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A Strong Comparison Principle for
Plurisubharmonic Functions with
Finite Pluricomplex Energy

YANG XING

1. Introduction

Let ©2 be a hyperconvex domain in C"—in other words, €2 is a bounded, open,
and connected subset of C" and there exists a continuous plurisubharmonic (psh)
function p in  such that {z € Q : p(z) < —c} CC Q for any constant ¢ > 0.
Denote by PSH(S2) the set of psh functions in €2 and by PSH ™ (£2) the set of non-
positive psh functions in Q. Write d = 8 + 9 and d° = i(d — d). The complex
Monge—Ampere operator (dd€)" is well-defined on all locally bounded psh func-
tions; see Bedford and Taylor’s fundamental paper [BeT]. It plays a central role
in pluripotential theory just as the Laplace operator does in classical potential the-
ory. We refer to excellent surveys [Be; Ki2] and books [KI; K] for references.
The monotone convergence theorem and the comparison principle of Bedford and
Taylor are both of theoretical interest and extremely useful in pluripotential theory.
They are used in almost all papers dealing with the Monge—Ampere operator. We
know that the comparison principle not only gives the uniqueness theorem of the
Dirichlet problem for the Monge—Ampere operator but also is one of main tools
in solving Monge—Ampere equations. In [ X1] we obtained the following type of
comparison theorem.

STRONG COMPARISON PRINCIPLE. Let u,v € PSH(2) N L*°(2) be such that
liminf,_, 50 (u(z) — v(2)) = 0. Then for any constant r > 0 and all w; € PSH(Q2)
with -1 <w; <0, j=1,2,...,n, we have

(nl‘)z / (v—w)"dd‘w A --- ANdd‘w, —I—/ (r —w)(ddv)"

u<v <v

5/ (r —wy)(ddu)".

The strong comparison principle has many applications (see [ X1; X2; X3]) and,
moreover, it implies several important inequalities in pluripotential theory. Let’s
show some of its direct consequences.

ProrosiTiON 1 (First version of Bedford and Taylor’s comparison principle; see
[BeT]). Ifu,vePSHN L*®(Q) satisfy liminf, o (u(z) — v(z)) > 0, then
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/(ddcv)"S/ (ddu)".

Proof. Dividing both sides of the inequality of the strong comparison principle by
r and letting r — oo, we get the required inequality. U

PRroOPOSITION 2 (Second version of Bedford and Taylor’s comparison principle;
see [BeT]). Ifu,vePSHN L®(Q) satisfy (ddv)" > (dd‘u)" in Q2 and if

liminf(u(z) — v(z)) > 0,
7—0Q
thenu > vin Q.

Proof. Since {u + ¢ < v} CC Q for any ¢ > 0, applying the strong comparison

principle for u + &, v, and w; = wy = --- = w, = |z|]*(supg|z|?)~" — 1 yields
that u + ¢ > v almost everywhere with respect to the Lebesgue measure, which
implies the required result. O

PrOPOSITION 3 (Cegrell inequality; [Ce2]). Let w € PSH™(Q). If u,v € £¢(RQ)
with v > u in 2, then

/(—w)(dd"v)” < /(—w)(dd"u)”.
Q Q

Proof. Applying the strong comparison principle for u and dv with § < 1, w; =
max(w/s, —1), and r = 0 and then letting § /' 1, we get the inequality

/ —max(w, —s)(ddv)" < / —max(w, —s)(dd‘u)".
Q Q
Letting s — 00, we obtain the required result. UJ

REMARK. For w in £((£2), Proposition 3 yields a basic fact. Based on this fact,
Cegrell [Ce2] found the largest subclass £(£2) of PSH ™ (£2) on which the Monge—
Ampere operator is well-defined in some sense.

PropPosITION 4 (Blocki Inequality; [B]). Ifu,v,w;, ws, ..., w, € PSHNL>®(Q)
are such that v > u in Q, lim,_,30(v(z) —u(z)) =0,and 0 > w; > —1, j =
1,2,...,n, then

/(v —w)"ddwi A -+ Addw, < (n))? /(—wl)(dd"u)”.
Q Q

Proof. Use the strong comparison principle for r = 0. O

It is known that the nonlinear Monge—Ampere operator cannot be reasonably de-
fined on the whole class PSH(2); see Kiselman’s paper [Kil]. However, (dd‘u)"
can make sense on certain classes of unbounded psh functions u in such a way
that (dd“)" is continuous under monotone limits and the comparison principle is
valid. In[Cel], Cegrell introduced the class F, (€2) of psh functions whose Monge—
Ampére measures have finite total masses as well as the larger class £, (£2) of psh
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functions whose Monge—Ampere measures may not have finite total masses. He
gave a complete description of Monge—Ampere measures (dd“F,)" and proved
comparison theorems of Bedford and Taylor type for functions in 7, (€2). However,
comparison theorems like the strong comparison principle or those of Bedford and
Taylor type are less useful in £, (£2) because, for functions in £, (£2), the integrals
given in these types of comparison theorems are supposed to be infinite except
in the special case where {u < v} locates in some compact subset of 2. So, a
more natural and effective generalization of the strong comparison principle and
the comparison principle of Bedford and Taylor to the class £, (£2) should include
only finite integrals. In this paper our principal aim is to prove such a comparison
theorem.

