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1. Introduction

A normal projective surface with the Betti numbers of the projective plane CP2 is
called a rational homology projective plane or a Q-homology projective plane or
a Q-homology CP2. When a normal projective surface S has rational singularities
only, S is a Q-homology projective plane if its second Betti number b2(S) = 1.
This can be seen easily by considering the Albanese fibration on a resolution of S.

It is known that a Q-homology projective plane with quotient singularities (and
no worse singularities) has at most five singular points (cf. [HK1, Cor. 3.4]). The
authors have recently classified Q-homology projective planes with five quotient
singularities ([HK1]; also see [K2]).

In this paper we continue our study on the algebraic Montgomery–Yang prob-
lem, which was formulated by J. Kollár as follows.

Conjecture 1.1 [Kol2] (Algebraic Montgomery–Yang Problem). Let S be a
Q-homology projective plane with quotient singularities. Assume that S 0 :=
S\Sing(S) is simply connected. Then S has at most three singular points.

In [HK2] we confirm the conjecture when S has at least one noncyclic quotient
singularity. Thus we may assume that S has cyclic singularities only. In this paper,
we verify the conjecture when S is not rational.

Theorem 1.2. Let S be a Q-homology projective plane with cyclic singularities
only. Assume that H1(S

0, Z) = 0. If S is not rational, then S has at most three
singular points.

Remark 1.3. The condition H1(S
0, Z) = 0 is weaker than the original condition

π(S 0) = {1}, and there are infinitely many examples of Q-homology projective
planes with four quotient singularities—not all cyclic—such that H1(S

0, Z) = 0.
Such Q-homology projective planes are completely classified in [HK2]. It turns
out that such a surface is a log del Pezzo surface with three cyclic singularities and
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one noncyclic singularity such that H1(S
0, Z) = 0 but π1(S

0) ∼= A5, the simple
group of order 60.

The proof of Theorem 1.2 is given in Section 6 and proceeds as follows. Let S be
a Q-homology projective plane with cyclic singularities such that H1(S

0, Z) = 0.
Then the orders of the local fundamental groups of singular points are pairwise rel-
atively prime (see Lemma 3.6). Also, by the orbifold Bogomolov–Miyaoka–Yau
inequality (see Theorems 3.2 and 3.3), S has at most four singular points. Assume
that S has four singular points. Then the inequality enables us to enumerate all
possible 4-tuples consisting of the orders of the local fundamental groups of sin-
gular points:

(2, 3, 5, q), q ≥ 7, gcd(q, 30) = 1;
(2, 3, 7, q), 11≤ q ≤ 41, gcd(q, 42) = 1;
(2, 3,11,13).

Given its minimal resolution f : S ′ → S, the exceptional curves and the canon-
ical class KS ′ span a sublattice R + 〈KS ′ 〉 of the unimodular lattice

H 2(S ′, Z)free := H 2(S ′, Z)/(torsion),

where R is the sublattice spanned by the exceptional curves. By the condition
H1(S

0, Z) = 0 we know that KS is not numerically trivial (see Lemma 3.6); hence
R + 〈KS ′ 〉 is of finite index in the cohomology lattice H 2(S ′, Z)free. This implies,
in particular, that its discriminant

D := |det(R + 〈KS ′ 〉)|
is a positive square number (Lemma 3.6). This criterion significantly reduces
the infinite list of all possible cases for R. For example, the order-3 singularity
of the case (2, 3, 5, q) must be of type 1

3 (1, 1) (Lemma 5.3). The reduced list is
still infinite, and few cases can be ruled out by any further argument from lattice
theory—for example, computation of ε-invariants does not work here even though
it was effective in the proof of [HK1]. To handle this infinite list, we compute
(−1)-curves on the minimal resolution S ′.

Assume further that S is not rational. This assumption implies that KS is
ample and S ′ contains a (−1)-curve E with E.(f ∗KS/K

2
S ) small—that is, with

(f ∗KS/K
2
S )-degree small (Lemma 4.5). Then we prove that the existence of such

a (−1)-curve E leads to a contradiction; toward that end, we use certain expres-
sions of the intersection numbersEKS ′ andE 2 in terms of the intersection numbers
of E with the exceptional curves and f ∗KS (Proposition 4.2). Here we also use
the classification result for the case of five singular points [HK1].

The idea of computing (−1)-curves on the minimal resolution was first used
in [K1] for S having some fixed types of singularities. In Proposition 4.2, we de-
rive general formulas for an arbitrary and not necessarily effective divisor E on S ′
for S having arbitrary cyclic singularities. These formulas are useful in proving
the nonexistence of a divisor on S ′ with prescribed intersection numbers with the
exceptional curves (see e.g. [K3, Prop. 2.4]).
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Throughout this paper, we work over the field C of complex numbers and em-
ploy the following notation.

• [n1, n2, . . . , nl] denotes a Hirzebruch–Jung continued fraction,

[n1, n2, . . . , nl] = n1 − 1

n2 − 1

. . . − 1

nl

= q

q1
,

corresponding to a cyclic singularity of type 1
q
(1, q1).

• |[n1, n2, . . . , nl]| = q.

• bi(X) is the ith Betti number of a complex variety X.

• f : S ′ → S is a minimal resolution of a normal surface S.

• Sing(S) is the singular locus of S.
• F := f −1(Sing(S)) is a reduced integral divisor on S ′.
• Rp denotes the sublattice of H 2(S ′, Z)free spanned by the numerical classes of

the components of f −1(p), where H 2(S ′, Z)free = H 2(S ′, Z)/(torsion).
• R := ⊕

p∈Sing(S) Rp is the sublattice of H 2(S ′, Z)free spanned by the numerical
classes of the irreducible exceptional curves of f : S ′ → S.

• L = LS := rank(R) is the number of the irreducible components of F =
f −1(Sing(S)) or the number of exceptional curves of f : S ′ → S.

2. Hirzebruch–Jung Continued Fractions

Let H be the set of all Hirzebruch–Jung continued fractions [n1, n2, . . . , nl]:

H =
⋃
l≥1

{[n1, n2, . . . , nl] | all nj are integers ≥ 2}.

Notation 2.1. Fix w = [n1, n2, . . . , nl]∈H.

(1) The length of w, denoted by l(w), is the number of entries of w.

(2) The trace of w, tr(w) = ∑ l
j=1 nj , is the sum of entries of w.

(3) |w| = |[n1, n2, . . . , nl]| := |det(M(−n1, . . . ,−nl))|, where

M(−n1, . . . ,−nl) =




−n1 1 0 · · · · · · 0
1 −n2 1 · · · · · · 0
0 1 −n3 · · · · · · 0
...

...
...

. . .
...

...

0 0 0 · · · −nl−1 1
0 0 0 · · · 1 −nl




is the intersection matrix of [n1, n2, . . . , nl].
(4) q := |w| = the order of the cyclic singularity corresponding to w; that is,

w = q/q1 for some q1 with 1≤ q1 < q, gcd(q, q1) = 1. Also,

qa1,a2,...,am := |det(M ′)| and

q1,2,...,l := |det(M(∅))| = 1,
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where M ′ is the (l−m)×(l−m) matrix obtained by deleting−na1,−na2 , . . . ,
−nam from M(−n1, . . . ,−nl). For example:

q1 = |det(M(−n2, . . . ,−nl))| = |[n2, n3, . . . , nl]|,
ql = |det(M(−n1, . . . ,−nl−1))| = |[n1, n2, . . . , nl−1]|,

q1,l = |det(M(−n2, . . . ,−nl−1))| = |[n2, n3, . . . , nl−1]|.
Note that

[nl , nl−1, . . . , n1] = q

ql

and

q1ql = q1,lq + 1 if l ≥ 2.

We will write simply l and tr for l(w) and tr(w) if no confusion will result.

The following number-theoretic property of Hirzebruch–Jung continued fractions
will play a key role in the proof of Lemma 5.3.

Proposition 2.2. For w = [n1, n2, . . . , nl]∈H,

q1 + ql + tr · q �≡ 0 modulo 3 ⇐⇒ q ≡ 0 modulo 3.

Proof. In the following, a ≡ b means that a ≡ b modulo 3.
(⇐) Assume q ≡ 0. If l = 1 and w = [n1], then q1 = ql = |det(M(∅))| = 1

and q = tr = n1 ≡ 0; hence

q1 + ql + tr · q ≡ 1+ 1+ 0 �≡ 0.

If l ≥ 2, then we see from the equality q1ql = q1,lq + 1 that q1ql ≡ 1. Thus q1 ≡
ql ≡ ±1 and

q1 + ql + tr · q ≡ ±1± 1+ 0 �≡ 0.

(⇒) Assume q �≡ 0 (i.e., q ≡ ±1). We will show by induction on l that

q1 + ql + tr · q ≡ 0 (2.1)

If l = 1 and w = [n1], then q1 = ql = 1 and q = tr = n1 ≡ ±1; hence

q1 + ql + tr · q ≡ 1+ 1+ (±1)2 ≡ 0.

If l = 2 and w = [n1, n2 ], then q = n1n2 − 1 ≡ ±1 and so n1n2 ≡ −1 or 0;
therefore, n1 ≡ −n2 or n1 ≡ 0 or n2 ≡ 0. In any case,

q1 + ql + tr · q = n2 + n1 + (n1 + n2)(n1n2 − 1) = n1n2(n1 + n2) ≡ 0.

Now assume that l ≥ 3. We divide the proof into three cases: q1 ≡ 1,−1, 0.

Case 1: q1 ≡ 1. By the induction hypothesis, the congruence (2.1) holds for
[n2, . . . , nl]; that is,

q1,2 + q1,l + (tr− n1) · q1 ≡ 0.

Plugging q = n1q1 − q1,2 into this congruence, we get
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q1,l + tr · q1 − q ≡ 0.

Thus
q1 + ql + tr · q ≡ 1+ ql + tr · q

≡ −1− 1+ 1 · ql + tr · q
≡ −1− q2 + q1ql + tr · q
= q1,lq + tr · q − q2

= (q1,l + tr− q)q

≡ (q1,l + tr · q1 − q)q

≡ 0.

