt(J )) and CD(J ∩A′) are computed with respect
to the presentation (2.40) of A′ as a CGL extension.

Proof. Part (i): By [24, Lemma 2.2] every Tr -invariant ideal L of AS−1
l =

A′′[x±1
l ; τl] has the form

L =
⊕
m∈Z

L0x
m
l for some ideal L0 of A′′. (2.45)

If a = ∑
m amxm

l ∈ L, then tkl · (x−k
l axk

l ) = ∑
m qkm

l amxm
l ∈ L for all k ∈ N,

where tl ∈ Tr is the element from Definition 2.3 (iv). Thus amxm
l ∈ L, ∀m ∈ Z,

which proves (2.45).
We apply this to the ideal L := JS−1

l . Equation (2.41) implies that for all
a′ ∈ A′ and m ∈ Z,

θ(a′)xm
l = a′xm

l +
m−1∑
k=n

b′
kx

k
l

for some n < m, b′
k ∈ A′. Since every nonzero element of JS−1

l has the form

a′xm
l + ∑m−1

k=n a′
kx

k
l for some a′ ∈ lt(I ) \ {0}, n < m ∈ Z, and a′

k ∈ A′, it should

also have the form θ(a′)xm
l + ∑m−1

k=n a′′
k xk

l for some a′ ∈ lt(I ) \ {0}, n < m ∈ Z,
and a′′

k ∈ A′′. Now the two equalities in (2.43) follow from (2.45). The equality
CD(I ) = CD(lt(I )) is a consequence of the definition of Cauchon diagrams. The
last statement of part (i) follows from Lemma 2.4 and the fact that (A/J )[S−1

l ] ∼=
θ(A′/ lt(J ))[x±

l , τl].
Part (ii): The first two statements follow from the definition of ϕl . The latter

also implies that gl induces the Tr -equivariant algebra isomorphism A(l)/ϕl(J ) ∼=
A/J . Since xl ∈ J and xl ∈ ϕl(J ), the embeddings A′ ↪→ A and A′′ ↪→ A(l)

induce the Tr -equivariant algebra isomorphisms A′/(J ∩ A′) ∼= A/J and A′′/
(ϕl(J ) ∩ A′′) ∼= A(l)/ϕl(J ). �

By Lemma 2.1, the quantum Schubert cell algebras U−[w] are torsion-free CGL
extensions for all base fields K and q ∈ K∗ not a root of unity. There is one
presentation (2.16) of U−[w] as a CGL extension for each reduced word i for w.
Cauchon and Mériaux established in [27] the following classification result for
their Tr -spectra.
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Theorem 2.6 (Cauchon–Mériaux [27]). For all base fields K, q ∈ K∗ that is not a
root of unity, simple Lie algebras g, Weyl group elements w, and reduced words i
for w, consider the presentation (2.16) of U−[w] as a torsion-free CGL extension.
In this presentation, the Tr -prime ideals of U−[w] are the ideals JLP i(y) for the
elements y ∈ W≤w (recall (2.39)), where LP i(y) ⊆ [1, l] is the index set of the
left positive subword of i whose total product is y, cf. § 2.2.

In other words the theorem asserts that the Cauchon diagrams of the Tr -invariant
prime ideals of U−[w] for the presentation (2.16) as an iterated Ore extension are
precisely the index sets of all left positive subwords of i. In [27] Theorem 2.6 was
formulated for the algebras U+[w]. The two statements are equivalent because of
the isomorphism (2.10).

We give a second, independent proof of this theorem in Section 4.

3. Cauchon’s Affine Space Algebras Associated to U−[w]
3.1. Statement of the Main Result

For each reduced word i for a Weyl group element w ∈ W , we have a presenta-
tion (2.16) of the quantum Schubert cell algebra U−[w] as a torsion-free CGL
extension. The Cauchon quantum affine space algebra associated to each of the
algebras U−[w] and a presentation of U−[w] as a CGL extension via a reduced
word i for w is the result of an intricate iterative procedure. In this section we
obtain an explicit description of each of these quantum affine space algebras us-
ing the antiisomorphisms from Theorem 2.2 (i). This is done in Theorem 3.1. It
expresses each of the generators of the Cauchon quantum affine space algebras
associated to U−[w] and i as a quantum minor or as a fraction of two quantum
minors.

Fix a Weyl group element w ∈ W and a reduced word i = (α1, . . . , αl) for it
where l = 
(w). Let

F i,1, . . . ,F i,l

denote the generators x1, . . . , xl of the Cauchon quantum affine space algebra
associated to the presentation (2.16) of U−[w] as a CGL extension corresponding
to the reduced word i for w, recall §2.4. Define a successor function κ : [1, l] 	
{∞} → [1, l] 	 {∞} associated to i as follows. Let j ∈ [1, l]. If there exists k > j

such that αk = αj , then we let

κ(j) = min{k | k > j,αk = αj }. (3.1)

Otherwise, we let κ(j) = ∞. Set κ(∞) = ∞. Let

O(j) = max{n ∈N | κn(j) �= ∞}, (3.2)

where as usual κ0 := id. Define the quantum minors

�i,j := b
�αj

w(i)≤(j−1),w
= φw(e

�αj

w(i)≤(j−1)
e
−�αj
w )

= (e
�αj

w(i)≤(j−1),w
τ ⊗ id)Rw ∈ U−[w], j ∈ [1, 
(w)], (3.3)
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recall (2.24), (2.29), (2.30), and Theorem 2.2 (i).

Theorem 3.1. Assume that K is an arbitrary base field, q ∈ K∗ is not a root of
unity, g is a simple Lie algebra, w ∈ W is a Weyl group element, and i is a reduced
word for w. Then the generators F i,1, . . . ,F i,
(w) of the Cauchon quantum affine
space algebra associated to the presentation (2.16) of U−[w] as a CGL extension
corresponding to i are given by

F i,j = (q−1
αj

− qαj
)−1�−1

i,κ(j)
�i,j if κ(j) �= ∞

and

F i,j = (q−1
αj

− qαj
)−1�i,j if κ(j) = ∞.

Theorem 3.1 is equivalent to the following theorem which will be proved in §3.3.

