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The Schwarz—Pick Lemma of High Order
in Several Variables

SHAoYU DA1, HuatHulr CHEN, & YIFEI PAN

1. Introduction

Let B, be the unit ball in the complex space C" of dimension n. The unit disk in
the complex plane is denoted by D. For z = (zy,...,2,) and 2’ = (z{, ..., z,,) in

C", denote (z,7') = 212} + - - - + 242, and |z| = (z,2) /%

A multi-index @ = («y,...,a,) of dimension n consists of # nonnegative in-
tegers tj, 1 < j < n; the degree of a multi-index « is the sum || = Z;’zl aj;
and we denote ! = a¢!---«a,!. For z = (z4,...,2,) € C" and a multi-index
o= (ag,...,0,),letz% = ]_[';-=l sz. A holomorphic function f on B,, can be ex-
pressed by f(z) = ), aez® For two multi-indexes & = (ay,...,a,) and v =
(V1,...,0,), let v* = vf”,...,vfl‘". Note that v;xj =1lifv; = a; =0. Let Q,

be the class of all holomorphic mappings f from B,, into B,,. For f € 2, ,, if
f= ..., fw) and fij(z) = Y, aj02% for j = 1,...,m, we denote f(z) =

Za aqz% where a, = (al,aa ) am,ot)~
For f € 2, the classical Schwarz-Pick lemma says that
I
f@l

L= |f(P ~ 1]z
holds for z € D. Recently, this inequality has been generalized to the derivatives
of arbitrary order by some authors [DP; MSZ; Zh]. The best result was proved in
[DP]. It was proved that
k!

|f D) - k-1 :

T—irop = U Ty (b
holds for f € ©;; with k > 1 and z € D. The equality in (1.1) may be attained if
z = 0, and the equality statement has been established. If k > 1 and z # 0, then
(1.1) is a strict inequality.

Chen and Liu [CL] generalized (1.1) by proving the following Schwarz—Pick
estimate for partial derivatives of arbitrary order of a function f € 2, ;:

3\”\ 1 n+2 1— 2
o f(Z)v Sn|v/2|v||(n_|_|v| ) Li)'(l+|z|)lv‘_l (12)

9zl - - dzly n—1 (1= [z

holds for any z € B,, and multi-index v = (vy,...,v,) # 0.
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On the unit ball B,,, the Bergman metric H,(8, 8) may be defined by

_ 2 2 2
Hp.py = LTI BT g amdpecn.

(1 —z?
Commonly, there is a factor (n 4 1)/2 in the definition of the Bergman metric. In
spite of ambiguity, we use the same notation for Bergman metrics in unit balls of
different dimensions. This metric is invariant under the automorphism group of
B,. For f € 2, ,,, the Schwarz—Pick lemma is formulated in terms of the Bergman
metric (see [Ch]):

H)(f'(2)B, f(2)B) < H.(B,B) for zeB, and B C". (1.3)

Here, f'(z) is the Jacobian matrix of the mapping f at the point z (i.e., f'(z) =

=Jj=m,l=k=

matrix (column vector) so that f'(z)8 is the product of two matrices. Inequality
(1.3) is precise, and the equality holds for mappings in the automorphism group
of B, if m = n.

The purpose of this paper is to generalize (1.3) to the high-order Fréchet deriva-
tives of mappings in €2, ,,, as was done in [DP] for the classical Schwarz—Pick
lemma. For f € Q, , with k > 1 and z € B, the Fréchet derivative of f at z of
order k is defined by

k! *fzy
a! 8Z(111 e 8Zg"

Dk(f’z’ ﬂ) =

|a|=k

where 8 € C,,. Note that D (f,z,1) = f®(z) when n = m = 1. With this nota-
tion, our main result is expressed as follows.

