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1. Introduction

Random polynomials and random holomorphic functions are studied as a way of
gaining insight into difficult problems such as string theory and analytic number
theory. A particularly interesting case of random holomorphic functions is when
the functions can be defined so that they are invariant with respect to the natu-
ral isometries of the space in question. The class of functions that we will study
are the unique Gaussian random holomorphic functions, up to multiplication by a
nonzero holomorphic function, whose expected zero set is uniformly distributed
on Cn. Such functions are also known as the flat Gaussian random holomorphic
functions. For a random holomorphic function of this class, we will determine
the expected value of the unintegrated counting function for a ball of large radius
as well as the chance that there are no zeros present—a pathological event that is
known as a “hole”. In so doing we generalize a result of Sodin and Tsirelison to n

dimensions in order to give the first nontrivial example where the hole probability
is computed in more than one complex variable.

The topic of random holomorphic functions is an old one, with many results
from the first half of the twentieth century, that is recently experiencing a renais-
sance. In particular, Kac determined a formula for the expected distribution of
zeros of real polynomials in a certain case [5], and this work was subsequently
generalized throughout the years [3]. A series of papers by Offord [7; 8] is partic-
ularly relevant to questions involving the hole probability of random holomorphic
functions and the distribution of values of random holomorphic functions. There
has been a flurry of recent interest in the zero sets of random polynomials and
holomorphic functions, which are much more natural objects than they may ini-
tially appear. For example, Bleher, Shiffman, and Zelditch [1] show that, for any
positive line bundle over a compact complex manifold, the random holomorphic
sections to LN (defined intrinsically) have universal high N correlation functions.

In addition to results describing the typical behavior, there have also been sev-
eral results in one (real or complex) dimension for Gaussian random holomorphic
functions where the hole probability has been determined. For a specific class of
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real Gaussian polynomials of even degree 2n, Dembo et al. [2] have shown that,
for the event where there are no real zeros, En,

lim
n→∞

Prob(En)

log(n)
n−b = −b, b ∈ [0.4, 2].

Hole probability for the complex zeros of a Gaussian random holomorphic func-
tion is a quite different problem. Let Holer = {f in a class of random holomorphic
functions such that, ∀z∈B(0, r),f(z) �= 0}. For the complex zeros in one complex
dimension, there is a general upper bound for the hole probability: Prob(Holer ) ≤
exp{−cµ(B(0, r))}, where µ(z) = E[Zψω

] (cf. [13, Thm. 2.2]). In one case
this estimate was shown by Peres and Virag [9] to be sharp: Prob(Holer ) =
exp{−µ(B(0, r))/24 + o(µ(B(0, r)))}. These last two results on hole probability
might lead one to suppose that, if the random holomorphic functions are invariant
with respect to the local isometries (thus ensuring that E[Zω] is uniformly distrib-
uted on the manifold), then the rate of decay of the hole probability would be the
same as if the zeros were distributed according to a Poisson process with the same
expected distribution. But the zeros repel in dimension 1 [4], so one might expect
a quicker decay for the hole probability of a random holomorphic function. This
is the case (see [14]) for random holomorphic functions whose expected zero set
is uniformly distributed on C1:

Prob(Holer ) ≤ exp{−c1r
4} = exp{−cµ(B(0, r))2};

Prob(Holer ) ≥ exp{−c2 r
4} = exp{−cµ(B(0, r))2}.

The two main results of this paper, Theorems 1.1 and 1.2, concern the distribu-
tion of zeros of flat Gaussian random holomorphic functions in n variables.

Theorem 1.1. Let

ψω(z1, z2 , . . . , zn) =
∑
j

ωj

z
j1
1 z

j2
2 · · · zjnn√
j1! · jn!

,

where the ωj are independent and identically distributed complex Gaussian ran-
dom variables. Then, for all δ > 0, there exist c3,δ > 0 and Rn,δ such that, for
all r > Rn,δ ,

Prob
({∣∣nψω

(r) − 1
2 r

2∣∣ ≥ δr 2}) ≤ exp{−c3,δ r
2n+2},

where nψω
(r) is the unintegrated counting function for ψω.