Theorem 3.2. In the setting of Theorem 3.1, the quantum minors (3.3) are ex-
pressed in terms of the generators F i,1, . . . ,F i,
(w) of the Cauchon quantum affine
space algebra associated to the presentation (2.16) of U−[w] as a CGL extension
corresponding to i by

�i,j = (q−1
αj

− qαj
)O(j)F i,κO(j)(j) · · ·F i,j , j ∈ [1, 
(w)]. (3.4)

The special case of this theorem for the algebras of quantum matrices Rq [Mm,n]
is due to Cauchon [7]. Given m,n ∈ Z+, let g := slm+n and w := wm,n ∈ Sm+n

for wm,n = cm and c := (1 2 · · · m + n). The algebra Rq [Mm,n] is isomorphic
to the algebras U±[wm,n] by [27, Proposition 2.1.1] and [31, Lemma 4.1]. In this
case by [31, Lemma 4.3] the elements b

�α
y,wm,n

∈ U±[wm,n] correspond (under this
isomorphism) to scalar multiples of quantum minors of Rq [Mm,n] for all α ∈ �,
y ∈ S

≤wm,n

m+n . In particular, the elements �i,1, . . . ,�i,mn ∈ U±[wm,n] correspond to
scalar multiples of quantum minors of Rq [Mm,n] for all reduced words i of wm,n.

3.2. Leading Terms of Quantum Minors

There are several different ways to construct iterated Ore extensions associated to
the algebras U−[w] by adjoining root vectors in different order. Passing from one
to the other will play a major role in our proof of Theorem 3.2 in §3.3. In §3.2–3.3
we examine these iterated Ore extensions and prove a leading term result for the
elements �i,j .

For a reduced word i = (α1, . . . , αl) for w ∈ W and j, k ∈ [1, l] denote by

U−[w]i,[j,k] the subalgebra of U−[w] generated by Fβm for j ≤ m ≤ k

in terms of the notation from equation (2.7). One easily shows that

U−[w]i,[j,k] = Tw(i)≤(j−1)
(U−[(w(i)≤(j−1))

−1w(i)≤k])
for j ≤ k, but we will not need this.
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Proposition 3.3. For all base fields K, q ∈ K∗ that is not a root of unity, simple
Lie algebras g, w ∈ W of length l, reduced words i for w, and j ∈ [1, l], we have

�i,j = (q−1
αj

− qαj
)�i,κ(j)Fβj

mod U−[w]i,[j+1,l] if κ(j) �= ∞ (3.5)

and
�i,j = (q−1

αj
− qαj

)Fβj
mod U−[w]i,[j+1,l] if κ(j) = ∞. (3.6)

Proof. We fix a reduced expression i = (α1, . . . , αl) of w and define w≤k :=
w(i)≤k , k ∈ [0, l], cf. (2.1). Recall that τ , given by (2.30), is an algebra antiauto-
morphism of Uq(g) and Tw is an algebra automorphism of Uq(g) for all w ∈ W .
The algebra τTw≤(k−1)

(Uαk ) is (anti)isomorphic to Uqαk
(sl2) for all k ∈ [1, l], see

(2.20).
Let 1 ≤ k < j . Consider the τTw≤(k−1)

(Uαk )-submodule of V (�αj
) generated

by
V (�αj

)w≤(j−1)�αj
= KTw≤(j−1)

v�αj
= KT −1

w−1
≤(j−1)

v�αj
.

It is irreducible since

(τFβk
)(T −1

w−1
≤(j−1)

v�αj
) = (τ (Tw≤(k−1)

Fαk
))(T −1

w−1
≤(j−1)

v�αj
)

= (T −1
w−1

≤(k−1)

Fαk
)(T −1

w−1
≤(j−1)

v�αj
)

= T −1
w−1

≤(j−1)

((Tαj−1 · · ·Tαk
(Fαk

))v�αj
) = 0, (3.7)

cf. (2.19) and (2.31). In the last equation we used that −sαj−1 · · · sαk
(αk) ∈ Q+

and Tαj−1 · · ·Tαk
(Fαk

) ∈ Uq(g)sαj−1 ···sαk
(αk). Therefore there exists a splitting of

τTw≤(k−1)
(Uαk )-modules

V (�αj
) = (τTw≤(k−1)

(Uαk ))V (�αj
)w≤(j−1)�αj

⊕ Vk

such that Vk is also U0-stable. From this and equation (3.7) it follows that

〈ξw≤(j−1),�αj
, (τEβk

)v〉 = 0, ∀v ∈ V (�αj
),1 ≤ k < j, (3.8)

recall (2.23).
Next, we consider the τTw≤(j−1)

(Uαj )-submodule of V (�αj
) generated by

T −1
w−1

≤(j−1)

v�αj
. Using (2.21)–(2.22), we obtain

(τEβj
)(T −1

w−1
≤j

v�αj
) = (τ (Tw≤(j−1)

Eαj
))(T −1

w−1
≤j

v�αj
)

= (T −1
w−1

≤(j−1)

Eαj
)(T −1

w−1
≤j

v�αj
)

= T −1
w−1

≤(j−1)

(Eαj
T −1

αj
v�αj

) = T −1
w−1

≤(j−1)

v�αj
. (3.9)

Analogously, one shows that

(τEβj
)(T −1

w−1
≤(j−1)

v�αj
) = 0 and

(τ (Tw≤(j−1)
Kαj

))(T −1
w−1

≤(j−1)

v�αj
) = q−1

αj
(T −1

w−1
≤(j−1)

v�αj
).
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Therefore

(τTw≤(j−1)
(Uαj ))T −1

w−1
≤(j−1)

v�αj
= KT −1

w−1
≤(j−1)

v�αj
⊕KT −1

w−1
≤j

v�αj
.

Using this, the complete reducibility of finite-dimensional type one Uα-modules,
and equation (3.9), we obtain

〈ξw≤(j−1),�αj
, (τEβj

)v〉 = 〈ξw≤j ,�αj
, v〉 and

(3.10)〈ξw≤(j−1),�αj
, (τEβj

)mv〉 = 0, ∀v ∈ V (�αj
),m > 1.