THEOREM. Let f € R, ,,. Then, fork > 1, z€B,, and p € C" \ {0}, we have
Hf(Z)(Dk(f’Z’ﬂ)’ Dk(f7z,/3))

w21 (B, 2) wn -
< k! ’ ' '
B < * ((1—|Z|2)|,3|2+|(ﬁ,z)|2)1/2) (H(B,B)". (1.4)

Inequality (1.4) coincides with (1.1) or (1.3) if n = m = 1 or k = 1, respectively.
Note that the factor preceding (H. (B8, 8)) is increasing with |(8, z)| from O to |z|.

As a consequence, we deduce from (1.4) a Schwarz—Pick estimate for partial
derivatives of a mapping f € Q2

2 2

I f(2) > 2| 3@
- 1— S
Kaz';'.-.azz" J@) + A= T@QD
o] ot 1= 1f@P T
< e |:U!(1 +1z]) . m} (1.5)

holds for any multi-index v = (vy,...,v,) # 0 and z € B,,. In particular, if f €
2,1, we have
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" f(z)

|v | ! -1, 1~ |f(Z)|2
<4/ 1 _— 1.6
dzy' - - 0z (41D (1 — [z (0

The equalities in (1.5) and (1.6) may be attained if z = 0 and the equality statement
is given. The estimate (1.6) is much better than (1.2) since the factor (”H“‘ ')n+2
is canceled, v! < |v|!, and /|v|’l/vY < n"l/? (the equality holds if and only if
v = - vn)

For radial and normal partial derivatives, we have estimates more precise than
(1.5) and (1.6). For f € Q,, 1, we prove that

A f(z) [v|l?! 1—|f(2)?

| .
Bz'l“ —o oz = Vv vin(z) (1 — |z|?)@i+lvD/2 (1.7)
holds for any multi-index v = (vy,...,v,) # 0and z = (z1,0,...,0) € B,,, where

w(z) = (1 +|zD"M=Vif v; = |v| and p(z) is the sum of terms cj|z|f with j < v,
in (14 |zpl-L

2. Some Lemmas

The following results are known [R]. For a point a in a unit ball, let
-V 1— |a Qa
1 —(z,a)

where P,z = (z,a)a/{a,a) and Q,z = 7 — P,z. Note that Py(z) = 0. Then ¢,
is injective and maps the unit ball onto itself,

(pa(Z) =

9a(0) =a, ¢.(a)=0, ¢,=¢,",
and

0 (0) = —(1—|a*) P, — (1 — [a|H)? Qs

1 1
P, - a-
1—|al? (l—lalz)l/zQ

g, (a) = —
LEMMA 1. If f(2) =), aaz® € Qp m, then
> laql’1p <1 @2.1)
o

holds for B € 0B,,. Further,

Z|aa| |'a‘ < 2.2)

holds for any multi-index v = (v, ...,v,) # 0. As a consequence, we have
[v]
gl <o/ 222 23)
U'U

Further, ifv; # 0 for j =1,...,n, then the equality in (2.3) holds only if a, = 0
for o # v.
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Proof. Let B = (B1,...,Bn) € 0B, be fixed. For 0 < o < 1, we have

1 2 2 ' ‘
1= Q)" / / | f(oBre®, ... oB.e™)|?db, - - db,
0

1 m 2m 2w ) '
Qm)" Z/ / | fi(oBie™,...,oB.e")|>db - - - db,
j=1"0 0

m
2.2 2 2 2.2 2 2
=D lajalPo B B =) laa P B2 Bl
j=1 « o

Letting 0 — 1 gives (2.1). Thus, for given v = (vy,...,v,) # 0, by letting 8; =
Jvi/lvl for j =1,...,nin (2.1) we obtain (2.2). The lemma is proved. O

In the preceding proof, in order to get the best estimate (2.3) for a,, we deduce
(2.2) by choosing B; = ,/v;/|v| in (2.1), since the maximum maxge;g,|B"| =

VuY/|v|lPlis attained when B; = \/v;/|v| for j =1,...,n.