Case 2: q1 ≡ −1. As in Case 1, in this case the induction hypothesis also gives
q1,l + tr · q1 − q ≡ 0. Therefore,

q1 + ql + tr · q ≡ −1+ ql + tr · q
≡ 1− q1ql + tr · q + q2

≡ −q1,lq − tr · q1q + q2

= −(q1,l + tr · q1 − q)q

≡ 0.

Case 3: q1 ≡ 0. First note that q = n1q1 − q1,2 ≡ −q1,2, so q1,2 ≡ −q �≡ 0.
Note in addition that q1,lq = q1ql − 1 ≡ −1, so q1,l ≡ −q. Since q1,2 �≡ 0, we
apply the induction hypothesis to [n3, . . . , nl] and obtain

q1,2,3 + q1,2,l + (tr− n1 − n2) · q1,2 ≡ 0.

Note that q1 = n2q1,2 − q1,2,3 and n1q1,l − ql = q1,2,l . Since q1,2 ≡ q1,l ≡ −q,
we have

q1 + ql + tr · q ≡ q1 + ql − tr · q1,2

≡ q1 − (n1q1,l − ql)− tr · q1,2 + n1q1,2

= (n2q1,2 − q1,2,3)− q1,2,l − tr · q1,2 + n1q1,2

= −q1,2,3 − q1,2,l − (tr− n1 − n2) · q1,2

≡ 0.

We next collect some properties of Hirzebruch–Jung continued fractions that will
be frequently used in the subsequent sections.

Notation 2.3. For a fixed continued fraction w = [n1, n2, . . . , nl] ∈ H and an
integer 0 ≤ s ≤ l + 1, we define

(1) us := qs,...,l = |[n1, n2, . . . , ns−1]| for 2 ≤ s ≤ l + 1, where u0 = 0 and
u1 = 1;

(2) vs := q1,...,s = |[ns+1, ns+2, . . . , nl]| for 0 ≤ s ≤ l − 1, where vl = 1 and
vl+1 = 0.

We remark that ul = ql , ul+1 = q, v0 = q, and v1 = q1.
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Lemma 2.4. Let w = [n1, n2, . . . , nl]∈H. Then:

(1) uj+1 = njuj − uj−1 and vj−1 = njvj − vj+1;
(2) vjuj+1 − vj+1uj = vj−1uj − vjuj−1 = q;
(3) vjuj = 1

nj
(q + vj+1uj + vjuj−1);

(4)
uj+vj

q
≤ 2

nj
; and

(5) |[n1, . . . , nj−1, nj + 1, nj+1, . . . , nl]| = ujvj + |[n1, n2, . . . , nl]| > q.

Proof. Part (1) is well known, and (2) is obtained by a direct calculation using (1)
as follows:

vjuj+1 − vj+1uj = (njuj − uj−1)vj − vj+1uj

= (njvj − vj+1)uj − vjuj−1

= vj−1uj − vjuj−1

...

= v1u2 − v2u1 = q1n1 − q1,2 = q.

Part (3) follows from the equality

njvjuj = (vj−1 + vj+1)uj = q + vjuj−1 + vj+1uj .

(4) For every 0 ≤ j ≤ l we have vj ≥ vj+1 + 1 and uj+1 − 1≥ uj , so

q − (vj + uj ) = vj(uj+1 − 1)− (vj+1 + 1)uj ≥ vjuj − vjuj = 0;
hence vj + uj ≤ q. Also note that vl+1 + ul+1 = q. Now, for every 1≤ j ≤ l,

nj(vj + uj ) = (vj+1 + vj−1)+ (uj+1 + uj−1) (by (1))

= (uj+1 + vj+1)+ (uj−1 + vj−1) ≤ 2q.

(5) Note that

|[n1, . . . , nj−1, nj + 1]| = (nj + 1)uj − uj−1 = uj + uj+1.

Then, by (2),

|[n1, . . . , nj−1, nj + 1, nj+1, . . . , nl]| = |[n1, . . . , nj−1, nj + 1]|vj − ujvj+1

= ujvj + uj+1vj − ujvj+1

= ujvj + |[n1, n2, . . . , nl]|.
Lemma 2.5. Assume l ≥ 5. Then, for arbitrary nonnegative integers z1, . . . , zl :

l∑
j=1

(uj + vj )zj ≤




∑ l
j=1(ujvj )z

2
j if

∑ l
j=1 zj ≥ 3,

∑ l
j=1(ujvj )z

2
j + 2 if

∑ l
j=1 zj = 2,

∑ l
j=1(ujvj )z

2
j + 1 if

∑ l
j=1 zj = 1.

Proof. Note that (u1 + v1)z1 = (1 + v1)z1 ≤ v1z
2
1 − 2 if z1 ≥ 2 and also that

(u1+v1)z1 = (1+v1)z1 = v1z
2
1+1 if z1 = 1. Similarly, (ul+vl)zl = (ul+1)zl ≤

ulz
2
1 − 2 if zl ≥ 2 and (ul + vl)zl = (ul + 1)zl = ulz

2
l + 1 if zl = 1. For 2 ≤

j ≤ l − 1 we have uj ≥ 2, vj ≥ 2, and uj + vj ≥ 6 since l ≥ 5, so (uj + vj )zj ≤
(ujvj )zj ≤ (ujvj )z

2
j and (uj + vj )zj ≤ (ujvj )z

2
j − 2 if zj ≥ 1.
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3. Algebraic Surfaces with Quotient Singularities

3.1

A singularity p of a normal surface S is called a quotient singularity if the germ is
locally analytically isomorphic to (C2/G,O) for some nontrivial finite subgroupG

of GL2(C) without quasi-reflections. Brieskorn [B] classified all such finite sub-
groups of GL(2, C).

Let S be a normal projective surface with quotient singularities, and let

f : S ′ → S

be a minimal resolution of S. It is well known that quotient singularities are log-
terminal singularities. Thus one can write

KS ′ ≡
num

f ∗KS −
∑

p∈Sing(S)

Dp,

where Dp = ∑
(ajAj ) is an effective Q-divisor with 0 ≤ aj < 1 supported on

f −1(p) = ⋃
Aj for each singular point p. Intersecting the formula with Dp yields

DpKS ′ = −D2
p ,

from which it follows that

K2
S = K2

S ′ −
∑
p

D2
p = K2

S ′ +
∑
p

DpKS ′ .

For each singular point p, the coefficients of the Q-divisor Dp can be obtained
by solving the equations given by the adjunction formula

DpAj = −KS ′Aj = 2+ A2
j

for each exceptional curve Aj ⊂ f −1(p).

When p is a cyclic singularity of order q, the coefficients of Dp can be expressed
in terms of vj and uj (see Notation 2.3) as follows.

Lemma 3.1. Let p be a cyclic quotient singular point of S. Assume that f −1(p)

has l components A1, . . . ,Al , with A2
i = −ni forming a string of smooth rational

curves
−n1� − −n2� − · · · − −nl� . Then

(1) Dp =
l∑

j=1

(
1− vj + uj

q

)
Aj ,

(2) DpKS ′ = −D2
p =

l∑
j=1

(
1− vj + uj

q

)
(nj − 2),

(3) D2
p = 2 l −

l∑
j=1

nj + 2− q1 + ql + 2

q
.

In particular, if l = 1 then D2
p = − (n1−2)2

n1
.
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Proof. The equality in (1) is well known (see [Me; HK1, Lemma 2.2]). Part (2)
follows from (1) and the adjunction formula. The equality in (3) is also well known
(see [LW; HK1, Lemma 3.6]).

Recall the orbifold Euler characteristic

eorb(S) := e(S)−
∑

p∈Sing(S)

(
1− 1

|Gp|
)

,

where Gp is the local fundamental group of p.
The following result, known as the orbifold Bogomolov–Miyaoka–Yau inequal-

ity, is one of the main ingredients in the proof of our main theorem.

Theorem 3.2 [KoNS; Me; Mi; S]. Let S be a normal projective surface with
quotient singularities such that KS is nef. Then

K2
S ≤ 3eorb(S).

In particular,
0 ≤ eorb(S).

The weaker inequality also holds when −KS is nef.

Theorem 3.3 [KeM, Cor. 1.8.1]. Let S be a normal projective surface with quo-
tient singularities such that −KS is nef. Then

0 ≤ eorb(S).

3.2

Let S be a normal projective surface with quotient singularities, and let f : S ′ → S

be a minimal resolution of S. It is well known that the torsion-free part of the sec-
ond cohomology group,

H 2(S ′, Z)free := H 2(S ′, Z)/(torsion),

has a lattice structure that is unimodular. For a quotient singular point p ∈ S, let

Rp ⊂ H 2(S ′, Z)free

be the sublattice of H 2(S ′, Z)free spanned by the numerical classes of the compo-
nents of f −1(p). It is a negative definite lattice, and its discriminant group

disc(Rp) := Hom(Rp, Z)/Rp

is isomorphic to the abelianization Gp/[Gp,Gp] of the local fundamental group
Gp. In particular, the absolute value |det(Rp)| of the determinant of the intersec-
tion matrix of Rp is equal to the order |Gp/[Gp,Gp]|. Let

R =
⊕

p∈Sing(S)

Rp ⊂ H 2(S ′, Z)free

be the sublattice of H 2(S ′, Z)free spanned by the numerical classes of the excep-
tional curves of f : S ′ → S. We also consider the sublattice
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R + 〈KS ′ 〉 ⊂ H 2(S ′, Z)free

spanned by R and the canonical class KS ′ . Note that

rank(R) ≤ rank(R + 〈KS ′ 〉) ≤ rank(R)+ 1.

Lemma 3.4 [HK1, Lemma 3.3]. Let S be a normal projective surface with quo-
tient singularities, and let f : S ′ → S be a minimal resolution of S. Then the
following statements hold.

(1) rank(R + 〈KS ′ 〉) = rank(R) if and only if KS is numerically trivial.
(2) det(R + 〈KS ′ 〉) = det(R) ·K2

S if KS is not numerically trivial.
(3) If also b2(S) = 1 and KS is not numerically trivial, then R + 〈KS ′ 〉 is a sub-

lattice of finite index in the unimodular lattice H 2(S ′, Z)free; in particular,
|det(R + 〈KS ′ 〉)| is a nonzero square number.