In a similar way one proves that for all j < k ≤ min{l, κ(j) − 1},
(τTw≤(k−1)

(Uαk ))T −1
w−1

≤(k−1)

v�αj
= KT −1

w−1
≤(k−1)

v�αj
and

T −1
w−1

≤(k−1)

v�αj
= T −1

w−1
≤k

v�αj
.

From this one obtains that

〈ξw≤(k−1),�αj
, (τEβk

)v〉 = 0 and ξw≤(k−1),�αj
= ξw≤k,�αj

,
(3.11)∀v ∈ V (�αj

), j < k ≤ min{l, κ(j) − 1}.
Equation (3.5) is deduced from (3.8), (3.10), and (3.11) as follows. Denote for

brevity

pk,m := (q−1
αk

− qαk
)m

q
m(m−1)/2
αk

[m]αk
!
, k ∈ [1, l],m ∈N.

Using (2.34), (3.8), and (3.10), we obtain

�i,j =
∑

mj ,...,ml∈N

( l∏
k=j

pk,mk

)
〈ξw≤(j−1),�αj

, (τEβj
)mj · · · (τEβl

)ml T −1
w−1vλ〉

× F
ml

βl
· · ·Fmj

βj

= (q−1
αj

− qαj
)

∑
mj+1,...,ml∈N

( l∏
k=j+1

pk,mk

)
× 〈ξw≤j ,�αj

, (τEβj+1)
mj+1 · · · (τEβl

)ml T −1
w−1vλ〉

× F
ml

βl
· · ·Fmj+1

βj+1
Fβj

mod U−[w]i,[j+1,l].

If κ(j) ≤ l, it follows from (3.11) that the right-hand side of the last congruence
is equal to

(q−1
αj

− qαj
)

∑
mκ(j),...,ml∈N

( l∏
k=κ(j)

pk,mk

)
× 〈ξw≤(κ(j)−1),�αj

, (τEβκ(j)
)mκ(j) · · · (τEβl

)ml T −1
w−1vλ〉

× F
ml

βl
· · ·Fmκ(j)

βκ(j)
Fβj

= (q−1
αj

− qαj
)�i,κ(j)Fβj

.
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This proves (3.5). The proof of (3.6) is analogous, requiring only a small modifi-
cation of the last argument. It is left to the reader. �

Starting from a reduced word i = (α1, . . . , αl) for w ∈ W , one can construct a
presentation of U−[w] as an iterated Ore extension by adjoining the elements
Fβ1, . . . ,Fβl

(recall (2.7)) in the opposite order. For all j ∈ [1, l], we have the Ore
extension presentation

U−[w]i,[j,l] = U−[w]i,[j+1,l][Fβj
;σ ′

j , δ
′
j ], (3.12)

where σ ′
j and δ′

j are defined as follows. Let t ′j be an element of Tr such that

(t ′j )βk = q−〈βk,βj 〉, ∀k ≥ j

(cf. (2.11) and (2.13)) and σ ′
j := (t ′j ·) in terms of the restriction of the Tr -action

(2.12) to U−[w]i,[j+1,l]. The skew derivation δ′
j of U−[w]i,[j+1,l] is defined by

δ′
j (x) := Fβj

x − q−〈βj ,γ 〉xFβj
, x ∈ (U−[w]i,[j+1,l])γ , γ ∈ Q,

cf. (2.15). (It follows from the Levendorskii–Soibelman straightening law (2.14)
that δ′

j preserves U−[w]i,[j+1,l], σ ′
l = id, and δ′

l = 0.) Equations (2.8) and (2.14)
imply (3.12). Iterating (3.12) and taking into account U−[w]i,[l+1,l] = K leads to
the iterated Ore extension presentation

U−[w] = K[Fβl
][Fβl−1;σ ′

l−1, δ
′
l−1] · · · [Fβ1;σ ′

1, δ
′
1],

which is reverse to the presentation (2.16). It is straightforward to show that this
presentation of U−[w] is a torsion-free CGL extension for the action (2.12).

In this framework, Proposition 3.3 proves that �i,j ∈ U−[w]i,[j,l] and com-
putes its leading term as a left polynomial with respect to the Ore extension (3.12)
for all j ∈ [1, l], cf. §2.4.

3.3. Proof of Theorem 3.2

We keep the notation for i, w, and l from the previous two subsections. For j ∈
[1, l], consider the chain of extensions

K ⊂ U−[w]i,[j,j ] ⊂ U−[w]i,[j,j+1] ⊂ · · · ⊂ U−[w]i,[j,l].
It follows from the Levendorskii–Soibelman straightening law (2.14) and the def-
inition of the Tr -action (2.12) that the maps δk and σk from Lemma 2.1 (ii) pre-
serve the subalgebra U−[w]i,[j,k−1] of U−[w(i)≤(k−1)] = U−[w]i,[1,k−1] for all
1 ≤ j ≤ k ≤ l. Define the restrictions

δj,k = δk|U−[w]i,[j,k−1] and σj,k = σk|U−[w]i,[j,k−1] for 1 ≤ j ≤ k ≤ l.

Lemma 2.1 (ii) implies that we have the Ore extension presentation

U−[w]i,[j,k] = U−[w]i,[j,k−1][Fβk
;σj,k, δj,k] for 1 ≤ j ≤ k ≤ l.

Iterating those and using that U−[w]i,[j,j−1] = K, σj,j = id, and δj,j = 0 leads to
the iterated Ore extension presentation of U−[w]i,[j,k]:

U−[w]i,[j,l] = K[Fβj
][Fβj+1;σj,j+1, δj,j+1] · · · [Fβl

;σj,l, δj,l]. (3.13)
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It follows now from Lemma 2.1 that U−[w]i,[j,k] is a CGL extension with respect
to the Tr -action (2.12). Since {0} is a Tr -prime ideal of U−[w]i,[j,k], we can apply
a theorem of Goodearl [5, Theorem II.6.4] to obtain that it is a strongly rational
ideal, that is,

Z(Fract(U−[w]i,[j,l]))T
r = K. (3.14)

Recall that Z(A) stands for the center of an algebra A. As in §2.4, Fract(A) de-
notes the division ring of fractions of a domain A. Furthermore, (·)Tr

refers to the
fixed point subalgebra with respect to the action (2.12).