LEMMA 2. If f(z) =, auz® € Qy m, then

00 2
DD aeBl| =<1 24)
k=0 'a|=k
holds for B € 0B,,.
Proof. For g € 0B, let
(o]
W) = f(BR) = Z( ) aaﬂ")k", AeD.
k=0 " |al=k
Then h(D) € B,,. Using (2.1), we obtain (2.4). The lemma is proved. O

LEMMA 3. Let k > 2 be a positive integer and let f(z) = ¢, (bz*) + g(z) for
z €D, wherea €B,,, b € 0B,,, and

k—1 oo

8(2) =D any ;2"

j=1 n=0

is a holomorphic mapping of D into C™. If | f(z)| < 1 for z €D, then g(z) = 0.

Proof. Since |g(z)| < 1+ |pa(bz¥)| < 2, by Lemma 1 we have

k—1 oo

ZZ|ank+j|2 <4

Jj=1 n=0

Thus, for j =1,2,...,k — 1, every component of the mapping

o0

r

gi(2) = E iy 52"
n=0
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is in the Hardy class H? and, consequently, for almost every ¢ e 9D, the radial
limit lim__,,g;(z) exists for all j. Let £ be such a point and let A = g, k.
Obviously, A € 0B,,. Denote w = ek Forl =1,...,k, we have

k—1 k—1
li Ly — o (bek lim ¢ (w'z) = A Ylim g;(2),
lim f(') = ¢, (b¢ )+;zgr}g,(w 2) +j2:1:w lim g;(2)

and, since f(D) C B,,,
k-1
1 i(1im g;(2), 1)) < [lim fo's)| < 1.
‘ +j2=1:w zl—r};g}(Z) - zl—rgf(wZ) -

Forl =1,...,k, let

=~

1
A = a)lj< lim g;(2), )»>.
¢
j=1

Then |1 4+ A;| < 1 and, consequently, Re A; <0 for/ =1,...,k. However,
k-1 k=1 k=1
A= lj( lim g; ,A)
Y =YY o {im o
=1 =1 j=I
k=1 k—1 k—1
= Z(( lim gJ(Z),)\,>Z wlj> = _Z< lim gj(z),k> = —Ay.
=N =1 =1t
Thus, Re A; = 0. Noting that |1 + A;| < 1, we conclude that A; = O—that is,
k-1
Z( lim gj(z),)»> =0.
; fands
j=l
Thus,

2 k=1 2 2
13‘}13;]”(@‘ :'A+Z;Ln;gj(z) =1+‘ZILH}g(z)‘.
j=1

2 k—1
=1 li ;
+‘;Zgr; gi(2)

This shows that the radial limit of every component of g(z) is equal to O at al-
most every ¢ € dD. According the general theory of H? spaces, we conclude that
g(z) = 0. The lemma is proved. UJ

3. The Partial Derivatives at the Origin
THEOREM 1. Let f(z2) =), aqz® € 2y m. Then

< Z aaﬁ“,ao> Z aqp*

lal=k la|=k
holds for k > 1 and B € 9B,,.

2

2
+ (1 = lao?) < (1 —laol? 3.1

Proof. Letk > 1and g € 9B, be given. If ap = 0, then (3.1) is a consequence of
(2.4). Now, assume that ag # 0. Let
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_1 : 2mi/k
h) = ; f(e?milkz),

Then h(z) € 2,1, h(0) = ay, and

h(z):ao—i—z Z aqz”.

m=1 |a|=mk

Let ¢ = ¢4, o h. Obviously, ¢ € 2,, ,, and ¢(0) = 0. We have

1
PO = T @) a0 ( (| o|2>Z 2, (aas o)z

m=1 |a|=mk

— /1= lagl? Z Y e

m=1 |a|=mk

T 1—|a0< |2>Z > {@a-a0)z )

m=1 |a|=mk

_ Ay, Ao
T 1= (h(2),a0) h(z) ao) Z Z<1+\/1—| o7 ~laofa )

m=1 |a|=mk

(o]
_ ag,a0)a _ 2 o o
T 1= |a0|2 lzk(1+ /—l “laol 1 — |aol aoz>Z +Z Z Cal .