Theorem 1.2. If
Holer = {ψω(z) �= 0 ∀z∈B(0, r)},

then there exist Rn, c1, c2 > 0 such that, for all r > Rn,

exp{−c2 r
2n+2} ≤ Prob(Holer ) ≤ exp{−c1r

2n+2}.
The proofs of these two theorems will use techniques from probability theory and
several complex variables as well as an invariance rule for flat Gaussian random
holomorphic functions.
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This paper is based on the work of Sodin and Tsirelison [14] and generalizes
their methods to higher dimensions. In order to do this, new results for estimat-
ing the values of flat Gaussian random holomorphic functions on polydisks are
derived. Additionally, many technical changes must be made regarding computa-
tions of surface integrals of flat Gaussian random holomorphic functions. These
include Lemma 4.2, which is needed to appropriately partition a sphere, and sig-
nificant changes in the proof of Lemma 4.4 that are caused by the dependence of
the formula for the Poisson kernel on the number of dimensions n.

Acknowledgment. I would like to thank Bernie Shiffman for many useful
discussions.

2. Defining Flat Gaussian Random Holomorphic Functions,
and Common Results Concerning These Functions

Gaussian random holomorphic functions are defined as

ψω(z) =
∑
j

ωjψj(z),

where {ωj} is a sequence of independent and identically distributed (i.i.d.) real
or complex Gaussian random variables and {ψj(z)}j is a sequence of holomorphic
functions. Since limj sup|ωj |1/j = 1 a.s., it follows that ψω is a.s. a holomorphic
function on a domain � provided that for all compact K ⊂ �,∑

j∈N

max
z∈K |ψj(z)|2 < ∞.

For this paper we will be concerned with a particular class of random holomor-
phic functions: flat Gaussian random holomorphic functions.

Definition 2.1. A flat Gaussian random holomorphic function is a random holo-
morphic function that may be written in the form

ψω(z) =
∑
j∈Nn

ωj

(
z
j1
1 z

j2
2 · · · zjnn√

j1! j2! · · · jn!

)
, (1)

where {ωj} is a sequence of i.i.d. standard complex Gaussian random variables.

Additionally, the set of flat Gaussian random holomorphic functions that do not
converge on Cn is null.

Let us briefly review properties of the zeros of random holomorphic functions.
We will view the zero set of a holomorphic function f as Zf : a divisor and a
(1,1) current. The regular points of Zf are a manifold, and we identify forms in
D

(n−1,n−1)
M with ones inD(n−1,n−1)

Zf
by restricting their domain. Iff ∈ O(Mn) forM

an n-complex manifold, then Zf = i
2π ∂∂̄ log|f |2 as (1,1) currents on M. Starting

with this, a standard result may be proved on the expected zero distribution.
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Theorem 2.2. If E[|ψω|2] = ∑|ψj(z)|2 converges locally uniformly in �, then
E[Zω] = i

2π ∂∂̄ logE[|ψω|2].

Many forms of this theorem have been proven (see [3; 5; 13]). Theorem 2.2 is
more general than those in the literature, but the standard method of proof still
works. In particular, a concise proof can be given by simplifying the argument in
[13]. Specializing this result to flat Gaussian random holomorphic functions yields
the following corollary.

Corollary 2.3. For a flat Gaussian random holomorphic function ψω,

E[Zψω
] = i

2π
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + · · · + dzn ∧ dz̄n).

More can be said about this because specifying the expected zero set of a Gaussian
random holomorphic function defines an almost unique class of Gaussian random
holomorphic functions, as follows.

Theorem 2.4. For Gaussian random holomorphic functions, the expected zero
set determines the process uniquely (up to multiplication by nonzero holomorphic
functions) for a simply connected domain.