Denote by Ti the quantum torus algebra generated by F
±1
i,1 , . . . ,F

±
i,l . Equations

(2.14) and (2.38) imply that

F i,jF i,k = q〈βj ,βk〉F i,kF i,j , ∀1 ≤ j < k ≤ l. (3.15)

For j, k ∈ [1, l], denote by Ti,[j,k] the quantum subtorus of Ti generated by F
±1
i,m

for j ≤ m ≤ k.
Using that

δk(Fβj
) ∈ U−[w]i,[k+1,j−1],

by a simple induction argument, one proves the following lemma.

Lemma 3.4. In the above setting, the following hold for all j ∈ [1, l]:
(i) Fβj

− F i,j ∈ Ti,[j+1,l].
(ii) The generators for the Cauchon quantum affine space algebra associated

to the iterated Ore extension presentation (3.13) of U−[w]i,[j,l] are precisely the
elements F i,j , . . . ,F i,l , recall § 2.4.

The lemma implies that U−[w]i,[j,l] ⊂ Ti,[j,l] ⊂ Fract(U−[w]i,[j,l]). Therefore,
the strong rationality result (3.14) gives that

Z(Ti,[j,l])0 = K, (3.16)

where (·)0 refers to the 0-component with respect to the Q-grading induced from
the grading of Uq(g).

Next we apply a theorem of Berenstein and Zelevinsky [4, Theorem 10.1] to
obtain that there exist integers njk ∈ Z (1 ≤ j < k ≤ n) such that

e
�αj

w(i)≤(j−1)
e
�αk

w(i)≤(k−1)
= qnjk e

�αk

w(i)≤(k−1)
e
�αj

w(i)≤(j−1)
, ∀1 ≤ j < k ≤ l.

(The setting of [4] is for K = Q(q), but the proof of Theorem 10.1 in [4] only
uses the R-matrix commutation relations in Rq [G] and the left and right actions
of Uq(g) on Rq [G], which work for all fields K and q ∈ K∗ that is not a root
of unity.) Moreover, the R-matrix commutation relations in Rq [G] (see e.g. [5,
Theorem I.8.15]) imply that

eλ
wcλ′

ξ ′ = q−〈λ,λ′+w−1μ′〉cλ′
ξ ′eλ

w mod Q(w)+, ∀λ,λ′ ∈P+,μ ∈ P, ξ ′ ∈ V (λ′)μ′ .

Using (3.3) and the fact that the maps φw : R0
w → U−[w] are antihomomorphisms

by Theorem 2.2 (i), we obtain

�i,j�i,k = q
n′

jk�i,k�i,j , ∀1 ≤ j < k ≤ l (3.17)
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for some n′
jk ∈ Z.

Proof of Theorem 3.2. By Lemma 3.4 (ii)

U−[w]i,[j,l] ⊆ Ti,[j,l], ∀j ∈ [1, l].
Combining this, Proposition 3.3, and Lemma 3.4 (i), we obtain

�i,j = (q−1
αj

− qαj
)�i,κ(j)F i,j mod Ti,[j+1,l] if κ(j) ≤ l (3.18)

and
�i,j = (q−1

αj
− qαj

)F i,j mod Ti,[j+1,l] if κ(j) = ∞. (3.19)

We prove equation (3.4) by induction on j , from l to 1. By (3.19), �i,l −(q−1
αl

−
qαl

)F i,l ∈ K. Since �i,l is a homogeneous element of nonzero degree (equal to
βl), this implies (3.4) for j = l.

Now assume that for some j ∈ [1, l − 1],
�i,k = (q−1

αk
− qαk

)O(k)F i,κO(k)(k) · · ·F i,k for all k ∈ [j + 1, l]. (3.20)

If
�i,j = (q−1

αj
− qαj

)O(j)F i,κO(j)(j) · · ·F i,j , (3.21)

then we are done with the inductive step. Assume the opposite, that (3.21) is not
satisfied. Combining the inductive hypothesis with (3.18) and (3.19) (whichever
applies to the particular j ), we get that

�i,j − (q−1
αj

− qαj
)O(j)F i,κO(j)(j) · · ·F i,j ∈ Ti,[j+1,l]. (3.22)

It follows from (3.15), (3.17), and (3.20) that

�i,jF i,k = qmkF i,k�i,j , ∀k = j + 1, . . . , l

for some mj+1, . . . ,ml ∈ Z. Quantum tori have bases consisting of Laurent mono-
mials in their generators. By comparing the coefficients of F i,κO(j)(j) · · ·F i,jF i,k
in the two sides of the above equality and using (3.22), we get that

(F i,κO(j)(j) · · ·F i,j )F i,k = qmkF i,k(F i,κO(j)(j) · · ·F i,j ), ∀k = j + 1, . . . , l

for the same collection of integers mj+1, . . . ,ml . From the last two equalities, it
follows that

y := (F i,κO(j)(j) · · ·F i,j )
−1�i,j

commutes with F i,j+1, . . . ,F i,l :

yF i,k = F i,ky, ∀k = j + 1, . . . , l. (3.23)

Since (3.21) is not satisfied, (3.22) implies that

y = (q−1
αj

− qαj
) + y′F−1

i,j for some y′ ∈ Ti,[j+1,l] \ {0}. (3.24)

But y commutes with itself and by (3.23) it commutes with y′ �= 0. Thus y also
commutes with F i,j . Combining this with (3.23) leads to the fact that y belongs to
the center of Ti,[j,l]. Since �i,j is a homogeneous element of U−[w] with respect
to its Q-grading, (3.22) implies

y ∈ Z(Ti,[j,l])0.
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At the same time y /∈ K by (3.24), which contradicts the strong rationality result
(3.16). Thus (3.21) holds. This completes the proofs of the inductive step and the
theorem. �

4. Unification of the Two Approaches to Tr-SpecU−[w]
4.1. Solutions of Two Questions of Cauchon and Mériaux

In this section we establish a relationship between the representation theoretic
and ring theoretic approaches to the prime spectra of the quantum Schubert cell
algebras U−[w], see §2.3 and §2.4. Theorem 4.5 explicitly describes the behavior
of all Tr -prime ideals Iw(y) of the algebras U−[w] from Theorem 2.2 under the
iterations of Cauchon’s deleting derivation construction, recall Proposition 2.5.
In Theorem 4.1 we describe explicitly the Cauchon diagrams of all ideals Iw(y)

and use this to resolve [27, Question 5.3.3] of Cauchon and Mériaux. We use the
combination of Theorems 2.2 and 4.1 to give a new, independent proof of the clas-
sification result in Theorem 2.6 of Cauchon and Mériaux. Finally, we also settle
[27, Question 5.3.2] of Cauchon and Mériaux, solving the containment problem
for the ideals in the classification of Theorem 2.6, see Theorem 4.4.