THEOREM 2. Letu,v € £,(2) with p > 0. Then for all constants r > 0 and all
wi, w; € PSHT () N L*®(Q) with w; > —1, j =2,3,...,n, the inequality

‘“*/ “_”V”d”wHV~AdWww+/ (r — w0 — w)?(dd°v)"

< [ - wnw-wraaw
u<v
holds, where the constant A, , = (n!(n+p)(n+p—1---(p+ n)~.

It is worth pointing out that, in order to retain finiteness of the integrals in Theo-
rem 2, the number p in the exponents cannot be replaced by another because for
each p one can always find a function u € £,(£2) with u ¢ £, (2) for all p; # p.
As applications of Theorem 2 we obtain a modification of the Bedford and Taylor
comparison principle in £,(€2) as well as an estimate of the sublevel of functions
in £,(£2) that strengthens a result in [CeKZ].

In this paper we also study convergence theorems for the Monge—Ampere oper-
atorin &£,(£2). Itis known [Cel] that (dd “u;)" — (dd‘u)" ifu; € £,(S2) converges
monotonically to u € £,(£2). Now our result is as follows.

COROLLARY 3. Suppose that u,u; € £,(2), p > 0, are such that u; converges
monotonically to u in Q as j — 00. Then, for each 0 < py < 00, the weak con-
vergence (—¢)P'(dd u;)" — (—¢)P'(dd“u)" is uniform for all ¢ € PSH(2) with
—1 < ¢ < 0. In other words, for any ¥ € C3°(2) we have that

/ V(=) (@dduy)" — / Y(—¢)"'(ddu)" as j — oo
Q Q
uniformly for all ¢ e PSH(Q2) with —1 < ¢ < 0in Q.

2. An Energy Estimate in £,(£2)

In this section we give an energy estimate in &,(£2), which is useful for the se-
quel. Denote by £((2) the class of functions u# in PSH™(2) N L*°(£2) such
that lim,_,, u(z) = 0 for all { € 92 and fQ(dd“u)" < 00. Following [Cel],
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for each p > 0 we denote by £,(£2) the class of psh functions u in € such
that there exists a decreasing sequence u; € £o(2) with u; \ u as j — o0
and sup; fQ(—uj)”(ddcuj)" < oo. If furthermore the u; can be chosen so that
sup; fQ(ddCuj)” < oo, then we write u € F,(L2). It is known that F,(22) C
F, () if p > py, but the corresponding property for £,(£2) is not true. In [Cel]
Cegrell gave one characterization of a positive measure that is the Monge—Ampere
measure of some function in F,. One crucial tool used in his paper is the follow-
ing energy estimate [Cel; Pe].

PROPOSITION 5. Suppose that u,v € £¢(2) and p > 1. Then foreach0 < j <n
there exists a D; , > O such that

/(—u)‘”(ddcu)j A (ddcv)”_j < Dj,pep(u)(”+j)/(p+")ep(v)("_j)/(’H'”),
Q

where the pluricomplex p-energy of u is defined by e, (u) = fQ(—u)”(ddCu)".

Proposition 5 was extended to 1 > p > 0 in [ACP]. In fact, the energy estimate
holds for all functions in £, (£2).

PROPOSITION 6.  Suppose that ug,uy, ..., u, € £,(R) and p > 0. Then

/(_Mo)pddcm Ao Anddu,
Q
= Dn,pep(uo)p/(er")ep(ul)1/(”+”) . 'ep(un)l/(’””),

where the constants D, , > 0 depend only on n and p and where, moreover,
D, , <1when0<p =<1

REMARK. Proposition 6 has been proved in the case of p = 0; see [Ce2, Cor. 5.6].

Proof of Proposition 6. Assume p > 0. By [CeKZ, Lemma 2.1] there exist se-
quences {uy;} of functions in £o(2) such that u;; \ ur in Q as j /' oo and
lim;_, o e, (uyj) = ep(uy) for each 0 < k < n. From [Pe, Thm. 3.4] and [ACP,
Thm. 3.3] it turns out that

/(_uoj)pddculj Ao A dduyg
Q
< D, pe, (uoj‘)p/(‘””)e,,(ulj)1/("*”) ey (unj)l/(ern).