m=2 |a|=mk

Thus, using (2.4), we obtain
1 < (agB% ap)ag
> 1— laglaqp*
(1 —lao»? oM+ /1= a |2
A simple calculation gives

o 2
Z( LR l—laoPaaﬁ“)

loe|=k 1+ /11— |610|2

2
<L

_ ‘(ka BN Taor > auB

1 —aol

la|=k

_ [ E e aaB o) lao?
(1+ V1= lao?)’
n 2y1— |“0|2|(Z\a\:k aaﬁa’ao)iz

1—laol®

[ o

||=k

+ (1 — |aol?

2

la|=k

+ (1 = laol?)

2

lo|=k

This shows (3.1). The theorem is proved.
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THEOREM 2. Let f(z) =), aqz® € Ly m. Then

|v|lvl
av,aol® + (1 = laolawl® = ——=(1 = |aol*)* (3.2)

holds for any multi-index v # 0. Further, if the equality holds for some v =
W1, ...,vp) withv; #0 for j =1,...,n, then

a,z’

1+ (ay, a0)z/(1 —laol?)

Conversely, if v # 0, ag € B,,, and a, € C™ satisfy the equality in (3.2), then the
mapping f expressed by (3.3) belongs to Q2,, .

=ag+a,z"+---. (3.3)

f(2)=ap+

Proof. Letv = (vy,...,v,) # 0 be given and let k = |v|. As in the proof of The-
orem 1, consider % and ¢. Let

1 vs
b, — < (ay,ap)ag LS |ao|2€lv>-
1

1 —laol? 1— lao|?

Applying Lemma 1 to the function ¢, by (2.3) we have |b,|*v?/|v|""! < 1and
’ < (ay,ap)ao

1 —laol?

The same calculation as in the proof of Theorem 1 gives

a,,ap)a
(s o)

1 —Jaol?

vl

< —— (1 —laol)
v

2
+v1-= |a0|2au>

2
= [(av, ao)l* + (1 — |ao|*)|a, *.

This shows (3.2).

Now, let the equality in (3.2) hold for some v = (vy,...,v,) with v; # 0
for j = 1,...,n. If ag = 0, then |a,|*v¥/|v|"’! = 1, the equality in (2.3) holds,
and consequently f(z) = a,z". This shows (3.3). In the case ag # 0, we have
|b,|2v¥/|v|!"! = 1. Then the same reasoning shows ¢ (z) = b,z" and, consequently,

h(z) = @a, (by2")

by, by,
ao— L) 4o m@ﬂv = a0>“02v>

2 2
_ lao lao G4
1 — (by,a0)z?
Note that
(busag) = — 20290 (3.5)
1—aol?

Replacing (b,,ag) in (3.4) by (3.5), by a straightforward calculation we obtain

a,z’

1+ (ay,ao)z¥/(1 — |a0|2)'
If k = 1, then f(z) = h(z) and (3.3) is true. In the case k > 2, we have f(z) =
%o(bvz") + g(z) with

h(z) =ao+
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o0
=YY ¥ a
Let0 <04,...,0, <2 be fixed. For A € D, define

N T
W):f( Y .., —)
VY U

= g0 [ Bei@O1+ a0 v’ 2k
“ ol

1

oo
i(@101+ +anbp) | v mk+ j
X Y( X LYk

j=1 m=0 *|a|=mk+j
Applying Lemma 3 to v, we have
P, j(01,...,00) = Z agvee! @it tantn) —
|ot|=mk+ j

forj=1,....,k—1land m = 0,1,.... Note that this equality holds for arbitrary
01, ...,0,. Thus, for any multi-index &’ with |&'| = mk+j,1 < j <k—1,m >0,
we have

1 27 27 . ,
aa’“/v"" — oy / .. / e—z(a101+~.'+an€n)pm’j(91, ...,0,)d0;---do, =0.
0 0

It is proved that a, = O for any multi-index o with |¢| =mk + j,1 < j <k —1,
m > 0. Then we obtain f(z) = h(z) and (3.3) is proved again. The last conclu-
sion of the theorem is easy to verify. The theorem is proved. O

REMARK 1. Define

1
f() =aioz1+ao2z5 =71+ §z§ for z = (z1,22) €Bo.