We denote this nonzero square number as

D := |det(R + 〈KS ′ 〉)|.
The following is well known.

Lemma 3.5. Assume that p is a cyclic singularity such that f −1(p) has l com-
ponents A1, . . . ,Al , with A2

i = −ni forming a string of smooth rational curves
−n1� − −n2� − · · · − −nl� . Then disc(Rp) is a cyclic group generated by

ep := A∗l = − 1

q

l∑
i=1

uiAi,

where ui = |[n1, n2, . . . , ni−1]| as in Notation 2.3. This cyclic group has the prop-
erties that

epAl = 1, epAj = 0 (1 ≤ j ≤ l − 1), and e2
p = −ul

q
= −ql

q
.

Proof. We know that disc(Rp) := Hom(Rp, Z)/Rp is a cyclic group of order q =
|[n1, n2, . . . , nl]|. Let A∗l ∈Hom(Rp, Z) be the dual element of Al , and write

A∗l =
∑

aiAi

for some rational numbers ai. Then the equalities

A∗lAl = 1, A∗lAj = 0 (1 ≤ j ≤ l − 1)

give a system of linear equations for the ai. Now, by Cramer’s rule, we have

ai = −ui

q
.

Since u1 = 1, it follows that A∗l has order q in disc(Rp).

The next lemma will also prove to be useful.
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Lemma 3.6 [HK2, Lemma 3]. Let S be a Q-homology projective plane with
cyclic singularities such that H1(S

0, Z) = 0. Let f : S ′ → S be a minimal reso-
lution. Then:

(1) H 2(S ′, Z) is torsion free (i.e., H 2(S ′, Z) = H 2(S ′, Z)free);
(2) R is a primitive sublattice of the unimodular lattice H 2(S ′, Z);
(3) disc(R) is a cyclic group—in particular, the orders |Gp| = |det(Rp)| are pair-

wise relatively prime;
(4) KS is not numerically trivial (i.e., KS is either ample or anti-ample);
(5) D = |det(R)|K2

S and is a nonzero square number ; and
(6) the Picard group Pic(S ′) is generated over Z by the exceptional curves and a

Q-divisor M of the form

M = 1√
D

f ∗KS +
∑

p∈Sing(S)

bpep

for some integers bp, where ep is the generator of disc(Rp) as in Lemma 3.5.

Finally we generalize Lemma 3.6 to the case without the condition H1(S
0, Z) = 0.

We will encounter this general situation later in our proof (see Sections 5 and 6).
Let S be a Q-homology projective plane with cyclic singularities, and let

f : S ′ → S be a minimal resolution. Denote by Pic(S ′)free the group of nu-
merical equivalence classes of divisors; thus,

Pic(S ′)free := Pic(S ′)/(torsion).

With the intersection pairing, Pic(S ′)free becomes a unimodular lattice isometric
to H 2(S ′, Z)free. Denote by

R̄ ⊂ Pic(S ′)free

the primitive closure of R ⊂ Pic(S ′)free, the sublattice spanned by the numerical
equivalence classes of exceptional curves of f.

Lemma 3.7. Let S be a Q-homology projective plane with cyclic singularities,
and let f : S ′ → S be a minimal resolution. Assume that KS is not numerically
trivial. Then we have the following five claims.

(1) D = |det(R)|K2
S and is a nonzero square number.

(2) disc(R̄) is a cyclic group of order |det(R̄)| = |det(R)|/c2, where c is the
order of R̄/R.

(3) Define

D ′ := |det(R̄)|K2
S =

D

c2
.

Then Pic(S ′)free is generated over Z by the numerical equivalence classes of ex-
ceptional curves, an element T ∈ Pic(S ′)free giving a generator of R̄/R, and a
Q-divisor of the form

M = 1√
D ′ f

∗KS + z;

here z is a generator of disc(R̄) and hence of the form z = ∑
p∈Sing(S) bpep for

some integers bp, where ep is the generator of disc(Rp) as in Lemma 3.5.
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(4) For each singular point p, denote by A1,p,A2,p, . . . ,Alp,p the exceptional
curves of f at p and by qp the order of the local fundamental group at p. Then
every element E ∈ Pic(S ′)free can be written uniquely as

E = mM +
∑

p∈Sing(S)

lp∑
i=1

ai,pAi,p (3.1)

for some integer m and some ai,p ∈ (1/c)Z for all i,p.
(5) E is supported on f −1(Sing(S)) if and only if m = 0. Moreover, if E is ef-

fective (modulo a torsion) and not supported on f −1(Sing(S)), then m > 0 when
KS is ample and m < 0 when −KS is ample.

Proof. Part (1) follows from Lemma 3.4, and part (2) is well known.
For part (3), we slightly modify the proof of [HK2, Lemma 3]. Here R⊥ is

generated by

v :=
√
D ′

K2
S

f ∗KS = |det(R̄)|√
D ′ f ∗KS ,

disc(R⊥) is generated by
1√
D ′ f

∗KS ,

and
Pic(S ′)free

R⊥ ⊕ R̄
⊂ disc(R⊥ ⊕ R̄)

is an isotropic subgroup of order |det(R̄)| of disc(R⊥⊕ R̄) and hence is generated
by an element

M ∈ disc(R⊥ ⊕ R̄)

of order |det(R̄)|. Moreover, M is the sum of a generator of disc(R⊥) and a gen-
erator of disc(R̄), since Pic(S ′)free is unimodular. Replacing M by kM for a suit-
able choice of an integer k, we obtain M of the desired form. We have shown that
Pic(S ′)free is generated over Z by v, R̄, and M. Note that

|det(R̄)|M ≡ v modulo R̄;
that is, v is generated by M and R̄. Finally, R̄ is generated over Z by R and T.

(4) By part (3), E is a Z-linear combination of M, T, and Ai,p. Since cT ∈ R,
the result follows.

(5) The first assertion is obvious. For the second, observe that

E(f ∗KS) = mM(f ∗KS) = m√
D ′K

2
S .

4. Curves on the Minimal Resolution

Throughout this section, we denote by S a Q-homology projective plane with
cyclic singularities and by f : S ′ → S its minimal resolution; in addition, we as-
sume that KS is not numerically trivial. But we do not assume that H1(S

0, Z) = 0,
so the orders of singularities may not be pairwise relatively prime.
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Let E be a divisor on S ′. Then, by Lemma 3.7(4), the numerical equivalence
class of E can be written in the form (3.1). The coefficients of E in (3.1) and the
intersection numbers EAj,p are related as follows, where uj and vj are as in Nota-
tion 2.3.

Lemma 4.1. Fix p ∈ Sing(S). Then, for j = 1, . . . , lp,

uj,p

qp
mbp − aj,p =

j∑
k=1

vj,puk,p

qp
(EAk,p)+

lp∑
k=j+1

vk,puj,p

qp
(EAk,p).

Proof. Note that, by Lemma 3.5, for each p ∈ Sing(S) we have

MAj,p = 0 for j = 1, . . . , lp − 1, MAlp,p = bp.

We fix p and, for simplicity, omit the subscript p. Thus we obtain the following
system of equalities:

EA1 = −n1a1 + a2,

EA2 = a1 − n2a2 + a3,

EA3 = a2 − n3a3 + a4,
...

EAl−1 = al−2 − nl−1al−1 + al ,

EAl = al−1 − nlal +mb.

This system implies that

a1 = 1

n1
a2 − 1

n1
EA1 = u1

u2
a2 − 1

u2
EA1,

a2 = u2

u3
a3 − 1

u3
EA1 − u2

u3
EA2,

...

aj = uj

uj+1
aj+1 − 1

uj+1
EA1 − · · · − uk

uj+1
EAk − · · · − uj

uj+1
EAj ,

...

al−1 = ul−1

ul

al − 1

ul

EA1 − · · · − uk

ul

EAk − · · · − ul−1

ul

EAl−1,

al = ul

q
mb − 1

q
EA1 − · · · − ul

q
EAl = ul

q
mb −

l∑
k=1

vluk

q
EAk.

Plugging the last equation into the previous equation for al−1, we obtain

al−1 = ul−1

ul

(
ul

q
mb − 1

q
EA1 − · · · − ul

q
EAl

)
− 1

ul

EA1 − · · · − ul−1

ul

EAl−1

= ul−1

q
mb −

l−1∑
k=1

(ul−1 + q)uk

qul

EAk − ul−1

q
EAl.
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By Lemma 2.2(2),
ul−1 + q = vlul−1 + q = vl−1ul;

hence the required equation for al−1 follows.
Next, plugging the required equation for al−1 into the equation for al−2, we ob-

tain the required equation for that term. The other values can be obtained similarly.

Now we express the intersection numbers EKS ′ and E 2 in terms of the intersec-
tion numbers EAj,p of E and the exceptional curves Aj,p.

Proposition 4.2. Let E be a divisor on S ′. Write (the numerical equivalence
class of ) E as the form (3.1). Then the following statements hold.

(1) EKS ′ = m√
D ′K

2
S −

∑
p

lp∑
j=1

(
1− vj,p + uj,p

qp

)
EAj,p.

If EAj,p ≥ 0 for all p and j, then

EKS ′ ≤ m√
D ′K

2
S −

∑
p

lp∑
j=1

(
1− 2

nj,p

)
EAj,p.

(2) E 2 = m2

D ′K
2
S

−
∑
p

lp∑
j=1

( j∑
k=1

vj,puk,p

qp
(EAk,p)+

lp∑
k=j+1

vk,puj,p

qp
(EAk,p)

)
EAj,p.

If EAj,p ≥ 0 for all p and j, then

E 2 ≤ m2

D ′K
2
S −

∑
p

lp∑
j=1

vj,puj,p

qp
(EAj,p)

2.

(3) For each p ∈ Sing(S), supppose E has a nonzero intersection number with at
most two components of f −1(p) (i.e., suppose EAj,p = 0 for j �= sp, tp with
1 ≤ sp < tp ≤ lp); then

E 2 = m2

D ′K
2
S

−
∑
p

(
vsp usp

qp
(EAsp )

2 + vtp utp

qp
(EAtp )

2 + 2vtp usp

qp
(EAsp )(EAtp )

)
.