This theorem is proven in one dimension by Sodin [13], and the same proof works
in n dimensions. A much stronger refinement of this result for flat Gaussian ran-
dom holomorphic functions is the following translational law.

Proposition 2.5. For all z∈ Cn and for all sequences of i.i.d. standard Gauss-
ian random variables {ωj}j∈N, there exist ω ′

j i.i.d. standard complex Gaussian
random variables such that

ψω(z) = exp
{− 1

2 |ζ|2 − zζ̄
}
ψω ′(z + ζ).

This proposition is proven in [6] and is especially useful because statements may
be proved in one particular region and then translated to another. In particular, we
have the following result.

Corollary 2.6. For all z ∈ Cn and for all sequences of i.i.d. standard Gauss-
ian random variables {ωj}j∈N, there exist ω ′

j i.i.d. standard complex Gaussian
random variables such that

max
z∈∂B(0,r)

(
log(|ψω(z)|) − 1

2 |z|2) = max
z∈∂B(ζ,r)

(
log(|ψω ′(z)|) − 1

2 |z|2).
Here, ψω ′ is itself a flat Gaussian random holomorphic function.

Proof of Corollary 2.6. We simply apply Proposition 2.5 to obtain

max
z∈∂B(0,r)

(
log|ψω(z)| − 1

2 |z|2)
= max

z∈∂B(0,r)

(
log

∣∣exp
{− 1

2 |z|2}ψω(z)
∣∣)

= max
z∈∂B(0,r)

log
(∣∣exp

{− 1
2 |ζ|2 − |z|2 − zζ̄

}
ψω ′(z + ζ)

∣∣)
= max

z∈∂B(ζ,r)
(
log|ψω ′(z)| − 1

2 |z|2).
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3. An Estimate for the Growth Rate of Flat Gaussian
Random Holomorphic Functions

In this section we begin working toward our main results. Lemma 3.2 is interest-
ing in its own right because it proves that flat Gaussian random functions are of
finite order 2 a.s. Let Mr,ω = max∂B(0,r) log|ψω(z)|. We will be need several ele-
mentary estimates.

Proposition 3.1. (a) If ω is a standard complex Gaussian random variable, then

(i) Prob({|ω| ≥ λ}) = exp{−λ2} and
(ii) Prob({|ω| ≤ λ}) = 1 − exp{−λ2} ∈ [ 1

2λ
2, λ2] if λ ≤ 1.

(b) If {ωj}j∈Nn is a set of i.i.d. standard Gaussian random variables, then
Prob({|ωj | < (1 + ε)|j |}) = c > 0.

(c) If j ∈ N+,n then |j ||j |/jj ≤ n|j |.

Here and throughout this paper, |j | := ∑
ji for j ∈ Nn. Let

Mr,ω = max
z∈B(0,r)

|ψω(z)|.

Lemma 3.2. For all δ > 0 and all r > R, there exists a cδ > 0 such that

Prob

({∣∣∣∣ log(Mr,ω)

r 2
− 1

2

∣∣∣∣ ≥ δ

})
≤ exp{−cδr

2n+2}.

Proof. We will first prove that Prob
({

log(Mr,ω)/r
2 ≥ 1

2 + δ
}) ≤ exp{−cδ,1r

2n+2}
by specifying an event �r of measure almost 1 where Mr,ω ≤ exp

{( 1
2 + δ

)
r 2}. Let

�r be the event where

|ωj | ≤
{
eδr

2/4 if |j | ≤ 2e · n · r 2,

2|j |/2 if |j | > 2e · n · r 2.
Then

Prob(�c
r ) ≤

∑
|j |≤2e·nr 2

Prob({|ωj | > eδr
2/4}) +

∑
|j |>2e·nr 2

Prob({|ωj | > 2|j |/2})

≤ cnr
2n exp{−eδr

2/2} +
∑

|j |>2e·nr 2

exp{−2|j |}

≤ exp{−ecr
2} + c exp{−2cr 2} ∀r > R0

≤ exp{−ecr
2}.