Theorem 4.1. Assume that K is an arbitrary base field, q ∈ K∗ is not a root
of unity, g is a simple Lie algebra, w is a Weyl group element, and i is a reduced
word for w. Then, for all Weyl group elements y ≤ w, the Cauchon diagram of the
Tr -prime ideal Iw(y) (see Theorem 2.2 (ii)) for the presentation (2.16) of U−[w]
is precisely the index set of the left positive subword of i whose total product is y

CD(Iw(y)) = LP i(y),

recall § 2.2 and 2.4 for definitions.

Remark 4.2. Theorem 4.1 gives a new, independent proof of Theorem 2.6 of
Cauchon and Mériaux [27]. By Theorem 2.2 (ii)

Tr-SpecU−[w] = {Iw(y) | y ∈ W≤w}.
Since CD(Iw(y)) = LP i(y), by Theorem 4.1 we have

Tr-SpecU−[w] = {JLP i(y) | y ∈ W≤w},
which is the statement of Theorem 2.6, recall (2.39).

The following theorem is an immediate consequence of Theorem 4.1. It settles
Question 5.3.3 of Cauchon and Mériaux [27].

Theorem 4.3. For all base fields K, q ∈ K∗ that is not a root of unity, simple Lie
algebras g, Weyl group elements w, and reduced words i for w,

Iw(y) = JLP i(y), ∀y ∈ W≤w (4.1)

(recall (2.39)), that is, the classifications of Tr-SpecU−[w] of Cauchon–Mériaux
[27] from Theorem 2.6 and that of Yakimov [28] from Theorem 2.2 coincide.
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Finally, the next theorem answers Question 5.3.2 of Cauchon and Mériaux [27].

Theorem 4.4. For all base fields K, q ∈ K∗ that is not a root of unity, simple Lie
algebras g, Weyl group elements w, and reduced words i for w, the map

y ∈ W≤w �→ JLP i(y) ∈ Tr-SpecU−[w], y ∈ W≤w,

is an isomorphism of posets with respect to the Bruhat order and inclusion of
ideals.

Proof. Theorem 4.4 follows from Theorem 2.2 (iii) and equation (4.1). �

Our proof of Theorem 4.1 is based on a result, which gives a full picture of the
behavior of the ideals Iw(y) from Theorem 2.2 (i) under the deleting derivation
procedure from §2.4. Recall the definition (2.42) of leading part lt(J ) of an ideal
of an Ore extension. According to Proposition 2.5, Cauchon’s method relies on
taking leading parts or contractions of ideals in CGL extensions. Assume that
i = (α1, . . . , αl) is a reduced word for w ∈ W . Then

w(i)≤(l−1) = wsαl
. (4.2)

Lemma 2.1 (i)–(ii) implies that

U−[wsαl
] = U−[w(i)≤(l−1)] ⊂ U−[w] and

(4.3)U−[w] = U−[wsαl
][Fβl

;σl, δl],
where σl and δl are the automorphism and left σl-skew derivation of
U−[w(i)≤(l−1)] from Lemma 2.1 (ii). We have the following.

Theorem 4.5. Assume that K is an arbitrary base field, q ∈ K∗ is not a root
of unity, g is a simple Lie algebra, w ∈ W is a Weyl group element of length l,
and i = (α1, . . . , αl) is a reduced word for w. Then the following hold for all
y ∈ W≤w:

(i) If l /∈ LP i(y), then lt(Iw(y)) = Iwsαl
(y), where the leading part of Iw(y)

(cf. (2.42)) is computed with respect to the Ore extension U−[w] = U−[wsαl
][Fβl

;
σl, δl], cf. (4.3).

(ii) If l ∈ LP i(y), then Iw(y) ∩ U−[wsαl
] = Iwsαl

(ysαl
).

We prove Theorem 4.1 using Theorem 4.5 in this subsection. We establish Theo-
rem 4.5 in §4.2–4.3. Before we proceed with the proof of Theorem 4.1, we prove
an auxiliary lemma.

Lemma 4.6. If, in the setting of Theorem 4.5, y ∈ W≤w is such that l ∈ LP i(y),
then

Twsαl
v�αl

/∈ U−Tyv�αl
. (4.4)

Proof. A similar statement that Twsαl
vλ /∈ U−Tyvλ for λ ∈ ∑

α∈�Z+�α follows
from [21, Lemma 4.4.5] and the fact that y �≤ wsαl

, which is easy to show. The
last lemma is not applicable in our case, but we use some ideas of its proof.
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We argue by induction on l = 
(w). If l = 1, then Twsαl
v�αl

= v�αl
and the

statement is true since y(�αl
) < �αl

. Assume the validity of the lemma for length
l − 1.

Let y ≤ w ∈ W and i be as in the statement of the lemma. Assume that (4.4)
does not hold, that is,

Twsαl
v�αl

∈ U−Tyv�αl
. (4.5)

We consider two cases: (A) 1 ∈ LP i(y) and (B) 1 /∈ LP i(y). Note that

i′′ := (α2, . . . , αl) is a reduced word for sα1w.