Proof. (1) Note that

KS ′ = f ∗(KS)−
∑

p∈Sing(S)

lp∑
j=1

(
1− vj,p + uj,p

qp

)
Aj,p.

Intersecting both sides with E yields
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EKS ′ = Ef ∗(KS)−
∑
p

lp∑
j=1

(
1− vj,p + uj,p

qp

)
EAj,p.

Intersecting both sides of

E = mM +
∑
p

lp∑
i=1

ai,pAi,p

with f ∗(KS), we get

Ef ∗(KS) = mMf ∗(KS) = m√
D ′ f

∗(KS)
2 = m√

D ′K
2
S .

This proves the equality. The inequality follows from the equality by Lemma
2.4(4).

(2) Intersecting both sides of

E = mM +
∑
p

lp∑
j=1

aj,pAj,p

with E yields

E 2 = mEM +
∑
p

lp∑
j=1

aj,pEAj,p.

Intersecting both sides of

M = 1√
D ′ f

∗KS +
∑
p

bpep

with E, we obtain

mEM = m√
D ′Ef

∗(KS)+m
∑
p

bpEep

= m√
D ′

m√
D ′K

2
S +m

∑
p

bp(mMep + al,p)

= m2

D ′K
2
S +m

∑
p

bp(mbpe
2
p + al,p)

= m2

D ′K
2
S +m

∑
p

bp

(
−mbpul,p

q
+ al,p

)
(by Lemma 3.5)

= m2

D ′K
2
S −m

∑
p

bp

( lp∑
k=1

vl,puk,p

q
EAk,p

)
(by Lemma 4.1).

Therefore,

E 2 = m2

D ′K
2
S −m

∑
p

bp

( lp∑
j=1

vl,puj,p

q
EAj,p

)
+

∑
p

lp∑
j=1

aj,pEAj,p

= m2

D ′K
2
S −

∑
p

lp∑
j=1

(
mbpuj,p

q
− aj,p

)
EAj,p.

Now the equality follows from Lemma 4.1.
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If EAj,p ≥ 0 for all p and j, then

j∑
k=1

vj,puk,p

qp
(EAk,p)+

lp∑
k=j+1

vk,puj,p

qp
(EAk,p) ≥

vj,puj,p

qp
(EAj,p),

so the inequality follows.
(3) If EAj,p = 0 for j �= sp, tp with 1≤ sp < tp ≤ lp, then

lp∑
j=1

( j∑
k=1

vj,puk,p

qp
EAk,p +

lp∑
k=j+1

vk,puj,p

qp
EAk,p

)
EAj,p

=
(
vspusp

qp
EAsp +

vtpusp

qp
EAtp

)
(EAsp )

+
(
vtpusp

qp
EAsp +

vtputp

qp
EAtp

)
(EAtp ).

In this case, the equality follows from (2).

Let
L = LS := rank(R)

be the number of the irreducible exceptional curves of f : S ′ → S. We have

b2(S
′) = 1+ L.

Note that H1(S ′, OS ′) = H 2(S ′, OS ′) = 0. Hence, by the Noether formula,

K2
S ′ = 12− e(S ′) = 10− b2(S

′) = 9− L.

We close this section with the following two general results for the case where
S is not rational.

Proposition 4.3. Let S be a Q-homology projective plane with quotient singu-
lar points. If S is not rational, then the following statements hold.

(1) KS is ample or numerically trivial.
(2) KS is numerically trivial iff KS ′ is numerically trivial iff S ′ is an Enriques

surface.
(3) If LS ≥ 10, then KS is ample and S ′ contains a (−1)-curve.
(4) If one of the singularities of S is not a rational double point, then KS is ample.

Proof. (1) If −KS is ample, then S is rational.
(2) Note that pg(S

′) = q(S ′) = 0. Thus the second equivalence follows from
the classification theory of algebraic surfaces.

If KS is numerically trivial, then the adjunction formula gives

KS ′ ≡
num

f ∗KS −
∑

p∈Sing(S)

Dp ≡
num

−
∑

p∈Sing(S)

Dp.

Since S ′ is not rational, Dp = 0 for every singular point p ∈ S. Therefore, KS ′ is
numerically trivial.
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If KS ′ is numerically trivial, then S ′ is an Enriques surface and every smooth ra-
tional curve on S ′ is a (−2)-curve; hence S has only rational double points. Then,
by the adjunction formula, KS ′ = f ∗KS and so KS is numerically trivial.

(3) Since LS ≥ 10, it follows that K2
S ′ = 9− LS < 0; hence S ′ is not minimal.

If KS is numerically trivial then S ′ is an Enriques surface by (2) and so LS = 9, a
contradiction.

(4) Note that Dp = 0 for a singular point p if and only if p is a rational double
point. Now the statement follows from the adjunction formula.

Remark 4.4. The converse of Proposition 4.3(4) does not hold. There is a min-
imal surface of general type with pg = 0 and K2 = 1 that has eight (−2)-curves
of Dynkin type 4A2 [K1]. By contracting the eight curves, we get a Q-homology
projective plane S with KS ample but having rational double points only.

Lemma 4.5. Let S be a Q-homology projective plane with cyclic singularities.
Assume that S is not rational. If L ≥ 10, then there is a (−1)-curve E on S ′ of the
form (3.1) with 0 < m ≤ √

D ′/(L− 9).

Proof. Since S is not rational and since L ≥ 10, it follows from Proposition 4.3
that KS is ample. Thus m > 0 for any (−1)-curve E by Lemma 3.7(5).

Since K2
S ′ = 9− L < 0, we know that S ′ is not a minimal surface. Let

g : S ′ = Sk → Sk−1 → Sk−2 → · · · → S1 → S0 = Smin

be a morphism of S ′ to its minimal model. A consequence of K2
Smin

≥ 0 is that

k ≥ L− 9.

One can write

KS ′ = g∗KSmin +
k∑

i=1

Ei,

where Ei is the total transform of the exceptional curve of the blowup Si → Si−1.

Note that E1, . . . ,Ek are effective but not necessarily irreducible divisors that sat-
isfy E 2

i = −1 and EiEj = 0 for i �= j.

Let m0 be the leading coefficient of g∗KSmin written in the form (3.1). Since S

is not rational, KSmin is a nef Q-divisor on Smin and so g∗KSmin is a nef Q-divisor
on S ′. Since KS is ample, it follows that

m0 ≥ 0.

Let mi be the leading coefficient of Ei written in the form (3.1), and note that
√
D ′

is the leading coefficient of KS ′ written in the form (3.1). Therefore,

√
D ′ = m0 +

k∑
i=1

mi.

If Es is a (−1)-curve and is a component of Et for some t �= s, then one can write
Et = aEs + F for a ≥ 1 an integer and F an effective divisor. It follows that
mt ≥ ams ≥ ms. Let
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m := min{m1,m2, . . . ,mk}.
Then there is an irreducible member E among E1, . . . ,Ek whose leading coeffi-
cient is m. This member is a (−1)-curve, and

√
D ′ = m0 +

k∑
i=1

mi ≥
k∑

i=1

mi ≥ km ≥ (L− 9)m.

5. First Reduction Steps for Cases with |Sing(S)| ≥ 4

Let S be a Q-homology projective plane with cyclic quotient singularities such
that H1(S

0, Z) = 0. By Lemma 3.6(3), the orders of singularities are pairwise rel-
atively prime. Since eorb(S) ≥ 0 (Theorems 3.2 and 3.3), one sees immediately
that S can have at most four singular points (see [HK1, Kol2]).

Assume that |Sing(S)| = 4. Then we enumerate all possible 4-tuples of orders
of local fundamental groups as follows:

(1) (2, 3, 5, q), q ≥ 7, gcd(q, 30) = 1;
(2) (2, 3, 7, q), 11≤ q ≤ 41, gcd(q, 42) = 1;
(3) (2, 3,11,13).

For (2) and (3), there are exactly 1092 different possible types for R, the sublat-
tice of H 2(S ′, Z)free generated by all exceptional curves of the minimal resolution
f : S ′ → S. There are two types ([3] and [2, 2]) of order 3; four types ([7], [4, 2],
[3, 2, 2], and A6) of order 7; and φ(q)/2 + 1 types of order q. Hence the total
number of types of R for the case (2, 3, 7, q) is

2× 4×
(
φ(q)

2
+ 1

)
= 4(φ(q)+ 2),

where φ is the Euler function. Here we identify 1
q
(1, q1) with 1

q
(1, ql). By Lemma

3.6(5), the number
D = |det(R)|K2

S

must be a nonzero square number. Among the 1092 cases, a computer calculation
of the number D shows that only 24 cases satisfy this property. Table 1 describes
these 24 cases.

The number D can be computed as follows. First note that

|det(R)| = the product of orders.