We now have that Prob(�c
r ) ≤ exp{−ecr

2} < exp{−cr 2n+2}, so it remains for
us to show that, for all ω ∈�r , log|Mr,ω|/r 2 ≤ 1

2 + 1
2δ. For all ω ∈�r and all z∈

B(0, r), we have

Mr,ω ≤ max
z∈B(0,r)

( |j |≤4e·n(r 2/2)∑
|j |=0

|ωj | |z|
j√
j!

+
∑

|j |>4e·n(r 2/2)

|ωj | |z|
j√
j!

)

= max
z∈B(0,r)

1∑
+ max

z∈B(0,r)

2∑
.
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Using the Cauchy–Schwartz inequality then yields

max
z∈B(0,r)

1∑
≤ (

exp
{ 1

4δr
2})√c(r 2)n max

z∈B(0,r)

(∑
j

|z2j|
j!

)1/2

≤ cn exp
{ 1

4δr
2}r n exp

{ 1
2 r

2}
≤ exp

{
(r 2)

( 1
2 + 1

3δ
)} ∀r > Rn,δ.

Then, by Sterling’s formula
(
j! ≈ √

2π
√
jj je−j

)
, we have

max
z∈B(0,r)

2∑
≤ max

z∈B(0,r)

∑
|j |>4e·nr 2

(2)|j |/2 |zj|√
j!

≤
∑

|j |>4e·nr 2

(2)|j |/2

( |j |
4en

)|j |/2 ∏
k

(
e

jk

)jk/2

≤ C. (by Proposition 3.1(c))

Hence log(Mr,ω) ≤ ( 1
2 + 1

2δ
)
r 2 for all ω ∈�r , proving half of the claim.

Let M ′
r,ω = maxz∈P(0,r)|ψω(z)|, where P(0, r) := {z∈ Cn : |zi | < r ∀i}. Then

we need only show that

∀δ > 0, ∀r > R, Prob

({
log(Mr,ω)

r 2
≤ 1

2
− δ

})
≤ exp{−cδ,2 r

2n+2}.
It suffices to prove this result for small δ only. However, we will actually prove a
stronger claim: for all δ and all r > R, there exists a c such that

Prob
(
M ′

r,ω ≤ n
2 r

2 − δr 2) < exp{−cr 2n+2}.
This is a stronger claim because

Mr,ω ≥ M ′
r/

√
n,ω

�⇒ {
Mr,ω <

( 1
2 − δ

)
r 2} ⊂ {

M ′
r,ω <

( 1
2 − δ

)
r 2},

and the desired probability estimate therefore holds by monotonicity.
We begin this second half of the proof by considering what we know given that

ω belongs to the event where

log(M ′
r,ω) ≤ (

n
2 − δ

)
r 2

has occurred. By Cauchy’s integral formula, |∂ jψω/∂z
j|(0) ≤ j!M ′

r,ω r
−|j |. Fur-

thermore, we may use equation (1) to directly compute∣∣∣∣∂ jψω

∂zj

∣∣∣∣(0) = |ωj |
√
j!.

Hence |ωj | ≤ cM ′
r,ω

√
j! r−|j |, and using Sterling’s formula then yields, for all k,

|ωj | ≤ (2π)n/2

(∏
k

j
1/4
k

)
exp

{(
n

2
− δ

)
r 2 +

∑ jk

2
log(jk)− (|j |) log r − |j |

2

}
,

where jk �= 0. The (2π)n/2j1/4 term will not matter in the end and so we focus
instead on the exponent, which we will now call A:
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A =
(
n

2
− δ

)
r 2 − |j |

2
+
∑
k

(
jk

2
log(jk)

)
− (|j |) log(r)

=
k=n∑
k=1

(
jk

2

)((
1 − 2δ

n

)
r 2

jk
− 1 + log(jk) − 2 log(r)

)
.