By [Ce2,Thm. 4.2] we know that measures dd “uy; A - - - Add“u,; converge weakly
to dd u; A -+ Add‘u, in Q. On the other hand, since the sequence {(—1¢;)”} of
lower semicontinuous functions decreases to (—up)? in €2, letting j — oo yields
the required inequality and so the proof is complete. UJ

CoroLLARY 1. Ifu € PSH™(Q) and v € £,(Q), p = 0, satisfy u > v in 2,
then u € £,(Q) and e,(u) < D,(,f',jr")/pep(v), where D, , is the same constant as
in Proposition 6.
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Proof. By [ACP; Cel; Ce2] we have u € £,(€2). It then follows from Proposi-
tion 6 that

ep(u) = (0 w)" = Dy ey ey 17
Q

whichimplies thate, (u)?/P*™ < D, ,e,(v)?/(**"); hence we have proved Corol-
lary 1. O

3. A Convergence Theorem in £,(£2)

In this section we prove a convergence theorem for functions in £,(2). Let C,
be the inner capacity given by Bedford and Taylor in [BeT] and as defined by
C.(E) = Cu(E,Q) = sup{fE(ddcu)" tu € PSH(Q), -1 <u < O} for all
Borel subsets E of €2. Recall that a sequence of functions u; is said to be conver-
gent to a function u in C, on a set E if for any § > O we have that C,{z € E :
luj(z) —u(z)] > 8} —> 0 as j — oo. It was proved in [Cel] that (ddu;)" —
(ddu)" if u,u; € £,(2) are such that u; /" u or u; \( u in Q. Now we prove a
stronger result.

THEOREM 1. Suppose that ug,u; € £,(2), p > 0,1 < k < n, and that
sup;j x ep(ugj) < 00 and uxj — uy in C, on each E CC Q as j — oo. Then the
following statements hold.

(a) If a locally uniformly bounded sequence {¢;} in PSH™ (2) converges weakly
to a psh function ¢ in 2, then for any constant 0 < p; < 0o we have that

(=p)P'dd uyj A - ANddupj — (=@)ddur A --- Addu,

weakly in Q2.
(b) Let B be a locally uniformly bounded subset of PSH™(2) and let 0 < p; <
00. Then for any {r € C3°(82) we have that

fgw(—qs)f'l ddCusj A -+ A dduy; —>/le(—¢)?1 dduy A - A ddCuy

uniformly for all ¢ in B.
(c) Forany 0 < p; < p we have that

(—uo)?'dd urj A+ ANddupj — (—uo)?'dduy A -+ Add uy,

weakly in Q2.
() If [o(—uop)?dduiN---Adduy; —> [o(—ug)? ddui A--- Addu,, then

(—uop)Pdduy; A --- ANddu,j — (—ug)?dduy A --- Add‘u,

weakly in Q2.
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Proof. To prove (a), for any ¢ > 0 we write
(—p)P'dd uyj A - ANdduyy — (—=P)P'dduy A - AddCu,
= (—qu)”‘[ddculj VANEIEIVAN ddcunj
—dd® max(uj, —¢) A - - Add max(u,j, —c)]
+ (—¢)"'[dd max(uij, —c) A - -+ A dd max(u,j, —c)
— dd® max(uy, —c) A -+ Add€ max(u,, —c)]
+ (—¢;)"'[dd max(u;, —c) A - - A dd° max(u,, —c)
—dduy A - ANddu,)
+ (=)' = (=P)"Hdduy A --- ANdd‘u,
gl 2 3 4
=A. A HAL AL
From the inequality dd“u; A- - - Add‘u,, < (dd“(u1+---+u,))" withuy,...,u, €
&, (R2) and [ X4, Cor. 1], it turns out that for each £ CC 2 we have
/|¢j —¢ldduy A --- Addu, —> 0 as j — oo.
E
If 0 < p; < 1 then, by using Holder inequality, we get that
[1=8pm = oridacin n- ndau,
E

< /|¢j — P ddur A - AddCu,
E

1—pi 14
< (/ ddui A -+ A dd“u,,) </|¢>j —olddur A - A dd‘ﬂ,,)
E E

—> 0 as j — oo.

If p; > 1 then, by the inequality |a”' — bP'| < pla’”‘1|a —b|fora>b >0, we
also have that

fl(—¢,~)"‘ — (=) dduy A - - AddCu,
E

<p sup|¢j|”‘_l /|¢j —oldduy A --- ANddu, —> 0 as j — oo.
Ixs E

Hence we have obtained that A? — Oweaklyin Qas j — oo. Given ¥ € C(°(2),
by [ X4, Lemma 2] or [ACP, Prop. 4.1] it follows that

1
JAZY

Z/QI//(—(ISJ')M ddculj VANKIRIVAN dd“u(q,l)j
g=1

Alddug; — dd® max(ugj, —c)l

A dd® max(ug4nj, =€) A -+ Add max(u,j, —c)
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Y(—¢;)" dd uy;

<—c

Ugj=

A Alddug; —dd® max(ugj, —c)] A - -+ A dd® max(uy,j, —c)
< ¢ max((- ¢,>”'>Z/ (—itgy)? dduy;
qu< C

Aldd ugj + dd max(ugj, —c)I A -+ Add® max(u,j, —c),

which, by Proposition 6 and then Corollary 1, does not exceed

¢ ™" max (Y| ¢>J>'”)ZDM<D<" Dp 4 prathipy

1
= ey g)) PP e, () VD e (1) VP

< e max(1y1(=))") supep(u) Z D,y (D' 4 D4ty
g=1
—> 0 as ¢ - oo.