It is easy to verify that f € Q5. Let v = (1,0). We have ap = O and a,, = 1.
Note that v, ag, and a, satisfy the equality in (3.2), but f(z) is not expressed by
(3.3). This example shows that the condition v; # O for j =1,...,n in the second
part of Theorem 2 cannot be omitted.

COROLLARY 1. Let f(z) =), aqz® € 2y m. Then, for any multi-index v # 0,

|U||U‘
lay| < 1 —laol?
ifm>2and
|v|‘”‘ 5
laul =/ == = laol)

if m = 1; or, more generally, Ayaog + Ara, = 0 with Ay, Ar € C.
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4. The Schwarz-Pick Lemma of High Order

First we consider mappings from the unit disk into a unit ball B,,. The follow-
ing theorem is the special n = 1 case of our general Schwarz—Pick lemma of high
order.

THEOREM 3. Let f € Q1. Then

k(1= 1f@)P)

2
a—jpr T 'Z')H}

4.1)

(FP@, FIP+ A =1 f@PIf PP < [

holds for k > 1 and z € D.

Proof. Let £ € D and a positive integer k be fixed. We consider g = f o ¢; €

Q1 m, where ¢
-z

1—&7
Let g(z) = Y oy ciz! withe; = (cipy ... cmy) forl = 1,2,.... Then co = f(£)
and, by (3.2) forn =1,

l{cr, o)l + (1 = leo)lerl* < (1 —|eol*)? 4.2)

ve(z) =

holds for > 1.
It is easy to verify that

. 0, l <],
d'(pe(2)) o
= = cv@T na-
=t A— P d=PG -1V
o (=D)JET  ki(k = 1)
T = EHR (k= PG =D
Since f = g o ¢, we have

Let

k
FO® =3 A
j=1
and, using (4.2) and the Schwarz inequality,

(FPE), FEN?+ U = 1FEPIfPE)?

k 2 k
Y Ajlejrco)
j=1

+ (1 — |C()|2) ZCjAj
k k k k
< Y I 1A e o) + (1= Teol) D 1AL 1Al
j=1 j=1 j=1 j=1

2

j=1

k k
= 1A Y141 co) P + (1 = TeoP)les )
j=1 j=1
2

k
<a- |co|2)2<Z|A,-|)
j=1
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On the other hand,

k k! k (k_1)||%-|k—j k!
Ajl = = 1 k— 1'

This shows (4.1). The theorem is proved. OJ

COROLLARY 2. Let f € Q2 ,,. Then, fork > 1and z €D,
KI(1— | f()1HY?

(k) k—1
OIS T A D
" KO- 1£P)
k) A A k-1
0@ = = e (12D

if Mf(2)+ xfP(z) =0withi, hyeC.

REMARK 2. In [DP], the authors proved that (1.1) is asymptotically sharp in the
sense that, for any two points z, w € D, there exists a holomorphic function f ,,
on D such that f; ,,(z) = w, f;,,(D) C D, and

S0 ki et
m —
w—d | — |fz,w(Z)|2 (1 —|z|»)*

holds for any positive integer k. In the same way, we can construct examples of
mappings to show (4.1) is also asymptotically sharp. For fixed points £ e D \ {0},
argé =6, and w € B, \ {0}, let b = —(1 — |w|?)/|w|, and define

w lwl—z 2 2.3
g1u(Z)=_—=U)(1+bZ+b|w|Z +blw|°z+--+)
lwl1—|w|z
and :
—io —Z
7) = —e 2.
o) = g (e )

Then f,(§) = w and

e = —

k)

e MR = [wP)w i wl* " (k — DYE
i =g =Dk =)

(£E), fu@) 4+ A = | fu@PIAPE P
(1= [fu(®))?