Let jk = γk r
2. Then:

A =
k=n∑
k=1

(
γk r

2

2

)((
1 − 2δ

n

)
1

γk

− 1 + log(γk)

)

= −δr 2 + nf(γk)
r 2

2
, where f(γk) = 1 − γk + γk log(γk);

f(γk) = (1 − γk)
2 − (1 − γk)

3 + o((1 − γ )4) near 1.

As a result, there exists a * such that, for all δ ≤ *, if γk ∈ [1−√
δ/n,1+√

δ/n
]

then A ≤ − 1
2δr

2.

Hence, for j as before, we have

|ωj | ≤ (2π)n/2

(∏
k

j
1/4
k

)
e−δr 2/2 ≤ cr n/2e−δr 2/2.

Specializing our work for large r, we have that for all ε > 0, there exists an R

such that, for all r > R, |ωj | ≤ exp
{− 1

2 (δ − ε)r 2}. Here the factor of ε is used to

compensate for the
√

2πj1/4
k terms, which had previously been ignored.

Therefore, Eδ,r has the desired decay rate in terms of r:

Prob
({

logM ′
r,ω ≤ ( 1

2 − δ
)
r 2})

≤ Prob
({|ωj | ≤ exp

{− 1
2 (δ − ε)r 2} and jk ∈ [(1 −√

δ/n
)
r 2,

(
1 +√

δ/n
)
r 2]})

≤ (exp{−(δ − ε)r 2})(2
√
δ/nr 2)

n = exp{−2n(1 + o(δ))δ(n+2)/2r 2n+2}
= exp{−c1,δ r

2n+2},
where we have used Proposition 3.1 and the independence of ωj .

Corollary 3.3. Let z0 ∈B(0, r)\B(0, 1
2 r
)
. Then, for all δ > 0 and all r > R,

Prob
({

�ζ ∈B(z0, δr) s.t. log|ψω(ζ)| > ( 1
2 − 3δ

)|z0|2}) ≤ exp{−cr 2n+2}.

Proof. Without loss of generality, assume that δ < 1
4 . By Lemma 3.2 we have

Prob
({

max
z∈∂B(0,r)

log|ψω(z)| − 1
2 |z|2 ≤ −δr 2

})
≤ exp{−cr 2n+2}.

By Proposition 2.5 it follows that, for z0 ∈B(0, r)\B(0, 1
2 r
)

and z∈B(z0, δr),

Prob
({

max
z∈∂B(0,δr)

log|ψω(z − z0)| − 1
2 |z − z0|2 ≤ −δ(δr)2

})
≤ exp{−cr 2n+2}.
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Hence there exists a z ∈ B(z0, δr) such that log|ψω(z − z0)| − 1
2 |z − z0|2 ≥

−δ(δr)2, except for an event of probability less than exp{−cr 2n+2}.
By hypothesis, |z0| ∈ [ 1

2 r, r
)

and so |z − z0| ≤ δr ≤ 1
4 r = r

2
1
2 ≤ 1

2 |z0|.
Therefore, |z0 − z|2 ≥ |z0|2 − δr 2 ≥ |z0|2(1 − 2δ), which implies that

log|ψω(z − z0)| ≥ 1
2 |z − z0|2 − δ3r 2 ≥ |z0|2 1

2 (1 − 2δ)2 − 4δ3|z0|2
≥ 1

2 |z0|2 − 2δ|z0|2 − 1
4δ|z0|2

≥ 1
2 |z0|2 − 3δ|z0|2.

Setting ζ = z − z0, we have shown what we set out to prove.

Using that log maxB(0,r)|ψω| is an increasing function in terms of r, we may prove
the following corollary.

Corollary 3.4. For all δ > 0, we have:

(a) Prob

({
lim
r→∞

(log maxz∈B(0,r)|ψω(z)|) − 1
2 r

2

r 2
/∈ [−δ, δ]

})
= 0;

(b) Prob

({
lim
r→∞

(log maxz∈B(0,r)|ψω(z)|) − 1
2 r

2

r 2
�= 0

})
= 0.