We have obtained that | /: o 1//A167 j| — O uniformly forall j as ¢ — oo. Similarly,
we also have that | Jo 1//A3 | — 0 uniformly for all j as ¢ — co. We claim now
that A2 ; = 0 weakly in Q as j — oo for each fixed ¢ > 0. If the claim is true
then the proof of (a) is complete. To prove the claim, write p; = [ 4 s, where [ is
an integer and 0 < s < 1. Hence (—¢;)"' = (— 1)’+1¢J( (—=¢;)*). Since ¢; and
—(—¢;)* are locally uniformly bounded psh functions, by subtracting a constant
if necessary we can assume that they are positive psh functions. Then, applying
the equality 2fg = (f + g)> — f> — g? step by step, we get that (—¢;)?! can be
written as a sum of finite terms of the form 4/, where the 4 are locally uniformly
bounded psh functions in 2. Hence from [ X4, Thm. 1] it turns out that A2
0 weakly as j — oo for each fixed ¢ > 0 and the claim is proved. We have ob-
tained (a). We omit the proof of (b) because it is similar to the proof of (a). Now
for each ¢ > 0 we write

(—uo)?'dd uyj A - ANdduy; — (—ug)?'ddur A - - Addu,
= [(—uo))"" — (—max(uo;, —c) ' 1dd uyj A - Adduy;
+ [(—max(uo_,-, —C))p'ddcl/hj VANERRIVAN dd”u,,j
— (—max(ug, —c))?'dduy A - - - ANddCu,]
+ [(—max(ug, —c)) "' — (—uo)"'1ddus A - - - Add“u,
= B,"" + B2 + B},

To prove (c), by Proposition 6 and Lebesgue’s dominated convergence theorem
we obtain that B>'”' — 0 weakly in § as ¢ — co. On the other hand, let xz be
the characteristic function of a set E. Then we have

0= B < Xjugy<-er[(—1t0))" = P 1dd ugj A - A dd“uy

< c”l_”(—uoj)”ddculj VANEIEIVAN ddcun_,-
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as measures, where by Proposition 6 the total masses of the (—uoj)Pdduijn--- N
dd‘u,; are uniformly bounded for all j. Therefore, B f ' — 0 weakly in  as
¢ — oo uniformly for all j. Finally, for all fixed c large enough by (a) we get that

BZ jp " — 0 weakly in Q as j — oo. Hence we have obtained (c).

To prove (d), it follows from (a) that
(—max(ugj, —c)Pdduyj A - ANdd u,j
—> (—max(ug, —c))?ddu; A --- Add‘u,

as j — oo. Thus we have

lim inf /(—max(uoj, —eNPdduij A - Adduy;
Q

j—o0
> /(—max(uo, —e)NPddur N - - NddCuy,.
Q

Hence, by the limit assumption we obtain that

lim sup/ Bclf < —f B}P < / (—ug)? dduy A -+~ Addu, — 0
Q Q up<—c

j—oo

as ¢ — oo. Therefore, for any ¢ > 0 there exist constants ¢ and jy large enough
such that [, By; — [, By” < ¢ forall j > jo. It then follows from (a) that
BZO‘ P, — 0 weakly as j — oo. By the arbitrariness of ¢ > 0 we have proved (d),
so the proof of Theorem 1 is complete. O

As a consequence of Theorem 1 and Corollary 1 we have the following result.

CoROLLARY 2.  Suppose that uy,ux; € PSH™(2), 0 < k < n, are such that
ugj — uy in C, oneach E CC Q as j — oo. If there exist g in £,(R), p > 0,
0 < k < n, such that uy; > g for all j and k, then the following statements hold.

(a) Forany0 < p; < 0o and € C°(2) we have that

f1,0(—¢)1"ddcu1j/\~-~/\ddcunj —>/l//(—¢)p‘ddcu1/\---/\ddcun
Q Q

uniformly for all ¢ e PSH(Q2) with —1 < ¢ <0in Q.
(b) Forany 0 < p; < p we have that

(—Moj)mddculj AR /\dd“u,,j —> (—Mo)mddcul VANRIRRIVAN ddcu,,

weakly in €2.
© If [o(—uo)? dduy;A---Andduyj — [o(—ug)? dduy A--- Add uy, then

(—uop)Pdduy; A --- ANddu,j — (—ug)?dduy A --- Add‘u,
weakly in Q.

Hence, by quasicontinuity of psh functions and the Dini theorem, we have our
next corollary.
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COROLLARY 3. Suppose that uy, uxj € £,(2), p > 0, and that for each 0 < k <
n we have that uy; \  uy oruyg; /" uyin Qas j /' oo. Then we have (a), (b), and
(c) as in Corollary 2.

4. A Strong Comparison Principle in £,(2)

In this section we prove a strong comparison principle for functions in the class
&,(L2). Since Monge—-Ampere measures of functions in £,(£2) may have infinite
total masses in €2, a natural and more useful generalization of the strong compar-
ison principle to this class is the following type of comparison theorem, in which
all the integrals are finite.