Case (A) 1 ∈ LP i(y). Using the left positivity of the index set LP i(y), we
obtain

y = sα1w(i)LP i(y)

>1 > w(i)LP i(y)

>1 = sα1y. (4.6)

Moreover, we have sα1y ≤ sα1w and LP i′′(sα1y) = LP i(y) \ {1}. Recall the def-
inition (2.20) of the subalgebras Uα of Uq(g), α ∈ �. Equations (4.5), (4.6) and
[21, Lemma 4.4.3 (iii)–(iv)] imply

Tsα1wsαl
v�αl

∈ Uα1Twsαl
v�αl

⊆ Uα1U−Tyv�αl
= U−Uα1Tyv�αl

= U−Tsα1yv�αl
,

which contradicts the induction assumption for the triple (sα1y, sα1w, i′′).
Case (B) 1 /∈ LP i(y). The argument in this case is similar to the previous one.

From the left positivity of the index set LP i(y), we have

sα1y = sα1w(i)LP i(y)

>1 > w(i)LP i(y)

>1 = y. (4.7)

Furthermore, y < sα1w and LP i′′(y) = LP i(y). Equations (4.5), (4.7) and [21,
Lemma 4.4.3 (iii)–(iv)] imply

Tsα1wsαl
v�αl

∈ Uα1Twsαl
v�αl

⊆ Uα1U−Tyv�αl
= U−Uα1Tyv�αl

= U−Tyv�αl
.

This contradicts the induction assumption for the triple (y, sα1w, i′′).
We reached a contradiction in both cases. Thus (4.5) is incorrect, which com-

pletes the proof of the lemma. �

Proof of Theorem 4.1. We prove Theorem 4.1 by induction on the length l =

(w). The case 
(w) = 0 is trivial. Assume the validity of the statement of the
theorem for length l − 1.

Fix w ∈ W and a reduced word i = (α1, . . . , αl) for it. Define the reduced word

i′ := (α1, . . . , αl−1)

for wsαl
. In the setting of §2.4, xl = xl . Theorem 3.1 implies that

Fβl
= pl�i,l = plb

�αl
wsαl

,w

for some pl ∈ K∗. Let y ∈ W≤w . We have two cases: (1) l /∈ LP i(y) and (2) l ∈
LP i(y). For brevity, in this proof we set

D := LP i(y).

Case (1) l /∈ D. In this case w(i)D>j = (wsαl
)(i′)D>j for all j ∈ [0, l − 1]. Taking

into account (2.3), one sees that D ⊆ [1, l − 1] is the index set of a left positive
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subword of i′. Therefore y = (wsαl
)D < wsαl

and LPy(i′) = D. The inductive
assumption applied to y ≤ wsαl

implies

CD(Iwsαl
(y)) = D. (4.8)

Recall from §2.3 that b
�αl
wsαl

,w /∈ Iw(wsαl
), see [31, Theorem 3.1 (b)] for a proof.

Thus Fβl
= plb

�αl
wsαl

,w /∈ Iw(wsαl
) because pl ∈ K∗. Theorem 2.2 (ii) implies that

Iw(y) ⊆ Iw(wsαl
). Therefore Fβl

/∈ Iw(y). Now we are in the situation of part (i)
of Proposition 2.5 with respect to the iterated Ore extension from (2.16) and the
ideal J = Iw(y). By Theorem 4.5 (i), lt(Iw(y)) = Iwsαl

(y) and from Proposi-
tion 2.5 (i), we obtain that CD(Iw(y)) = CD(Iwsαl

(y)). It follows from this and
(4.8) that in the first case CD(Iw(y)) = D = LP i(y).

Case (2) l ∈ D. Define D′ = D \ {l}. Since D = LP i(y) we have sαj
w(i)D>j >

w(i)D>j , ∀j ∈ [1, l]. Moreover, w(i)D>j = (wsαl
)(i′)D′

>j sαl
and 
(w(i)D>j ) =


((wsαl
)(i′)D′

>j ) + 1. This implies that sαj
((wsαl

)(i′)D′
>j ) > (wsαl

)(i′)D′
>j , ∀j ∈ [1,

l − 1]. Therefore D′ is the index set of a left positive subword of i′. Because
y = w(i)D = (wsαl

)(i′)D′
sαl

, we have D′ = LP i′(ysαl
). The inductive assump-

tion, applied to ysαl
≤ wsαl

, implies

CD(Iwsαl
(ysαl

)) = D′ = D \ {l}. (4.9)

Lemma 4.6 asserts that Twsαl
v�αl

/∈ U−Tyv�αl
, so ξwsαl

,�αl
∈ (U−Tyv�αl

)⊥ and

Fβl
= plb

�αl
wsαl

,w ∈ Iw(y). We are in the situation of part (ii) of Proposition 2.5
with respect to the iterated Ore extension from (2.16) and the ideal J = Iw(y).
Theorem 4.5 (ii) implies Iw(y) ∩U−[wsαl

] = Iwsαl
(ysαl

). It follows from Propo-
sition 2.5 (i) and equation (4.9) that CD(Iw(y)) = CD(Iwsαl

(ysαl
)) 	 {l} = D′ 	

{l} = LP i(y). �

4.2. Proof of the First Part of Theorem 4.5

Recall that in the setting of Theorem 4.5 we have the Ore extension U−[w] =
U−[wsαl

][Fβl
;σl, δl] from (4.3). We will prove the first part of Theorem 4.5 by

showing that the leading part lt(Iw(y)) of the ideal Iw(y) with respect to this Ore
extension contains the ideal Iwsαl

(y). We will then compare the Gelfand–Kirillov
dimensions of the quotients U−[w]/Iw(y) and U−[wsαl

]/ lt(Iw(y)) using results
of [30] and Proposition 2.5 (i) to show that the leading part lt(Iw(y)) is precisely
Iwsαl

(y). The first part of this argument is based on the following proposition.

Proposition 4.7. For all base fields K, q ∈ K∗ that is not a root of unity, Weyl
group elements w ∈ W , reduced words i = (α1, . . . , αl) for w, λ ∈ P+, and ξ ∈
V (λ)∗, we have

φw(cλ
ξ e−λ

w ) − (q−1
αl

− qαl
)Nq−N(N−1)/2

αl
FN

βl
φwsαl

(cλ
ξ e−λ

wsαl
) ∈

N−1∑
m=0

Fm
βl
U−[wsαl

],

where N := 〈λ,α∨
l 〉 (recall (2.7), (2.32), and (4.3)).
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Proposition 4.7 computes the leading term of φw(cλ
ξ e−λ

w ) written as a right poly-
nomial in Fβl

with coefficients in U−[wsαl
] (with respect to the Ore extension

(4.3)) if this polynomial has degree equal to 〈λ,α∨
l 〉, which is the highest ex-

pected degree. This proposition can be viewed as a dual result to Proposition 3.3.