This corollary has been proven by more direct methods; see [14].

Proof of Corollary 3.4. Part (b) follows immediately from part (a), which we now
prove. Let

Eδ,R =
{ log maxB(0,R)|ψω(z)| − 1

2R
2

R2
/∈ [−δ, δ]

}
.

Let Rm = r + δ(m + 1)r for r > 0, and let sm ∈ [Rm−1,Rm]. We claim that, for
all sm with m > Mδ , Eδ,sm ⊂ Eδ/3,Rm

∪ Eδ/3,Rm−1.

Let Mδ = max{M1,δ ,M2,δ}, which may be specifically determined.

Case (i): for ω ∈Eδ,sm , log maxB(0,sm)|ψω| ≥ 1
2 s

2
m + δs2

m. Then

log max
B(0,Rm)

|ψω| ≥ 1
2 s

2
m + δs2

m,

≥ 1
2 (1 + mδ)2r 2 + δ(1 + mδ)2r 2

> 1
2R

2
m + 1

3δR
2
m ∀m > M1,δ.

Therefore, ω ∈Eδ/3,Rm
.

Case (ii): for ω ∈Eδ,sm , log maxB(0,sm) ψω ≤ 1
2 s

2
m − δs2

m. Then

log max
B(0,Rm−1)

|ψω| ≤ 1
2 s

2
m − δs2

m

≤ 1
2 (1 + (m − 1)δ)2r 2 − δ(1 + mδ)2r 2

≤ 1
2R

2
m−1 − 1

3δR
2
m−1 ∀m > M2,δ.

Therefore, ω ∈Eδ/3,Rm−1.

We have shown that, for all m > Mδ and for all s ∈ [Rm−1,Rm], Eδ,s ⊂
Eδ/3,Rm−1 ∪ Eδ/3,Rm

. Hence, Prob
(⋃

s∈[Rm−1,Rm] Eδ,s

) ≤ 2 exp{−cδr
2n+2m2n+2}

and so
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∑
m∈N

Prob

( ⋃
s∈[Rm−1,Rm]

Eδ,s

)
=
∑
m∈N

exp{−cδm
2n+2} < ∞.

The result follows.

4. The Second Main Lemma

In order to prove Theorem 1 we need another key lemma, Lemma 4.4, in which we
will give an estimate for

∫
log|ψω|. The lemma will be proved by approximating

a surface integral using Riemann integration.
In order to establish notation, I state the Poisson integral formula: for ζ ∈B(0, r)

and h a harmonic function,

h(ζ) =
∫
Sr

Pr(ζ, z)h(z) dσr(z),

where dσr is the Haar measure of the sphere Sr = ∂B(0, r) and Pr is the Poisson
kernel for B(0, r). In this notation, the Poisson kernel is given by

Pr(ζ, z) = r 2n−2 r
2 − |ζ|2

|ζ − z|2n .

Lemma 4.1. For all r > Rn, there exists a c > 0 such that

Prob

({∫
Sr

|log(|ψω|)| dσr(z) > (32n + 1)r 2

})
≤ exp{−cr 2n+2}.

Proof. With the exception of an event whose probability is less than exp{−cr 2n+2},
by Lemma 3.2 there exists a ζ0 ∈ ∂B

(
0, 1

2 r
)

such that log(|ψω(ζ0)|) > 0. Hence∫
∂B(0,r)

Pr(ζ0, z) log(|ψω(z)|) dσr(z) ≥ log(|ψ(ζ0)|) ≥ 0.

Alternatively,∫
∂(B(0,r))

Pr(ζ0, z) log−(|ψω(z)|) ≤
∫
∂(B(0,r))

Pr(ζ0, z) log+(|ψω(z)|).

Since ζ ∈ ∂B
(
0, 1

2 r
)

and z ∈ ∂B(0, r), it follows that 1
2 r ≤ |z − ζ| ≤ 3

2 r.