THEOREM 2. Letu,v € £,(2) with p > 0. Then for all constants r > 0 and all
wi, w; € PSH™(2) N L*®(Q) with w; > —1, j =2,3,...,n, the inequality

Anyp/ (w—uw)""Pddwy A -+ Addw, + r—w)—u)?ddv)"
u<v

u<v

< r—w)—u)?ddu)"

u<v

holds, where the constant A, , = (n!(n+p)(n+p—-1)---(p+ D)~

Recall that a family of positive measures is said to be uniformly absolutely con-
tinuous with respect to C,, in a set E if for any ¢ > 0 there exists a § > 0 such
that, for each Borel subset E; C E with C,,(E;) < §, the inequality u(E;) < ¢
holds for all measures w in the family. First we need to prove a lemma.

LeEMMA 1. Suppose that v,u € £,(2) with p > 0, w € PSH™ () N L= (L2), and
0 is a continuous exhaustion function for Q2 vanishing on 9S2. We let

Wy,u,s = Max(w,sp, =s(—=v)"~ 7, —s(—u)’~"")

for all constants s > 0, p; > 0,and 0 < p — p; < 1. Then the following state-
ments hold.

(a) The measures (—wy . 5)|v1 — u1|?'(dd v2)" have uniformly bounded total
masses in Q for all vi,vo,u; € E,(Q) with vy, vy > v and u; > u in Q.

(b) The measures (—wy,, s)|v1 — u1|P(dd v2)" are uniformly absolutely contin-
uous in 2 with respect to C, for all vi,vy,u; € £,(2) with vi,v2 > v and
Uy >uin Q.

(c) Forany e > 0 there exists a closed subset F in Q such that

(_wv,u,s)|U1 - u1|]’1(dd€v2)” <é
Q\F
Sforall vi,vo,uy € £,(RQ) withvi,v2 > vanduy > u in Q.
(d) If a sequence {v;} in £o(2) N C(2) decreases to v in Q, then for any ¢ €
C°(R2) we have that
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/¢(_wv,u,s)|vl — | (dd v))"
Q
- / ¢(_wv,u,s)|vl - u1|pl(ddcv)n as ] — o0
Q
uniformly for all vi,u; € £,(2) with vy > v and uy > u in Q.

Proof. Itis no restriction to assume that e, (v) < 1and e,(u) < 1. By Corollary 1

+
ng{)p n)/p

we have that e, (v;) < . From Proposition 6 it follows that

/(_wu,u,s)|vl - u1|pl(ddcv2)n
Q
<5 [P vy
Q
< S/Q(—u)”(ddcvz)” < 8Dy, pe, )" P e, (02)" P < sDFVP < o0,

which yields (a).
To prove (b) we observe that

/ (_wv,u,s)h)l _u1|pl(ddcv2)n

< sup|w| / (—u1)"(dd vy)"
Q u<—c
< "7 suplw| / (—u)P(dd“vy)" < "7 sup|w|D,*"P
Q us<—c Q
for all constants ¢ > 0. Similarly, we get that
f (—Wy,u,s) V1 — w1|7(ddv3)" < 7 suplw| D7,
v<—c Q ’
Hence, by [ X4, Lemma 2], for any E C 2 we have
/(_wu,u,s)|vl - u1|p1(ddcv2)n
E
< 2¢”77 suplw| D, + suplw (—u)P (dd vy)"
Q Q

ENnfv,u>—c}

= 2c” sup|w| D, HMP
. :

+ sup|w| (—max(u, —c))?'(dd max(v,, —c))"
Q ENnfvy,u>—c}

<2chmP sup|w|D,llj)”/1’ + sup|lw|c”T"C,(E).
Q Q

Given ¢ > 0, take ¢ > 0 such that the first term on the right-hand side in the
last inequality is less than . Then choose § > 0 such that the second term on the
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right-hand side is also less than ¢ for all E C Q with C,,(E) < §. Therefore, we
have obtained (b). Assertion (c) follows from the proof of (b) since w, , ; van-
ishes on 0€2.

To prove (d), by [Ce2, Thm. 2.1] there exist sequences {v; .}, {u1,,} in Eo(2) N
C(2) such that vy Ny vandu, \(uin Qast / oo. By Corollary 1 we have
that vy, u, € £,(R) for all ¢. Write

(—wy,u,) v — ug|P(ddv)" — (=wy i 5)|v1 — ug|P(ddv)"
= (—wy,u,)llvr —w|”'(dd“vj)"
— |max (v, —c¢) — max(u;, —c)|”' (dd“ max(vj, —c))"]
+ (—wy,u5)[Imax(vy, —c) — max(uy, —c)|”
— |max(vy;, —¢) — max(u;,;, —c)|”'1(dd “ max(vj, —c))"
+ (—wy,u,s)Imax(vy,;, —c)
— max(u;,,, —¢)|"' [(dd° max(vj, —¢))" — (dd‘ max(v, —c))"]
+ (=wy,u5)[Imax(vy,;, —¢) — max(uy ;, —c)|”!
— |max(vy, —¢) — max(uy, —c)|”'](dd max(v, —c))"
+ (—wy, ) [|max(vy, —¢) — max(u;, —c)|”' (dd‘ max(v, —c))"
— vy — w|"'(dd“v)"]
+ A+ AL+ AL