To compute K2
S , we use the equality

K2
S = K2

S ′ +
∑
p

DpKS ′ = K2
S ′ −

∑
p

D2
p

from Section 3.1. By the Noether formula we have

K2
S ′ = 9− L,
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Table 1

No. Type of R Orders K2
S 3eorb(S)

1 [2]+ A2 + [7]+ [13] (2, 3, 7,13) 1536
91 > 29

182

2 [2]+ A2 + [7]+ [3, 2, 2, 2, 2, 2, 2, 2, 2] (2, 3, 7,19) 6
133 < 23

266

3 [2]+ A2 + [7]+ [5, 4] (2, 3, 7,19) 1350
133 > 23

266

4 [2]+ A2 + [7]+ [3, 4, 2] (2, 3, 7,19) 1014
133 > 23

266

5 [2]+ A2 + [4, 2]+ [2, 2, 4, 2, 2, 2] (2, 3, 7, 31) 150
217 > 11

434

6 [2]+ A2 + [4, 2]+ [6, 2, 2, 2, 2, 2] (2, 3, 7, 31) 486
217 > 11

434

7 [2]+ [3]+ [3, 2, 2]+ [4, 2, 2, 2, 3] (2, 3, 7, 29) 968
609 > 13

406

8 [2]+ A2 + [3, 2, 2]+ [7, 2, 2, 2] (2, 3, 7, 25) 24
7 > 17

350

9 [2]+ A2 + [7]+ [2, 2, 3, 2, 2, 2, 2, 2, 2] (2, 3, 7, 31) 54
217 > 11

434

10 [2]+ [3]+ [4, 2]+ [3, 3, 2, 2, 3] (2, 3, 7, 41) 2888
861 > 1

574

11 [2]+ A2 + [3, 2, 2]+ [7, 2, 2, 2, 2, 2] (2, 3, 7, 37) 384
259 > 5

518

12 [2]+ A2 + [4, 2]+ [11, 2, 2] (2, 3, 7, 31) 2166
217 > 11

434

13 [2]+ [3]+ A6 + [2, 6, 2, 2] (2, 3, 7, 29) 56
87 > 13

406

14 [2]+ [3]+ [3, 2, 2]+ [4, 3] (2, 3, 7,11) 1058
231 > 31

154

15 [2]+ [3]+ [3, 2, 2]+ [3, 2, 2, 2, 2] (2, 3, 7,11) 50
231 > 31

154

16 [2]+ [3]+ [3, 2, 2]+ [4, 2, 2, 3] (2, 3, 7, 23) 1250
483 > 19

322

17 [2]+ [3]+ [3, 2, 2]+ [6, 5] (2, 3, 7, 29) 5000
609 > 13

406

18 [2]+ A2 + [3, 2, 2]+ [3, 5, 2] (2, 3, 7, 25) 24
7 > 17

350

19 [2]+ A2 + [3, 2, 2]+ [13, 2] (2, 3, 7, 25) 1944
175 > 17

350

20 [2]+ A2 + [4, 2]+ [4, 2, 2, 2] (2, 3, 7,13) 216
91 > 29

182

21 [2]+ A2 + [4, 2]+ [5, 2, 2] (2, 3, 7,13) 384
91 > 29

182

22 [2]+ A2 + [4, 2]+ [4, 2, 2, 2, 2, 2] (2, 3, 7,19) 54
133 > 23

266

23 [2]+ [3]+ [3, 2, 2, 2, 2]+ [4, 2, 2, 2] (2, 3,11,13) 8
429 > 1

286

24 [2]+ [3]+ [3, 2, 2, 2, 2]+ [5, 2, 2] (2, 3,11,13) 800
429 > 1

286

where L := rank(R) is the number of the exceptional curves of f. Finally, the
self-intersection number D2

p is given in Lemma 3.1.

Remark 5.1. None of the 24 cases listed in Table 1 can be ruled out by any fur-
ther lattice-theoretic argument. In fact, in each case the lattice R can be embedded
into a unimodular lattice I1,L(odd) or II1,L(even) of signature (1,L). This can be
checked by the local–global principle and the computation of ε-invariants (see e.g.
[HK1, Sec. 6]).
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Table 2

[2] [2, 2] [7] [3, 2, 2, 2, 2, 2, 2, 2, 2]

j 1 1 2 1 1 2 3 4 5 6 7 8 9

1− vj+uj

q
0 0 0 5

7
9

19
8

19
7

19
6

19
5

19
4
19

3
19

2
19

1
19

Lemma 5.2. In all cases (except the second ) of Table 1, −KS is ample. In the
second case, S is rational.

Proof. The 23 cases do not satisfy the inequality K2
S ≤ 3eorb(S) in Theorem 3.2.

From this, the first assertion follows.
Consider the second case, A1+A2 + [7]+ [3, 2, 2, 2, 2, 2, 2, 2, 2]. In this case

we have

K2
S =

6

133
, D = |det(R)|K2

S = 36, L = 13.

Suppose that S is not rational. By Lemma 4.5, S ′ contains a (−1)-curve E with
0 < m ≤ √

D/(L− 9) = 6/4; that is, m = 1. By Proposition 4.2(1), we obtain

∑
p

∑
j

(
1− vj,p + uj,p

qp

)
(EAj,p) = −EKS ′ + m√

D
K2

S = 1+ 1

6
· 6

133
= 134

133
.

Looking at Table 2, we see that there are nonnegative integers x, y such that

5x

7
+ y

19
= 134

133
.

But it is easy to check that this equation has no solution.

Next we consider the cases (2, 3, 5, q) for q ≥ 7 and gcd(q, 30) = 1.

Lemma 5.3. In the cases (2, 3, 5, q), where q ≥ 7 and gcd(q, 30) = 1, the order-
3 singularity must be of type 1

3 (1, 1).

Proof. Suppose this order-3 singularity is of type A2. We divide the proof into
three cases according to the type of the third singularity.

Case 1: A1 + A2 + A4 + 1
q
(1, q1). In this case,

K2
S =

l∑
j=1

nj − 3l + q1 + ql + 2

q

and

D = 30

{
q1 + ql +

( l∑
j=1

nj − 3l

)
q + 2

}
.
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Since D is a square number, 3 divides q1+ql+(tr−3l )q+2 ≡ q1+ql+(tr)q+2.
Then, by Proposition 2.2, q is a multiple of 3—a contradiction.

Case 2: A1 + A2 + 1
5 (1, 2)+ 1

q
(1, q1). In this case,

K2
S =

l∑
j=1

nj − 3l + 12

5
+ q1 + ql + 2

q

and

D = 6

[
5(q1 + ql)+

{
5

( l∑
j=1

nj − 3l

)
+ 12

}
q + 10

]
.

Thus 3 divides 5(q1 + ql) + {5(tr − 3l ) + 12}q + 10 ≡ −(q1 + ql) − (tr)q + 1.
Then, by Proposition 2.2, q is a multiple of 3—a contradiction.

Case 3: A1 + A2 + 1
5 (1, 1)+ 1

q
(1, q1). In this case,

K2
S =

l∑
j=1

nj − 3l + 24

5
+ q1 + ql + 2

q

and

D = 6

[
5(q1 + ql)+

{
5

( l∑
j=1

nj − 3l

)
+ 24

}
q + 10

]
.

Thus 3 divides 5(q1 + ql) + {5(tr − 3l ) + 24}q + 10. Then, by Proposition 2.2,
q is a multiple of 3—a contradiction.

In the following two lemmas, we do not assume that H1(S
0, Z) = 0. As a result,

the orders may not be pairwise relatively prime.

Lemma 5.4. Let S be a Q-homology projective plane with exactly four cyclic sin-
gular points p1,p2,p3,p4 of orders (2, 3, 5, q), q ≥ 7. (We do not assume that
gcd(q, 30) = 1.) Regard F := f −1(Sing(S)) as a reduced integral divisor on S ′,
and assume that S ′ contains a (−1)-curve E. Then

E.F ≥ 2.

Equality holds iff E.f −1(pi) = 0 for i = 1, 2, 3 and E.f −1(p4) = 2.

Proof. Assume that E.F = 1. Blowing up the intersection point and then con-
tracting the proper transform of E as well as the proper transforms of all irre-
ducible components of F, we obtain a Q-homology projective plane S̄ with five
quotient singular points. Then, by [HK1], the minimal resolution of S̄ is an En-
riques surface and hence has no (−1)-curve, which is a contradiction. This proves
that E.F ≥ 2.

Now assume that E.F = 2. We will prove first that E does not meet any end
component of f −1(pi) for 1 ≤ i ≤ 3. So suppose that E does meet such an end
component. To derive a contradiction, we divide the proof into three cases.
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Case 1: EF = 1. Then EF ′ = 1 for some other component F ′ of f −1(pj ),
where j = 1, 2, 3, 4 and may be equal to i. Assume that E∩F ∩F ′ = ∅. Blowing
up the intersection point of E and F ′ sufficiently many times before contracting the
proper transform of E with a string of (−2)-curves and the proper transforms of
all irreducible components of F, we obtain a Q-homology projective plane S̄ with
four quotient singular points such that eorb < 0 (see Lemma 2.4(5)); this violates
the orbifold Bogomolov–Miyaoka–Yau inequality. Next assume that E∩F ∩F ′ �=
∅. Blowing up the intersection point once and then contracting the proper trans-
form of E and the proper transforms of all irreducible components of F, we obtain
a Q-homology projective plane S̄ with six quotient singular points—in contradic-
tion to [HK1].

Case 2: E intersects F at two distinct points. In this case we get a similar con-
tradiction. Blowing up one of the two intersection points of E and F sufficiently
many times before contracting the proper transform of E with the adjacent string
of (−2)-curves and the proper transforms of all irreducible components of F, we
obtain a Q-homology projective plane S̄ with four quotient singular points such
that eorb < 0. Here we also use Lemma 2.4(5).

Case 3: E intersectsF at one point with multiplicity 2. Blowing up the intersec-
tion point twice and then contracting the proper transform of E, a (−2)-curve, and
the proper transforms of all irreducible components of F, we obtain a Q-homology
projective plane S̄ with six quotient singular points; this contradicts [HK1].

We have proved that E does not meet any end component of f −1(pi) for 1 ≤
i ≤ 3. This implies that E.f −1(p1) = E.f −1(p2) = 0 and E.f −1(p3) = 0
if f −1(p3) has at most two components. We will show that E.f −1(p3) = 0
even if f −1(p3) has more than two components (i.e., even if p3 is of type A4 =
[2, 2, 2, 2]). Suppose that p3 is of type A4 and let F1,F2,F3,F4 be its four com-
ponents whose dual graph is F1−F2−F3−F4. We split the proof into four cases.

Case A: E meets F2 at two distinct points. Blowing up one of the two intersec-
tion points of E and F2 once and then contracting the proper transform of E and
the proper transforms of all irreducible components of F, we obtain a Q-homology
projective plane S̄ with one noncyclic quotient singularity of type

〈3; 2,1; 2,1; 3, 2〉 := ;

−2� − −3� − −2� − −2�
�−2

the order of this singularity is 48, and it has three cyclic singular points of order
2, 3, q (see [B] or [HK1, Table 1] for the notation of dual graphs of noncyclic sin-
gularities). For this surface,

eorb = −1+ 1

2
+ 1

3
+ 1

q
+ 1

48
< 0,

which violates the orbifold Bogomolov–Miyaoka–Yau inequality.
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Case B: EF2 = EF3 = 1 and E ∩ F2 ∩ F3 = ∅. Blowing up the intersection
point of E and F3 once and then contracting the proper transform of E and the
proper transforms of all irreducible components of F, we obtain a Q-homology
projective plane S̄ with one noncyclic quotient singularity of type

〈2; 2,1; 2,1; 5, 2〉 := ;

−2� − −2� − −3� − −2�
�−2

the order of this singularity is 60, and it has three cyclic singular points of order
2, 3, q. For this surface,

eorb = −1+ 1

2
+ 1

3
+ 1

q
+ 1

60
< 0,

which also violates the orbifold Bogomolov–Miyaoka–Yau inequality.