Proof of Proposition 4.7. Set

w′ := wsαl
= w(i)≤(l−1).

Recall (2.20). The vector vλ is a highest weight vector for Uαl of highest weight
N�αl

. Equations (2.21) and (2.22) imply

EN
αl

T −1
α vλ = 1

[N ]αl
!E

N
αl

FN
αl

vλ = [N ]αl
!vα and Em

αl
T −1

α vλ = 0, ∀m > N.

Therefore

(τEβl
)NT −1

w−1vλ = (T −1
(w′)−1(E

N
αl

))(T −1
(w′)−1T

−1
α vλ)

= T −1
(w′)−1(E

N
αl

T −1
α vλ) = [N ]αl

!T −1
(w′)−1vλ

and similarly

(τEβl
)mT −1

w−1vλ = 0, ∀m > N,

recall (2.30) and (2.31). Using the formula (2.34) for the antihomomorphism φw :
Rw

0 → U−[w], we obtain that for all λ ∈P+, ξ ∈ V (λ)∗,

φw(cλ
ξ e−λ

w ) = (q−1
αl

− qαl
)N

q
N(N−1)/2
αl

∑
m1,...,ml−1∈N

( l−1∏
j=1

(q−1
αj

− qαj
)mj

q
mj (mj −1)/2
αj

[mj ]αj
!

)
× 〈ξ, (τEβ1)

m1 · · · (τEβl−1)
ml−1T −1

(w′)−1vλ〉FN
βl

F
ml−1
βl−1

· · ·Fm1
β1

= (q−1
αl

− qαl
)N

q
N(N−1)/2
αl

FN
βl

φw′(cλ
ξ e−λ

w′ ) mod
N−1∑
m=0

Fm
βl
U−[w′],

which completes the proof of the proposition. �

Proof of Theorem 4.5 (i). In the proof of Theorem 4.1 we showed that l /∈ LP i(y)

implies Fβl
/∈ Iw(y). We apply Proposition 2.5 (i) to the iterated Ore extension

(2.16) and J = Iw(y). Since Iw(y) is a Tr -invariant completely prime ideal of
U−[w], lt(Iw(y)) is a Tr -invariant completely prime ideal of U−[wsαl

]. By The-
orem 2.2 (i),

lt(Iw(y)) = Iwsαl
(y′)

for some y′ ∈ W≤wsα . Let λ ∈ P+ and ξ ∈ (U−Tyvλ)
⊥ ⊂ (V (λ))∗. Then

φw(cλ
ξ e−λ

w ) ∈ Iw(y) and by Proposition 4.7, φwsαl
(cλ

ξ e−λ
wsαl

) ∈ lt(Iw(y)). There-

fore lt(Iw(y)) ⊇ Iwsαl
(y). Applying Theorem 2.2 (ii), we obtain that y′ ≥ y. By

(2.44),

GK dim

(U−[w]
Iw(y)

)
= GK dim

(U−[wsαl
]

lt(Iw(y))

)
+ 1 = GK dim

(U−[wsαl
]

Iw(y′)

)
+ 1.
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It follows from [30, Theorem 5.8] that

GK dim

(U−[w]
Iw(y)

)
= l − 
(y) and GK dim

(U−[wsαl
]

Iw(y′)

)
= l − 1 − 
(y′).

Therefore 
(y′) = 
(y). Since y′ ≥ y, this is only possible if y′ = y, that is,

lt(Iw(y)) = Iwsαl
(y). �

4.3. Proof of the Second Part of Theorem 4.5

A straightforward computation of the contraction Iw(y) ∩ U−[wsαl
] in the Ore

extension (4.3) is very involved and impractical. We investigate this contraction
in a roundabout way by comparing monoids of normal elements. We apply Propo-
sition 2.5 (ii) to deduce that

U−[w]
Iw(y)

∼= U−[wsαl
]

Iw(y) ∩ U−[wsαl
] (4.10)

and Theorem 2.2 (i) to deduce that Iw(y) ∩ U−[wsαl
] = Iwsαl

(y′) for some y′ ∈
W≤wsαl . From (2.33) we have a supply of nonzero normal elements of the alge-
bras U−[w]/Iw(y). We prove a characterization of certain (equivariantly) normal
elements of U−[w]/Iw(y). With its help we compare the monoids of these equiv-
ariantly normal elements of the two sides of (4.10) and deduce that y′ = ysαl

.
The weight lattice P of g is embedded in Tr via μ �→ (q〈μ,α∨〉)α∈�. The Tr -

action (2.12) gives rise to an action of P on Uq(g), U−[w], and U−[w]/Iw(y),
given by

μ · x = q〈μ,γ 〉x, γ ∈ Q, x ∈ (Uq(g))γ .

If a group M acts on a ring R by ring automorphisms, an element u of R is
called an M-normal element if there exists μ ∈ M such that

ux = (μ · x)u, ∀x ∈ R.

(In relation to equivariant polynormality, in the definition of M-normal element
one sometimes requires that u be an M-eigenvector, see [30]. For the sake of
clarity, we will use the extra term homogeneous to emphasize this.) Here and
below, the term homogeneous will refer to the Q-gradings of Uq(g), U−[w], and
U−[w]/Iw(y).

By (2.33), for all y ∈ W≤w , the elements bλ
y,w , λ ∈ P are nonzero homoge-

neous P-normal elements of U−[w]/Iw(y). The next proposition is a result in the
opposite direction concerning the possible weights of all homogeneous P-normal
elements of U−[w]/Iw(y).