[N

=A, + AL,
It follows from [ X4, Lemma 2] that for all j the signed measures A1 have zero
mass on the set {vy > —c,u; > —c,v; > —c} D {v > —c,u > —c}. Soby (b) we
obtain that ||Alcyj||g — 0 as ¢ — oouniformly for all j, where || Al il denotes the
mass of total variation of the A}, ; on 2. Similarly, we get that || A5 || o — Oasc —
oo. Hence for any ¢ > 0 there ex1sts a co > 0 such that ||AC0 jllsz + ||A5 lo <&
for all j. On the other hand, since vy, \( v and u;, N\ # we have (see the proof
of Theorem 1) that

Imax(vy,,, —¢) — max(uy,;, —¢)|”" —> [max(vi, —¢) — max(uy, —c)|”"

in C, on each E CC Q ast — oo. Then, by the definition of C,, it is easy to
show that there exists a to such that ||ACO inlle+ ||Ac0 ille < ¢ forall j. Finally,
since the function |max(v; ;,, —co) — max(u; s, —Co)|”' is continuous in 2 and
since wy, , s € PSH™(2) N L*°(£2), by [ X4, Thm. 1] we obtain that AL0 i = 0
weakly in €2 as j — oo. Thus, we have proved (d) and so the proof of Lemma 1
is complete. UJ

Proof of Theorem 2. Let

wll)’M = max(w; — r,sp, —s(—v)P7P, —s(—u)P~P")

fors>0 p1>0,and0 < p—p; < 1. Thenw . € PSH™(2) N L*°(L2) and
w! = 0o0ndQ.

v,u,s
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(1) First we prove that, for all u,v € £,(2) N C(), the inequality

Anpy / (W —w)" P ddw, , Addwy A Addw,

u<v
+/ (—wy ) (v — u)"(ddv)"
1 P1 c o\
< / (—w!y ) — WP ddw" (A)

holds for all s > 0, p; > 0,and 0 < p — p; < 1. To prove this we begin by not-
ing that u € £9(£2) because limsup,_,, u(z) = 0 for all { € 92, and similarly we
have v € £((£2). Hence, it is no restriction to assume that # < v in Q and that u =

von d2. Let v, = max(u,v — ¢). Thenv, ~ vin Q as ¢ \ 0 and v, = u near
0€2. Now integration by parts (see [B; X1]) yields that

/(vs —w)"Pddw, ,  Addwy A Addw,
Q

— (4 )+ pr—1) / wn(vs — )" P2 d(v, —u)
Q
AdS(ve, —u) Addw!

v,u,s

+(n+ pl)/ wp(ve — )P ddC (v, — u) A ddcwiw A AddCw,_
Q

A Addw,_q

<m+p) /(vg — )" PN dd (g +u) Addwy A AddCw,
Q

<(m+p)n+p—D-(p1+2) / (e — )" dd (ve +u)"!
Q

c, 1
Nddw, , ¢

<nl(n+p)n+p—D-(p1+2) /(vs —wy"*ddw, ,
Q
n—1
A dd )" A (dd u)t
k=0

< An,lm(fg(—wi,u,x)(vs — u)P(ddu)" — /Q(—wll,’u’s)(vs —u) (dd”vs)").
Therefore, we get the inequality
An /Q(vs —w)" P ddw) ,  Addwy A Addw,
+ /Q(—w,ﬁ,u,x)(vg —u)"(dd v,)"
< / (—w! ) — 1) (dd u)".

Q
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Since (v — u)?”' — (v — u)?! uniformly in Q2 as ¢ — 0, it follows from [ X4,
Thm. 1] and Lemma 1(a) that

(_wi,u,s)(vs — M)pl(ddcve)”
= (mwy, JIWe =107 = © = W) 1@dd V)" + (=wy , I = 1) (dd )"

1
(_wv,u,s

Y(v — u)P'(dd v)"
weakly in 2 as ¢ N\, 0, where we have used continuity of the (v — u)?'. Letting
& \{ 0 in the last inequality and using the Lebesgue monotone convergence theo-
rem, we obtain the required inequality for all u, v € £¢(2) N ().