_ PP =< Z|w|v k= Dl “)2
(= fu® P2 (1—|s|2>k @-Dik—v! )"

i (FPE), fu@NP + (A =[£I FPE)?
m
w08, (1 = | fu(®)[2)?

R N e I )2_< . 1)2
_((l—lélz)";(v—l)!(k—v)! —\a= |5|2>k( T

Thus,
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Now we are ready to prove our main result.

THEOREM 4. Let f € 2, ,,. Then

Hf(Z)(Dk(f’Z7 ﬂ)’ Dk(fszs ﬁ))

(B, 2)] 20D
k!2<1 + )
= (1= zP)IBI> + (B, 2))/2

holds fork > 1, B € C"\ {0}, and z € B,,. Further, in the case n < m, the equality
in (4.3) holds for k = 1, some z = &£ € B,,, and any B € C"; that is,

Hye (f'(§)B, f'(§)B) = He (B, B) (4.4)

holds for any B € C" if and only if F'(0) = (p}(g)(f(i-‘))f’(é)(pé (0) satisfies
F'(0)TF'(0) = I, where I is the identity matrix of n x n and

1= (z.8) FEOTfE(z—8)
1— g2 NG E

Proof. Letk > 1,8 = (B1,...,B,) € C*"\{0},and & = (§,...,§,) € B, be given.
First assume that 8 € 0B,,. We consider the disk

A={CeC:lE+ B =&+ BiglP + -+ & + Butl* < 1}.

To make the equation of A clearer, let U be a unitary matrix such that U =
(1,0,...,0). Denote U§ = 5 = (31,...,n,)T. Here we identify a point in C"
with a column matrix of n x 1. Since

&+ ¢B1P = |UE + B> = Imi+ 1>+ Imal* + -+ + Inal’

(H(B.B)* (43)

-1
f(@)=fé+ ( > f'®@E=§. @5

we have
A={eC:im+elF <l—Inf* — - — |l

Thus, if we set o = (1 — |22 — -+ — [9,|)% y = 08, and
{=ow—mn, z=L=£+wy—mpb,

then g(w) = f(L(w)) is a holomorphic mapping from D into B,,.
Applying (4.1) to the mapping g and the point w = @’ = /0, we have

(8@, g(@NP + (1 = g(@) )8 M (@)
- [k!(l — lg@)?)
L d-oPt
Note that g(e") = f(€). [n] = €| m = (£. B). and

o =1—nf +ml> =1- &7 + [(B. &),

_ [(B.) | L6
(1= 5P+ KB, &V o2
By the chain rule,

2
(1+ |w’|)"‘} .

|o'|
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k! ok k! ok
W= Y RO B MO,

ol 9z gz al 9z azy”

la|=k lol=k
Thus,
k! kf(";:) > 2 k! 8kf(§) 2
YIS - KUA® L,
<a|—k“! 02y’ - ﬂ O Hamven MX::;(“’ 3zi’“-~8zi§"ﬂ
1— &2 + (B, 6)* T (B, &)l 2(k—1)
k!2 1 — 2 2|: :| (1 > '
= KEA = 1O | — =iy R (AT e

This proves (4.3) for z = & and any 8 € 0B,,. For a general 8, we may consider
B/|Bl, since (4.3) is homogeneous for B. Thus (4.3) is proved completely.