Case C: EF2 = EF3 = 1 and E ∩ F2 ∩ F3 �= ∅. Blowing up the intersection
point once before contracting the proper transform of E and the proper transforms
of all irreducible components of F, we obtain a Q-homology projective plane S̄

with six quotient singular points—in contradiction to [HK1].

Case D: EF2 = 1 and EF = 1 for some component F of f −1(pi) for some
i �= 3. Blowing up the intersection point of E and F three times and then con-
tracting all curves except the (−1)-curve coming from the last blowup, we obtain
a Q-homology projective plane S̄ with one noncyclic quotient singularity of type

〈2; 2,1; 3, 2; 4, 3〉 := ;

−2� − −2� − −2� − −2�
�−2
− �−2

− �−2

the order of this singularity is 48, and it has three cyclic singular points of respec-
tive order ≥ 2, ≥ 3, and ≥ q. For this surface,

eorb ≤ −1+ 1

2
+ 1

3
+ 1

q
+ 1

48
< 0,

which violates the orbifold Bogomolov–Miyaoka–Yau inequality.
This completes the proof of E.f −1(p3) = 0, from which it follows that

E.f −1(p4) = 2.

In our next lemma it is not assumed that H1(S
0, Z) = 0.

Lemma 5.5. Let S be a Q-homology projective plane with exactly four cyclic
singular points p1,p2,p3,p4 of orders (2, 3, 5, q). (We do not assume that
gcd(q, 30) = 1.) Assume that KS is ample and that the order-3 singularity is
of type 1

3 (1, 1). Then:

(1) L ≥ 12 except possibly four cases (1–4 in Table 3) in which S is rational and
L = 11; and

(2) q ≥ 20 except possibly one case (1 in Table 3).
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Proof. (1) We must consider the following types:

• A1 + 1
3 (1, 1)+ A4 + 1

q
(1, q1),

• A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ 1
q
(1, q1),

• A1 + 1
3 (1, 1)+ 1

5 (1, 1)+ 1
q
(1, q1).

Let [n1, . . . , nl] be the Hirzebruch–Jung continued fraction corresponding to the
singularity p4. Since KS is ample, Theorem 3.2 implies that

0 < K2
S ′ −D2

p2
−D2

p3
−D2

p4
= K2

S ≤ 3eorb(S) = 1

10
+ 3

q
.

Since K2
S ′ = 9− L and D2

p2
= − 1

3 , Lemma 3.1 implies that

L− 7+ 2 l − 1

3
+D2

p3
− q1 + ql + 2

q

<
∑

nj ≤ L− 7+ 2 l − 1

3
+D2

p3
− q1 + ql − 1

q
+ 1

10
.

In particular, ifL is bounded then so is the number of possible cases for [n1, . . . , nl].
Assume that L ≤ 11. If p3 is of type A4 then L = l + 6, D2

p3
= 0, and the

preceding inequality shows that
∑

nj = 3l− 2 or 3l− 3. Therefore, up to permu-
tation of n1, . . . , nl , we have

[n1, . . . , nl] = [5, 2, 2, 2, 2], [4, 3, 2, 2, 2], [3, 3, 3, 2, 2];
[4, 2, 2, 2, 2], [3, 3, 2, 2, 2];
[4, 2, 2, 2], [3, 3, 2, 2];
[3, 2, 2, 2];
[3, 2, 2];
[2, 2, 2];
[2, 2].

Hence there are 42 possible cases for [n1, . . . , nl]. Here we identify [n1, . . . , nl]
with its reverse, [nl , . . . , n1].

If p3 is of type 1
5 (1, 2) then L = l+4, D2

p3
= − 2

5 , and
∑

nj = 3l−4 or 3l − 5;
hence, up to permutation of n1, . . . , nl ,

[n1, . . . , nl] = [5, 2, 2, 2, 2, 2, 2], [4, 3, 2, 2, 2, 2, 2], [3, 3, 3, 2, 2, 2, 2];
[4, 2, 2, 2, 2, 2, 2], [3, 3, 2, 2, 2, 2, 2];
[4, 2, 2, 2, 2, 2], [3, 3, 2, 2, 2, 2];
[3, 2, 2, 2, 2, 2];
[3, 2, 2, 2, 2];
[2, 2, 2, 2, 2];
[2, 2, 2, 2].

There are consequently 80 possible cases for [n1, . . . , nl] if l ≤ 7.
If p3 is of type 1

5 (1, 1) then L = l+3, D2
p3
= − 9

5 , and
∑

nj = 3l−7 or 3l − 8;
hence, up to permutation of n1, . . . , nl , we have
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Table 3

No. Type of R q K2
S 3eorb

1 A1 + 1
3 (1, 1)+ 1

5 (1, 1)+ [2, 2, 2, 2, 2, 2, 2, 2] 9 2
15 < 13

30

2 A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ [4, 2, 2, 2, 2, 2, 2] 22 1
165 < 13

55

3 A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ [3, 3, 2, 2, 2, 2, 2] 33 2
55 < 21

110

4 A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ [3, 2, 2, 3, 2, 2, 2] 43 8
645 < 73

430

5 A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ [2, 2, 2, 4, 2, 2, 2] 40 1
3 > 7

40

6 A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ [3, 3, 3, 2, 2, 2, 2] 73 1058
1095 > 103

730

7 A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ [2, 3, 4, 2, 2, 2, 2] 70 25
21 > 1

7

8 A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ [2, 3, 3, 3, 2, 2, 2] 97 1682
1455 > 127

970

9 A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ [2, 2, 4, 3, 2, 2, 2] 78 81
65 > 9

65

10 A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ [3, 3, 2, 2, 3, 2, 2] 87 128
145 > 39

290

11 A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ [2, 3, 3, 2, 2, 3, 2] 103 1568
1545 > 133

1030

[n1, . . . , nl] = [3, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2, 2, 2];
[2, 2, 2, 2, 2, 2, 2].

Thus there are six possible cases for [n1, . . . , nl] if l ≤ 8.
Among these 42+ 80+ 6 = 128 cases, a direct calculation of D = |det(R)|K2

S

shows that only 11 cases satisfy the condition that D be a positive square number
(see Lemma 3.6(5)). Table 3 describes these 11 cases, among which only the first
four satisfy the orbifold Bogomolov–Miyaoka–Yau inequality K2

S ≤ 3eorb.

One can check that none of these four cases can be ruled out by any further
lattice-theoretic argument; that is, in each case the lattice R can be embedded into
an odd unimodular lattice of signature (1,L). This can be checked by the local–
global principle and the computation of ε-invariants (see e.g. [HK1, Sec. 6]).

To prove the rationality in each of the first four cases of Table 3, we will use the
formulas from Proposition 4.2. First note that L = 11 in each of these four cases.
We assume throughout the proof that S is not rational.

Case 1. Note that D = 36. Since disc(R̄) is a cyclic group (Lemma 3.7), we
see that det(R̄) = det(R)/32 and so D ′ = D/32 = 4. By Lemma 4.5, S ′ contains
a (−1)-curve E with 0 < m ≤ √

D ′/(L − 9) = 1 (i.e., m = 1). By Proposition
4.2(1), we obtain

∑
p

∑
j

(
1− vj,p + uj,p

qp

)
(EAj,p) = 1+ m√

D ′K
2
S =

16

15
.

Looking at Table 4, we see that there are nonnegative integers x, y such that



Algebraic Montgomery–Yang Problem: The Nonrational Surface Case 27

Table 4

[2] [3] [5] [2, 2, 2, 2, 2, 2, 2, 2]

j 1 1 1 1 2 3 4 5 6 7 8

1− vj+uj

q
0 1

3
3
5 0 0 0 0 0 0 0 0

Table 5

[2] [3] [2, 3] [3, 3, 2, 2, 2, 2, 2]

j 1 1 1 2 1 2 3 4 5 6 7

1− vj+uj

q
0 1

3
1
5

2
5

19
33

24
33

20
33

16
33

12
33

8
33

4
33

vj uj

q

1
2

1
3

3
5

2
5

13
33

18
33

40
33

52
33

54
33

46
33

28
33

x

3
+ 3y

5
= 16

15
.

It is easy to check that the equation has no solution.

Case 2. Note that D = 4. Since disc(R̄) is a cyclic group (Lemma 3.7), we see
that D ′ = D/22 = 1. By Lemma 4.5, S ′ contains a (−1)-curve E with 0 < m ≤√
D ′/(L− 9) = 1/2, a contradiction.

Case 3. Note that D = 36. Since disc(R̄) is a cyclic group (Lemma 3.7), we
see that D ′ = D/32 = 4. By Lemma 4.5, S ′ contains a (−1)-curve E with 0 <

m ≤ √
D ′/(L− 9) = 1 (i.e., m = 1). By Proposition 4.2(1), we obtain

∑
p

∑
j

(
1− vj,p + uj,p

qp

)
(EAj,p) = 1+ m√

D ′K
2
S =

56

55
.

Looking at Table 5, we see that there are nonnegative integers x, y, z such that

x

3
+ y

5
+ z

33
= 56

55
.

This equation has three solutions (x, y, z) = (0,1, 27), (1,1,16), (2,1, 5). Again
by Table 5, we can rule out the third solution. By Proposition 4.2(2), we obtain

∑
p

∑
j

vjuj

q
(EAj)

2 ≤ 1+ m2

D ′K
2
S =

111

110
,

which rules out the first two solutions.