(2) Secondly, we prove that inequality (A) holds for all u,v € £,(2). Toward
this end, by [Ce2, Thm. 2.1] we know that there exist sequences {u} and {v;} in
E0(Q) N C() such that uy N\ # and v; N\ v in . From Corollary 1 it follows
that all uz, v; € £,(S2); then, by inequality (A), for all s > 0 and all p; > 0 with
0 < p— p; <1wehave

Aup / Xug<vj)(Vj — up)" TP dd‘w, , A - Nddw,
Q
+ / (—wy , )V — up) "' (ddv))"
Uk <vj
l n
< f (—wy (W —u) P (dd ug)",
Uk <vj
where Xiux<v;} is the characteristic function of the set {u; < v;}. Letting k — o0
and j — oo, by Fatou’s lemma we get that the limit inferior of the first term in

the left-hand side exceeds A, p, v—uw)"tP ddw) , A~ Add“w,. Hence
we have

u<v( X

+ ~ 1 ~
An,m/ w—w)"Pddw, A Addw,
u<v

j—ooo  k—oo

+ lim inf liminf/ (—wy , )V — ) (ddv))"
uk<vj

< lim sup lim sup/ (_wll),u,s)(vj — u) P (dd uy)".
Mk<'Uj

j—o00 k—o00

It follows again from Fatou’s lemma that

lim inf lim supf (—wllj,u“v)(vj —up) "' (ddvj)"
ug<vj

J70 k-0

> lim inf lim sup/ (—w) )W —up)P(ddv))"

I v, U, S
J—=>0o0 k—o00 k<v

> lim inf (—wll) ws) (U — )P (dd v)".
J=%0 Ju<w o

Given ¢ > 0, it follows from Lemma 1(b) and the quasicontinuity of psh func-
tions in [BeT] that there exist an open subset O, C 2 and a vl e C(R) such that
{v#0'} C O, and
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0(—u)11)7uys)|v —u|"'[(ddv))" + (dd“v)"] <& forall j.

Since {u < v'} is open, by Lemma 1(d) we get that

liminf/ (—wy , ) —u)"(ddv))"
u<v

j—o0

: v,u, s
j—o00

zliminff (—w! , Olv—ulP@ddv)" — ¢
u<v1

> / (—w! v —u|P(ddv)" - 2e.
u<v o
Hence we have obtained that

lim inf lim sup/ (—wi ws) (U — up)P(dd v)"
J7® k-0 U <vj o

> / (—wy, )V —u)"(ddv)" - 2e.
u<v

On the other hand, by (b) and (c) of Lemma 1 there exist vjl, u' € C(Q), a closed
subset F'?, and an open subset O° in 2 such that {v; # vjl} U{u #u'} C O° and

/ (_wll),u,s)lvj - u|P1 [(ddcuk)n + (ddclfi)]
Q\F¢

+/ (—wy , Dl — ul”'(ddup)" < e
OS

for all j and k. Hence using u; > u yields

lim sup lim sup/ (_wll),u,s)(vj —u )P (dd uy)"
U <vj

j—o0 k—o00
< lim sup lim sup (—wi u ) — )P dd u)"
j—oo k—00 u<vj o

< lim sup lim sup/{ . (—wiyu’s)(vj — WP (ddCuy)" + 2,
u'<v;}NFe
- J

j—00 k—00

which by Lemma 1(d) does not exceed

lim sup/ (—wi v — W) (ddu)" + 2¢
{ulfvjl}ﬁFg 77

j—o0

< lim sup (—wi,u,x)(vj —u)?'(ddu)" + 4¢

j—oo U<vj
< / (—wy, )V — u)’'(ddu)" + 4e,

where the last inequality follows from the Lebesgue monotone convergence theo-
rem. Therefore, we have obtained that the inequality



Strong Comparison Principle for Plurisubharmonic Functions 577
Ay / (—w)" P ddw} , Add“wy A Addw,
u<v
+/ (—w) , )V —u)"(dd v)"
u<v
< f (—wy ) (v —w)’(ddu)" + 6¢
u<v

holds for all ¢ > 0, which yields inequality (A) for all u, v € £,(2).

(3) Finally, let u, v € £,(£2). Then we have inequality (A) for  and v. Because

(—wiw)(v —u)” < s(—u)?, if we let p; /' p then, by Corollary 1 and the

Lebesgue dominated convergence theorem,

A, plimsup (v —u)"tP ddcw,iu,s Addwy A -+ ANddw,
p/p Ju<v

v

< [l -

Since w% s \ wi—rass /" oo,itfollows from the Lebesgue monotone conver-
gence theorem that

A, p lim sup lim sup/ (—w)"Prddw! Addwy A - Addw,
s=>00  pr/p Ju<v o

+ / (r — wy))(v —u)?(ddv)"
u<v
< [ o —wow-wradur.
It remains for us to prove that the limit in the last inequality exceeds

Anp (W —w)"Pddwy Addwy A - Addw,.

u<v

By [ X4, Lemma 2], for any ¢ > 0 we have that
/ W —w)"Prddw, , Addwy A Addw,

> f W—w)""ddw, ,  Addwy A+ Addw,

r<u<v

= / @ =) dd wy A ddCwy A A ddCw,,
—r<u<v

where v = max(v, —t) and # = max(u, —t). For any ¢ > 0 we take an open subset
M, C Qand v u? € C(Q) such that — < v% u> <0in Q, {v # v2}U{u #u?} C
M., and C,(M,) < e. Hence, by the definition of C,,, we get that the last integral
exceeds
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(v? — u?)nte ddcwé s
{—t<u?<v?}\ M, o