Now assume that » < m and (4.4) holds for any g € C". Consider F =
@r@ © f o g By the invariance of the Bergman metric, Ho(F'(0)8, F'(0)8) =
Hy(B, B); thatis, | F'(0)8| = | 8| holds for any 8 € C". This shows that the m x n
matrix F’(0) satisfies F/(0)"F’(0) = I, where I is the identity matrix of n x n.
Note that F'(0) = (p}.(g)(f(é))f’(g)tpé(O). Thus, for z € B,, we have F(z) =
F’(0)z and

£(2) = 016)(0}e) (FEN FE) 0L (0) 96 (2)). (4.6)

Using the formulas for ¢, at the beginning of Section 2, we have

(1=1EPf'E)(z =8
1—(z,8) ’

£/ 040 pe(2) =

01 (fE) €9 (0)p: (2)
-] ((1 — (= 1fOP O E (-8
1= (z,8) FEPA=1f&P)
ACIC) )
N GIRYE
(056 (fEN ) 909z (2), (§))
A= DO EE -8

f&)

, 4.7
(I —A(z,EHA = fEP) @7
Priey(@p6)(fE) f'©) 9 (0) g (2))
1— 2\ £eenT ¢/ _
(- EPTOFOC=O 00 o

CIFEPA = (&1 — [ f®P)
Equation (4.5) follows from (4.6), (4.7), and (4.8). Conversely, if

A= (FE) )0
satisfies AT A = I and (4.5) holds, then
F2) = 016 (06, (fEN F) 0109 (2))

and, by the invariance of the Bergman metric,



The Schwarz—Pick Lemma of High Order in Several Variables 529

Hye) (f')B, [E)B) = Hye)(@fe)(0) Ap; (§) B, 1) (0) Ap (6) B)
= Ho(Ag,(§)B. ApL(§)B) = |Ap,(E)BI> = |, (©)BI
= Hy(¢,(§)B. 04 (6)B) = He(B.B)
holds for any 8 € C". The theorem is proved. UJ

5. Schwarz-Pick Estimates for Derivatives of Any Order

On the basis of Theorem 4, we can deduce an estimate for partial derivatives of
arbitrary order of mappings in €2, ,.

THEOREM 5. Let f € R, ,,. Then
2

8‘”'f(z) > ' f(2)
— J 1— L
_ ™ vt 1= Lf@PT
== |:vl(1+| D (1—|z|2)|“} 5.1

holds for any multi-index v = (vy,...,v,) # 0 and z € B,,. In particular, if f €

Q.1 then (5.1) becomes
[v ||v [vl—1 - |f(Z)|2
/ = vl +|z]) —(1 NN 5.2)

3 (2)
azll)l e azz”
Proof. Letv = (vy,...,v,) # 0and & € B, be given, and let k = |v|. By (4.3),
ko 8kfE)  v®
< > ! 92792 o]’ f($)>

a! 9z
lor|=k ! X 2
k9 “«
+( - = % v A2,
lo|=k alozy" -+ 9zy" ]
where G
A=K+ gD ——
(1 —1g»*
Define

9k 1 k! 9k
§(2) = <Z e f<s>> Zb% f($)>
R P

al= I =k

_ l B 241/2 E& “
M@ = A= FOD Y S

|la|=k

s

and ¢ = (g, h). Applying (2.2) to ¢, which is a holomorphic mapping from B,
into B,,, and satisfies |¢(z)|> < 1 for z € B,,, we have

Z( <g "f(é)

la|=k al az] a,, f(§)>

3*f (&)

+(1-
( aal. azg”

2 o
v
: < A%
|v|‘°‘| -
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In particular,

K akf©) & P
_TJS 1— <
<v!8 pee 0z f(g)> * '8 P 0z v
This shows (5.1), and the theorem is proved. O
THEOREM 6. Let f € Q2, ,,. Then
8‘”'f(z) 2 8'”'f(z) ?
_- I +(1- _- ST
_ |‘“' - 1f@P 7
= 1(z) - (1 — |z|?)@i+lvD/2 (5-3)
holds for any multi-index v = (vy,...,v,) # 0and z = (z1,0,...,0) € B,,, where

w(z) =1+ |z ifu, = |v] and u(z) is the sum of terms c]|z|f with j < v,
in(1+ |zDP=1 In particular, if f € Q1 then (5.3) becomes

M f(z) o[Vl 1—1f(2)
< vl TEPECTT (5.4)

azll)l e azz”
Proof. Letv = (vy,...,v,) #0and & = (&4,...,&,) € B, be given. If v; = |v]|,
then (5.3) follows from (5.1). Now assume that v; < |v|. Let k = |v| and