Case 4. Note that D = 42. Since the orders are pairwise relatively prime, D ′ =
D. By Lemma 4.5, S ′ contains a (−1)-curve E with 0 < m ≤ √

D/(L− 9) = 2;
that is, m = 1 or 2. By Proposition 4.2, we obtain
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Table 6

[2] [3] [2, 3] [3, 2, 2, 3, 2, 2, 2]

j 1 1 1 2 1 2 3 4 5 6 7

1− vj+uj

q
0 1

3
1
5

2
5

23
43

26
43

29
43

32
43

24
43

16
43

8
43

Table 7

q Singularity types with l ≥ 6

7 A6

8 A7

9 A8

10 A9

11 A10

12 A11

13 [3, 2, 2, 2, 2, 2],A12

14 A13

15 [3, 2, 2, 2, 2, 2, 2],A14

16 A15

17 [2, 3, 2, 2, 2, 2], [3, 2, 2, 2, 2, 2, 2, 2],A16

18 A17

19 [2, 2, 3, 2, 2, 2], [4, 2, 2, 2, 2, 2], [3, 2, 2, 2, 2, 2, 2, 2, 2],A18

∑
p

∑
j

(
1− vj,p + uj,p

qp

)
(EAj,p) = 1+ m√

D
K2

S =
647

645
or

649

645
.

Looking at Table 6, we see that there are nonnegative integers x, y, z such that

x

3
+ y

5
+ z

43
= 647

645
or

649

645
.

But it is easy to check that both equations have no solution.
To prove part (2) of the lemma, first suppose that q ≤ 19. By (1) we may assume

that L ≥ 11, and L = 11 if and only if one of the first four cases in Table 3 occurs.
If L = 11, then only the first case in Table 3 satisfies the assumption q ≤ 19.

Now we assume that L ≥ 12. In this case l ≥ 6, where l is the length of the
singularity type of p4. Table 7 lists all the possibilities.

If p4 is of type [2, 3, 2, 2, 2, 2], then the third singularity p3 is of type A4 and

K2 = K2
S ′ −

∑
p

D2
p = (9− 12)+ 1

3
+ 10

17
< 0,
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a contradiction. The cases [2, 2, 3, 2, 2, 2] and [4, 2, 2, 2, 2, 2] can be similarly
removed.

If p4 is of type Aq−1 then, since −D2
p3
≤ 9

5 and L ≥ 12,

K2 = K2
S ′ −

∑
p

D2
p ≤ (9− L)+ 1

3
+ 9

5
< 0,

a contradiction.
If p4 is of type [3, 2, 2, . . . , 2], then

D2
p4
= 2 l − tr+ 2− q1 + ql + 2

q
= 1− l + 2 l − 1+ 2

2 l + 1
= − l

2 l + 1

and so

K2 = K2
S ′ −

∑
p

D2
p ≤ (9− L)+ 1

3
+ 9

5
+ l

2 l + 1

< (9− L)+ 1

3
+ 9

5
+ 1

2
< 0,

a contradiction.

Lemma 5.6. Let S be a Q-homology projective plane with exactly four cyclic
singular points p1,p2,p3,p4 of orders (2, 3, 7, q), 11 ≤ q ≤ 41, or (2, 3,11,13).
Regard F := f −1(Sing(S)) as a reduced integral divisor on S ′ and assume that
S ′ contains a (−1)-curve E. Then

E.F ≥ 2.

Moreover, if E.F = 2 then E does not meet an end component of f −1(pi) for
any i = 1, 2, 3, 4.

Proof. The proof of the first assertion is the same as that of Lemma 5.4. To prove
the second assertion, assume that E.F = 2. Suppose that E meets an end com-
ponent F of f −1(pi) for some 1≤ i ≤ 4.

If EF = 1, then EF ′ = 1 for some other component F ′ of f −1(pj ), where j

may or may not be i. Assume that E ∩ F ∩ F ′ = ∅. Blowing up the intersection
point of E and F ′ sufficiently many times and then contracting the proper trans-
form of E with a string of (−2)-curves and the proper transforms of all irreducible
components of F, we obtain a Q-homology projective plane S̄ with four quotient
singular points such that eorb < 0 (see Lemma 2.4(6)); this violates the orbifold
Bogomolov–Miyaoka–Yau inequality. Assume that E ∩F ∩F ′ �= ∅. Blowing up
the intersection point once before contracting the proper transform of E and the
proper transforms of all irreducible components of F, we obtain a Q-homology
projective plane S̄ with six quotient singular points—in contradiction to [HK1].

If E intersects F at two distinct points then we derive a similar contradic-
tion. Blowing up one of the two intersection points of E and F sufficiently many
times and then contracting the proper transform of E with the adjacent string of
(−2)-curves and the proper transforms of all irreducible components of F, we ob-
tain a Q-homology projective plane S̄ with four quotient singular points such that
eorb < 0.
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If E intersects F at one point with multiplicity 2, then blowing up the intersec-
tion point twice before contracting the proper transform of E with a (−2)-curve
and the proper transforms of all irreducible components of F yields a Q-homology
projective plane S̄ with six quotient singular points, contradicting [HK1].

In all cases, we get a contradiction. This proves the second assertion.

6. Proof of Theorem 1.2

Let S be a Q-homology projective plane with cyclic quotient singularities such that

• H1(S
0, Z) = 0 and

• S is not rational.

Assume that |Sing(S)| = 4. In Section 5 we enumerated all possible 4-tuples of
orders of local fundamental groups:

(1) (2, 3, 5, q), q ≥ 7, gcd(q, 30) = 1;
(2) (2, 3, 7, q), 11≤ q ≤ 41, gcd(q, 42) = 1;
(3) (2, 3,11,13).

For (2) and (3), we listed in Table 1 the 24 different possible types for R, the
sublattice of H 2(S ′, Z)free generated by all exceptional curves of the minimal res-
olution f : S ′ → S. Lemma 5.2 rules out all these 24 cases, since we assume that
S is not rational.

For (1), the order-3 singularity is of type 1
3 (1, 1) (Lemma 5.3); it therefore re-

mains to consider the following cases:

• A1 + 1
3 (1, 1)+ A4 + 1

q
(1, q1), q ≥ 7, gcd(q, 30) = 1;

• A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ 1
q
(1, q1), q ≥ 7, gcd(q, 30) = 1;

• A1 + 1
3 (1, 1)+ 1

5 (1, 1)+ 1
q
(1, q1), q ≥ 7, gcd(q, 30) = 1.

Since S is not rational, KS is ample by Lemma 3.6(4). By Lemma 5.5, we may
also assume that q ≥ 20 and L ≥ 12.

We will show that none of the cases just listed occurs. In the proof we do not
assume that gcd(q, 30) = 1 (and so do not assume that H1(S

0, Z) = 0). That is,
we consider the cases

• A1 + 1
3 (1, 1)+ A4 + 1

q
(1, q1), q ≥ 20, L ≥ 12;

• A1 + 1
3 (1, 1)+ 1

5 (1, 2)+ 1
q
(1, q1), q ≥ 20, L ≥ 12;

• A1 + 1
3 (1, 1)+ 1

5 (1, 1)+ 1
q
(1, q1), q ≥ 20, L ≥ 12.

As before, we assume that S is not rational.
Note first that, since L ≥ 12, it follows from Proposition 4.3 that KS is ample.

We will show that none of the listed cases occurs. We refrain from assuming
gcd(q, 30) = 1 because part of the proof uses induction on L = rank(R). After
blowing down a suitable (−1)-curve E on S ′,

S ′ → S ′1,

we contract Hirzebruch–Jung chains of rational curves,



Algebraic Montgomery–Yang Problem: The Nonrational Surface Case 31

S ′1 → S1,

to get a new Q-homology projective plane S1 with LS1 = L−1; here the plane has
cyclic quotient singularities whose orders may not be pairwise relatively prime.

By Lemma 4.5, there is a (−1)-curve E on S ′ of the form (3.1) with

0 <
m√
D ′ ≤

1

L− 9
≤ 1

3
.

We will show that the existence of such a curve E leads to a contradiction.

Step 1. We have the following inequalities:

(1) K2
S ≤

1

4
;

(2)
m√
D ′K

2
S ≤

1

12
;

(3)
m2

D ′K
2
S ≤

1

36
.

Proof. Since q ≥ 20, we have

3eorb(S) = 1

10
+ 3

q
≤ 1

10
+ 3

20
= 1

4
.

Since KS is ample, (1) follows from the orbifold Bogomolov–Miyaoka–Yau in-
equality. Both (2) and (3) follow from (1) and the inequality m/

√
D ′ ≤ 1/3.

Let p1,p2,p3,p4 be the four singular points. Assume that the singularity p4 is of
type [n1, . . . , nl]. Since L ≥ 12, we see that l ≥ 6.

Step 2. E.f −1(p4) = 2 and E.f −1(pi) = 0 for i = 1, 2, 3.

Proof. By Proposition 4.2(1),

∑
p

lp∑
j=1

(
1− vj,p + uj,p

qp

)
(EAj,p) = 1+ m√

D ′K
2
S .

By Lemma 2.4 we see that 1− vj,p+uj,p

qp
≥ 0 for all j,p and so, looking at only the

terms with p = p4, we obtain

E.f −1(p4)−
l∑

j=1

(
vj + uj

q

)
(EAj ) =

l∑
j=1

(
1− vj + uj

q

)
(EAj )

≤ 1+ m√
D ′K

2
S ,

where Aj := Aj,p4 , vj := vj,p4 , and uj := uj,p4 . By Proposition 4.2(2),

l∑
j=1

vjuj

q
(EAj)

2 ≤ 1+ m2

D ′K
2
S .
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Adding these two inequalities side by side yields

E.f −1(p4)−
l∑

j=1

(
vj + uj

q

)
(EAj )+

l∑
j=1

vjuj

q
(EAj)

2

≤ 2+ m√
D ′K

2
S +

m2

D ′K
2
S .

By Lemma 2.5,

l∑
j=1

(
vj + uj

q

)
(EAj ) ≤

l∑
j=1

vjuj

q
(EAj)

2 + 2

q
.

Thus

E.f −1(p4) ≤ 2+ m√
D ′K

2
S +

m2

D ′K
2
S +

2

q
< 3,

which proves that E.f −1(p4) ≤ 2.
Now assume that E.f −1(p4) = 2. By parts (1) and (2) of Proposition 4.2,

∑
p �=p4

lp∑
j=1

(
1− vj,p + uj,p

qp

)
(EAj,p)

= 1+ m√
D ′K

2
S − E.f −1(p4)+

l∑
j=1

(
vj + uj

q

)
(EAj ),

∑
p �=p4

lp∑
j=1

vj,puj,p

qp
(EAj,p)

2 ≤ 1+ m2

D ′K
2
S −

l∑
j=1

vjuj

q
(EAj)

2.