Addwy A -+ - Addw, — et" P! sup|w|
Q

> / (02 _ u2)n+p1 dd”w% .
{(—t<u?<v?}

Addwy A -+ Addw, — 2et" P! sup|w.
Q

It is easy to see that (vZ — u?)"71 — (v — u?)"*P uniformly in Q as p; ' p

and that wéy is w},m uniformly in 2 as p; ' p. Hence, by continuity of

(v? — u?)"*+P and [X1, Thm. 1], we get that
W* —u®)" P ddwy 5 Addway A AddCw,
— = u?)"Pdd ], Addwy A AddCw,
weakly in Q as p; /' p and that
W* —u®)"Pddwi | Addwy A Addw,
— (V¥ —uH)"Pddwi Add wy A - A ddw,
weakly in @ as s — oo. Therefore,
lim sup lim sup/ (v —u)"r dd”w,%yﬁys ANdd“wy A - ANddw,

§—>00  p1/p

> lim sup lim sup/ (v2 = u?)"te ddcwé’
{_

s—00  pi/p t<u?<v?)

v
u,s
Addwy A -+ - Addw, — 2et" TP sup|w|
Q
> / W — uH)" P ddwy A ddwy A -+ A ddw, — 26t TP suplwy|
(—t<u?<v?} Q
> / W —uw)""Pddwy Add“wy A -+ Addw, — 4et™ P! sup|wy|.
{—t<u<v} Q
Letting ¢ — 0 and then t — o0, we get the required inequality and so the proof
of Theorem 2 is complete. O

As an application of Theorem 2 we obtain a comparison theorem in £,(£2), which
is a modification of the Bedford and Taylor comparison principle.

CorOLLARY 4. Ifu,v € &,(Q) with p > 0, then
/ (v —uw)?P(ddv)" < / (v —uw)P(ddu)".

Proof. Dividing both sides of the inequality in Theorem 2 by r and then letting
r — 00, we obtain the required inequality. UJ
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Moreover, we have the following statement.

CoROLLARY 5. Ifu,v e &,(2) withu < v in Q, then the inequality
f —w —u)’(ddv)" < / —w —u)’(ddu)"
Q Q
holds for any w € PSH™ ().

Proof. For p = 0 this is the Cegrell inequality. Assume p > 0. Applying Theo-
rem 2 for u, Sv with § < 1, w; = max(w/s, —1), and r = 0 and then letting § ' 1,
we get the inequality

/ —max(w, —s)(v — u)?(ddv)" < f —max(w, —s)(v — u)?(dd‘u)".
Q Q
Then, letting s — oo finishes the proof. U

Recall that a function u € PSH™ () is said to be in £(2) if for each z € Q2 there
exists a neighborhood O, of z in © and a sequence u; € £y(2) such that u; \ u
on O, and sup; fQ(ddCuj)” < 00; see [Ce2].

COROLLARY 6. Ifv e £(Q) and u € £,(2), p > 0, are such that (dd‘u)" <
(ddv)" in Q, thenu > v in Q.

Proof. Since v € £,(2), so is max(u, v). By Demailly’s inequality, we get that
(dd max(u, v))" > Xpuzv)(ddu)" + X< (ddv)" > (dd u)"
in Q. Hence, using Theorem 2 for the functions max(u, v), u, and w; = w, =

<= w, = |z]*(supglz|*) ™' — 1, we get that [ _ (v — u)" TP dr = 0, where dA

u<v

denotes the Lebesgue measure. Therefore, v > u in Q2 and the proof is complete.

O
ReEMARK. Following the proof of the Demailly inequality in [D], one can extend
that inequality,

(dd® max(u,v))" > Xuzv)(ddu)" + Yu<vy(ddv)",
to £,(2) with p > 0.

REMARK. See [Ce3, Thm. 3.12] for a more general version of Corollary 6.

As another direct consequence of Theorem 2, we obtain an estimate of the sub-
level of functions in £,(€2) that is slightly stronger than [CeKZ, Prop. 3.1].

COROLLARY 7. Ifu € £,(2) with p > 0, then

C,({zeQ:u(z) < —s}) < 2”*”A;71ps7”7p/ (—u)P(dd‘u)",

u<—s/2

where the integral tends to zero as s — 0.
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Proof. For any w € PSH(2) with —1 < w < 0, we have that

n+p
(dd€w)" < 2"Psr ~2—u)  @dwy
u<-—s u<—s/2 2

n+p
= 2”*1’5*”*1’/ <max(u, —£> — u> (dd“w)".
u<max(u,—s/2) 2

Since u and max(u, —s/2) are both in £,(£2), by Theorem 2 we have that the last
integral does not exceed

p
A;lp/ <max<u, —5> - u> (ddu)" < A;lp/ (—u)P(dd°u)".
’ u<max(u,—s/2) 2 ’ u<—s/2

Hence we have proved the required inequality, so the proof of Corollary 7 is
complete. O
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