Proposition 4.8. For all base fields K, q ∈ K∗ that is not a root of unity, Weyl
group elements y ≤ w, and nonzero homogeneous P-normal elements u ∈
U−[w]/Iw(y), there exists μ ∈ (1/2)P such that

(w − y)μ ∈QS(w), u ∈ (U−[w]/Iw(y))(w−y)μ, (w + y)μ ∈ P,
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and

ux = q−〈(w+y)μ,γ 〉xu, ∀γ ∈ Q, x ∈
(U−[w]

Iw(y)

)
γ

.

Proof. Let u ∈ (U−[w]/Iw(y))γ ′ , γ ′ ∈ QS(w) be a homogeneous P-normal ele-
ment of U−[w]/Iw(y) such that

ux = q〈μ′,γ 〉xu, ∀γ ∈Q, x ∈
(U−[w]

Iw(y)

)
γ

(4.11)

for some μ′ ∈P . Equations (2.33) and (4.11) imply

bλ
y,wu = q−〈(w+y)λ,γ ′〉ubλ

y,w = q−〈(w+y)λ,γ ′〉q〈μ′,(w−y)λ〉bλ
y,wu

for all λ ∈ P+. Because q ∈ K∗ is not a root of unity and U−[w]/Iw(y) is a
domain,

−〈(w + y)λ, γ ′〉 + 〈μ′, (w − y)λ〉 = 0, ∀λ ∈P+.

Therefore

〈wλ, (wy−1 + 1)γ ′〉 + 〈wλ, (wy−1 − 1)μ′〉 = 0, ∀λ ∈ P+,

that is,

(wy−1 + 1)γ ′ = (wy−1 − 1)(−μ′) = 0.

Using the standard linear algebra argument for Cayley transforms, we obtain that
there exits μ ∈ Q� such that

γ ′ = (wy−1 − 1)yμ = (w − y)μ and
(4.12)−μ′ = (wy−1 + 1)yμ = (w + y)μ

(see for instance the proof of [29, Theorem 3.6]). Adding the two equalities leads
to 2w(μ) = γ ′ − μ′, that is, μ = (1/2)w−1(γ ′ − μ′) ∈ (1/2)P . Moreover, (w −
y)μ = γ ′ ∈ QS(w), u ∈ (U−[w]/Iw(y))γ ′ = (U−[w]/Iw(y))(w−y)μ, and (w +
y)μ = −μ′ ∈P . Finally, substituting (4.12) in (4.11) gives

ux = q−〈(w+y)μ,γ 〉xu, ∀γ ∈ Q, x ∈
(U−[w]

Iw(y)

)
γ

. �

Proof of Theorem 4.5 (ii). It was shown in the proof of Theorem 4.1 that l ∈
LP i(y) implies Fβl

∈ Iw(y). Recall equation (4.2). Since Iw(y) is a Tr -invariant
completely prime ideal of U−[w], Iw(y)∩U−[wsαl

] is a Tr -invariant completely
prime ideal of U−[wsαl

]. It follows from Theorem 2.2 (i) that

Iw(y) ∩ U−[wsαl
] = Iwsαl

(y′)

for some y′ ∈ W≤wsαl . By Proposition 2.5 (ii) we have the isomorphism of Q-
graded algebras

U−[wsαl
]

Iwsαl
(y′)

∼= U−[w]
Iw(y)
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because the Tr -eigenvectors of Uq(g) with respect to the action (2.12) are pre-
cisely the homogeneous vectors of the Q-grading of Uq(g). Define the support of
the Q-grading of the above algebras as follows:

Q′ := Z

{
γ ∈Q

∣∣∣ (U−[wsαl
]

Iwsαl
(y′)

)
γ

�= 0

}
⊆ Q.

Let λ ∈ P . Equation (2.33) implies that bλ
y,w is a nonzero homogeneous P-normal

element of U−[wsαl
]/Iwsαl

(y′) such that

bλ
y,w ∈

(U−[wsαl
]

Iwsαl
(y′)

)
(w−y)λ

and

(4.13)
bλ
y,wx = q−〈(w+y)λ,γ 〉xbλ

y,w, ∀γ ∈Q′, x ∈
(U−[wsαl

]
Iwsαl

(y′)

)
γ

.

We apply Proposition 4.8 to the algebra U−[wsαl
]/Iwsαl

(y′) and the P-normal

element bλ
y,w . This shows that there exists μ′ ∈ (1/2)P such that

bλ
y,w ∈

(U−[wsαl
]

Iwsαl
(y′)

)
(wsαl

−y′)μ
,

(4.14)
bλ
y,wx = q−〈(wsαl

+y′)μ,γ 〉xbλ
y,w, ∀γ ∈ Q′, x ∈

(U−[wsαl
]

Iwsαl
(y′)

)
γ

,

and (wsαl
+y′)μ ∈ P . Combining (4.13) and (4.14) and using the fact that q ∈K∗

is not a root of unity and U−[wsαl
]/Iwsαl

(y′) is a domain leads to

(w − y)λ = (wsαl
− y′)μ and 〈(w + y)λ, γ 〉 = 〈(wsαl

+ y′)μ,γ 〉,
(4.15)∀γ ∈Q′.

Therefore

〈wλ,γ 〉 = 〈(w − y)λ + (w + y)λ, γ 〉
= 〈(wsαl

− y′)μ + (wsαl
+ y′)μ,γ 〉

= 〈wsαl
(μ), γ 〉, ∀γ ∈Q′. (4.16)

For all ν ∈ P+ we have (wsαl
− y′)ν ∈ Q′ because bν

wsαl
,y′ ∈ (U−[wsαl

]/
Iwsαl

(y′))(wsαl
−y′)ν \ {0}. Hence, by (4.16)

〈wsα(sαl
λ − μ), (wsαl

− y′)ν〉 = 0, ∀ν ∈P+,

that is,
〈(y′ − wsα)(sαl

λ − μ),y′ν〉 = 0, ∀ν ∈ P+.

Thus (y′ −wsα)μ = (y′ −wsα)sαl
λ. By taking into account the first part of (4.15),

we obtain
(w − y)λ = (wsα − y′)sαl

λ.

Therefore yλ = y′sαl
(λ) for all λ ∈P+. We have y′ = ysαl

and hence

Iw(y) ∩ U−[wsαl
] = Iwsαl

(ysαl
),

which completes the proof of part (ii) of Theorem 4.1. �
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