Adding these two side by side and then using Lemma 2.5, we have

∑
p �=p4

lp∑
j=1

((
1− vj,p + uj,p

qp

)
(EAj,p)+

vj,puj,p

qp
(EAj,p)

2

)

≤ m√
D ′K

2
S +

m2

D ′K
2
S +

l∑
j=1

(
vj + uj

q

)
(EAj )−

l∑
j=1

vjuj

q
(EAj)

2

≤ m√
D ′K

2
S +

m2

D ′K
2
S +

2

q

≤ 1

12
+ 1

36
+ 2

20
<

1

3
.

From Table 8 it is easy to see that E.f −1(pi) = 0 for i = 1, 2, 3.
Assume that E.f −1(p4) = 1; that is, EAs = 1 for some s and EAj = 0 for all

j �= s. Lemma 2.5 then gives

l∑
j=1

(
vj + uj

q

)
(EAj ) ≤

l∑
j=1

vjuj

q
(EAj)

2 + 1

q
.

Hence
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Table 8

[2] [3] [5] [3, 2] [2, 2, 2, 2]

j 1 1 1 1 2 1 2 3 4

1− vj+uj

q
0 1

3
3
5

2
5

1
5 0 0 0 0

vj uj

q

1
2

1
3

1
5

2
5

3
5

4
5

6
5

6
5

4
5

∑
p �=p4

lp∑
j=1

((
1− vj,p + uj,p

qp

)
(EAj,p)+

vj,puj,p

qp
(EAj,p)

2

)

≤ 1+ m√
D ′K

2
S +

m2

D ′K
2
S +

1

q

≤ 1+ 1

12
+ 1

36
+ 1

20
<

7

6
.

On the other hand, if E.(f −1(p1)+ f −1(p2)+ f −1(p3)) ≥ 2 then Table 8 gives

∑
p �=p4

lp∑
j=1

((
1− vj,p + uj,p

qp

)
(EAj,p)+

vj,puj,p

qp
(EAj,p)

2

)
≥ 7

6
,

where the equality holds if and only if E.f −1(p1)=E.f −1(p2)=1,E.f −1(p3)=
0. It follows that

E.(f −1(p1)+ f −1(p2)+ f −1(p3)) ≤ 1,

which contradicts Lemma 5.4.
Now we assume that E.f −1(p4) = 0. In this case,

∑
p �=p4

lp∑
j=1

(
1− vj,p + uj,p

qp

)
(EAj,p) = 1+ m√

D ′K
2
S .

Since 0 <
(
m/
√
D ′ )K2

S ≤ 1/12, we have

1 <
∑
p �=p4

lp∑
j=1

(
1− vj,p + uj,p

qp

)
(EAj,p) ≤ 1+ 1

12
.

It is easy to see that Table 8 contains no solution to this inequality.

These considerations leave us with the following four cases:

(1) E.f −1(pi) = 0 for i = 1, 2, 3, and E meets one component of f −1(p4) with
multiplicity 2;

(2) E.f −1(pi) = 0 for i = 1, 2, 3, and E meets two non-end components of
f −1(p4);
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(3) E.f −1(pi) = 0 for i = 1, 2, 3, and E meets both end components of f −1(p4);
(4) E.f −1(pi) = 0 for i = 1, 2, 3, and E meets an end component and a non-end

component of f −1(p4).

Step 3. Case (1) cannot occur.

Proof. Suppose to the contrary that case (1) occurs; that is, EAs = 2 for some
1≤ s ≤ l and EAj = 0 for j �= s.

If 1 < s < l, then parts (1) and (3) of Proposition 4.2 give

1− m√
D ′K

2
S = 2

(
vs + us

q

)

and

1+ m2

D ′K
2
S = 4

vsus

q
.

Subtracting the first equality multiplied by 2 from the second yields

m2

D ′K
2
S + 2

m√
D ′K

2
S − 1= 4

vsus

q
− 4

(
vs + us

q

)
≥ 0,

where the inequality follows from vu − (v + u) = (v − 1)(u − 1) − 1 ≥ 0 for
v ≥ 2, u ≥ 2, and v + u ≥ 4. (Note that l ≥ 6 implies vj + uj ≥ 7 for every j.)

Yet by Step 1,

m2

D ′K
2
S + 2

m√
D ′K

2
S − 1≤ 1

36
+ 2

12
− 1 < 0,

a contradiction.
If s = 1, then parts (1) and (3) of Proposition 4.2 give

1− m√
D ′K

2
S = 2

(
v1 + 1

q

)

and

1+ m2

D ′K
2
S = 4

v1

q
.

Eliminating v1/q yields

1= m2

D ′K
2
S + 2

m√
D ′K

2
S +

4

q
≤ 1

36
+ 2

12
+ 4

20
< 1,

a contradiction.

Step 4. Case (2) cannot occur.

Proof. Suppose that case (2) does occur; that is, EAs = EAt = 1 for some 1 <

s < t < l and EAj = 0 for j �= s, t. Then parts (1) and (2) of Proposition 4.2 give

1− m√
D ′K

2
S =

vs + us

q
+ vt + ut

q

and

1+ m2

D ′K
2
S =

vsus

q
+ vtut

q
+ 2

vsut

q
≥ vsus

q
+ vtut

q
.
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Subtracting the equality multiplied by 4
3 from the inequality yields

1+ m2

D ′K
2
S −

4

3
+ 4m

3
√
D ′K

2
S ≥

vsus

q
+ vtut

q
− 4

3

(
vs + us

q
+ vt + ut

q

)
≥ 0,

where the last inequality follows from

vu− 4

3
(v + u) =

(
v − 4

3

)(
u− 4

3

)
− 16

9
≥ 0

for v ≥ 2, u ≥ 2, and v + u ≥ 6 (once again, l ≥ 6 implies vj + uj ≥ 7 for
every j). Because

m2

D ′K
2
S +

4m

3
√
D ′K

2
S <

1

3
,

we have a contradiction.

Step 5. Case (3) cannot occur.

Proof. Suppose by way of contradiction that case (3) occurs; that is,EA1 = EAl =
1 and EAj = 0 for j �= 1, l. Then, by Proposition 4.2(1),

q1 + ql + 2

q
= 1− m√

D ′K
2
S .

Also, by Proposition 4.2(3) we obtain

q1 + ql + 2

q
= 1+ m2

D ′K
2
S .

From these two equations it follows that m = −√D ′ and so, by Lemma 3.7(5),
−KS is ample.

Step 6. Case (4) cannot occur.

Proof. Suppose that case (4) does occur; that is, EA1 = EAt = 1 for some 1 <

t < l and EAj = 0 for j �= 1, t. Then parts (1) and (3) of Proposition 4.2 give

1− m√
D ′K

2
S =

q1 + 1

q
+ vt + ut

q
= q1 − 1

q
+ vt + (ut + 2)

q

and

1+ m2

D ′K
2
S =

q1

q
+ vtut

q
+ 2

vt

q
= q1

q
+ vt(ut + 2)

q
.

Subtracting the first equality multiplied by 3
2 from the second yields

1+ m2

D ′K
2
S −

3

2
+ 3m

2
√
D ′K

2
S

= q1

q
− 3(q1 − 1)

2q
+ vt(ut + 2)

q
− 3

2

(
vt + (ut + 2)

q

)

≥ q1

q
− 3(q1 − 1)

2q
= −q1 − 3

2q
,

where the inequality follows from



36 DongSeon Hwang & JongHae Keum

vu′ − 3

2
(v + u′) =

(
v − 3

2

)(
u′ − 3

2

)
− 9

4
≥ 0

for v ≥ 2, u′ ≥ 4, and v+u′ ≥ 8. (Here l ≥ 6 implies v+u′ = v + (u+ 2) ≥ 9.)
Thus

q1

2q
>

q1 − 3

2q
≥ 1

2
− m2

D ′K
2
S −

3m

2
√
D ′K

2
S ≥

1

2
− 1

36
− 3

2
· 1

12
= 25

72
;

hence
q1

q
>

25

36
>

1

2
and, in particular,

n1 = 2.

We claim that nt = 2. Suppose instead that nt > 2. Let

σ : S ′ → S ′1
be the blowdown of the (−1)-curve E, and let

g : S ′1 → S1

be the contraction to another Q-homology projective plane S1 with

LS1 := b2(S
′
1)− 1= L− 1.

The map g contracts the images under σ of all exceptional curves of f except the
image of A1 = A1,p4 that is a (−1)-curve. Observe that S1 has three singulari-
ties p̄1, p̄2, p̄3 of order 2, 3, 5 of the same type as S as well as a singularity p̄4 of
order q ′ with q ′ < q. The latter claim follows from Lemma 2.4(5).

Since LS1 = L − 1 ≥ 11, it follows from Proposition 4.3 that KS1 is ample. If
S1 has LS1 < 12 or q ′ < 20, then we are done by Lemma 5.5. Otherwise, we can
find a (−1)-curve E ′ on S ′1 of the form (3.1) with

0 <
m√
D ′ ≤

1

LS1 − 9
≤ 1

3
.

We restart with E ′ on S ′1 from Step 1. Then, by Steps 1–5, we may assume that
E ′ satisfies the case (4); in other words, we may assume that E ′ meets an end
component and a middle (non-end) component of g−1(p̄4). By the same argument
as before we see that the end component is a (−2)-curve. If the middle compo-
nent has self-intersection ≤ −3 then we repeat the process. Since each process
decreases L by 1, we may assume that both the end component and the middle
component are (−2)-curves at certain stage. Now, by Lemma 2.4(3),

utvt

q
≥ 1

nt

= 1

2
.

Hence

37

36
≥ 1+ m2

D ′K
2
S =

q1

q
+ utvt + 2vt

q
>

q1

q
+ utvt

q
>

25

36
+ 1

2
= 43

36
,

a contradiction.

This completes the proof of Theorem 1.2.
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