8(2) = flpe(2) = ) caz”

Then ¢y = f(&) and, by (3.2),

|a|la\
[(eas ol® + (1= leoP)lcal” = —2=(1 = leol*)® (5.5)

holds for any multi-index o 7# 0. Thus, we have

[ =2(e(2) = ) cape ()%

where

o= (B, WD | (D )
=&z 1-&z 77 1 =&z
For a multi-index o, denote « = (a1, ) with &’ = (s, ..., ). Then it is easy
to see that

ak
dzy" - 07y | =
0, o' #v';
_]0 o £V, o > v
| i@ VI — 1)1

o' =v,0<a <v.

(1= [ (o = ap) (e — 1+ [0/
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Thus, letting
(=DM vl(k—1)
T = g2 (v — G — 14 D!

we have 841 (2) "
z
_— Ajcj oy
azll) 8Zv” Z J=Ts
j=0
and, by the Schwarz inequality and (5.5),
d"lf(2) 2 "f(2) 2
K—”‘ ol I f(%‘)> +(1- —
aZ] - 02y 7=£& 8Z1 <o+ 02Zy 7=£&
2

+(1 -

v 2
=Y Ajlcjw»co)
j=0
V] V1 V1 V]
< Y 1A 1A o)l 4 (L= lcol® D 141D 1A e
j=0 j=0 j=0 j=0
_ by Y
< |on<§]m0.

j=0

Here we have used the obvious inequality |o|'*//a* < [v|"/vV if o; < v; for j =
1,...,n. Note that

y (k= D1jg|
Al =
Z;" |wWﬁWﬁ2%m—ﬁw—1+wm

(k — g’
a—mwww&ihw—ldﬂ’

which proves (5.3). Inequality (5.4) follows from (5.3) directly, and the proof is
complete. UJ

REMARK 3. Let a multi-index v = (vy,...,v,), &€ = (£1,0,...,0) € B, and

w € C be fixed. Define
_ w— M/’
1 — wy/|v|Pl/vvzy

and f = gog:. ThengeQ, 1, f €Q,,1, f(§) = w, and

|v] [v]
g =w—(1- ||)|| —w(l — ||(">”—~n

v f(z)
821{1 e 8Zl;1n

for z € B,

v vl v
=Sy s

- dzy - dzy -

[l]lVl 1—|f©
— (—1)lvI+1 .
= (=Dt " v! A Epyerme

This shows that the estimate (5.4) is precise up to a constant less than 2/V1—1,




532 SHAOoYU DAI, HuAlHUl CHEN, & YIFEI PAN

REMARK 4. If vy = |v] = k, (5.4) becomes
3" f(2)
P k

9|

< (1 gptt P

B, \ {0} and w € C \ {0}, let & = arg& — arg w and define

w_'_elel

1+ we=fz,

and f =goge. Thenge Q, 1, f €Q,1, f(§) = w, and

g(z) =

g@)=w+ 1 —|wPHe "z

_w(1_|w|2)e 2l922+w2(1 |w| )e 3i0 3+

Thus, for any positive integer k, we have

f(z)
dzf

z=£

(1 —z»k

Inequality (5.6) is also a consequence of (5.2). For given & =

for z = (z1,...,2,) €B,

il & —z21)!
j— 1 119
~ vl )Z dzf ((1 — &21))

kl(l —|w[? (k — 1)!e—ji0u—)j—1§k_j
Z G- DIk =)

— EP)*

kA = JwP)Efw (k= Djw gk

(=M wlgd = (= DIk = ))!

KA = JwP)Efw
(1 — [E)Fw]Er

(Jw| + [gDH*!

and, consequently,

|0*f (2)/0zf|.=¢| k!0 + |E)*!

im =
w> L= |f@? (1—[gP»*
This shows that (5.6) is asymptotically sharp.
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