Estimating the values of the Poisson kernel for these values of z and ζ yields

1

3

(
2

3

)2n−2

≤ Pr(ζ, z) ≤ (2)2n−2 3.

Therefore, by Lemma 3.2,∫
∂B(0,r)

log+(|ψω(z)|) dσr(z) ≤ logMr ≤
(

1

2
+ δ

)
r 2 ≤ r 2,

except for an event whose probability is less than exp{−cr 2n+2}.
It remains to compute

∫
log−|ψω|:∫

∂(B(0,r))

P(ζ0, z) log+(|ψω(z)|) ≤ σr(Sr) log(Mr)3(2)
2n−2

≤ 3(2)2n−2r 2;
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∂(B(0,r))

log−(|ψω(z)|) dσr(z) ≤ 1

minz P(ζ0, z)

∫
∂(B(0,r))

P(ζ0, z) log+(|ψω(z)|)

≤ 3

(
3

2

)2n−2 ∫
∂(B(0,r))

P(ζ0, z) log+(|ψω(z)|)

≤ 9

(
3

2

)2n−2

(2)2n−2r 2

≤ 32nr 2.

The result now follows immediately.

In order to use Reimann integration to prove Lemma 4.4, we will need the ability
to choose “evenly” spaced points on the sphere. This choice will be made accord-
ing to the next lemma.

Lemma 4.2 (Partition of a Sphere). For all m ∈ N+, let N = (2n)m2n−1. Then
S 2n
r ⊆ R2n can be partitioned into N disjoint measurable sets {I r1 , I r2 , . . . , I rN}

such that

diam(I rj ) ≤
√

2n − 1

m
r = cn

N1/(2n−1)
r.

Proof. Surround Sr with 2n pieces of planes: P+,1,P+,2 , . . . ,P+,n,P−,1, . . . ,P−,n,
where

P+,j = {x ∈ R2n+1 : ‖x‖L∞ = r, xj = r},
P−,j = {x ∈ R2n+1 : ‖x‖L∞ = r, xj = −r}.

Subdivide each piece into m2n−1 identical closed 2n − 1 cubes in the usual way,
and denote these sets R ′

1, . . . ,R ′
N. In order to remove intersections on the bound-

ary, we then put Rj = R ′
j \
⋃

k<j R
′
k.

Let I rj = {x ∈ Sr : λx ∈Rj , λ > 0}. Clearly, if x ∈ Sr then there exists a j such
that x ∈ I rj . By design, λ ≥ 1 and so x, y ∈ I rj implies that

d(x, y) ≤ d(λ1x, λ2y) ≤ 2

m
r = diam(Rj ).

For the following result, note that the integration is with respect to w, which is not
the same variable of integration that is usually used in the Poisson integral formula.

Lemma 4.3. For κ < 1 and z∈ ∂B(0, r),∫
w∈S n

κr

Pr(w, z) dσκr(w) = 1.

Proof. If w ∈ S 2n
κr ⊆ R2n then the Poisson kernel can be rewritten as a function of

|z − w|; as such, Pr(ϒw,ϒz) = Pr(w, z) for all ϒ ∈Un(R
n).

Let f(z) = ∫
w∈S n

κr
Pr(w, z) dσκr(w). Then

f(z) =
∫
w∈S n

κr

Pr(w, z) dσκr(w)

=
∫
w∈S n

κr

Pr(ϒw,ϒz) dσκr(w) (by our previous results)
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=
∫
w∈S n

κr

Pr(ϒw,ϒz) dσκr(ϒw) (since dσκr is invariant under rotations)

=
∫
w∈S n

κr

Pr(w,ϒz) dσκr(w) (by a change of coordinates)

= f(ϒz).

As a result, f(z) = c for all z∈ S n
r .

Switching the order of integration, we compute that

1 =
∫
w∈S n

κr

∫
z∈S n

r

Pr(w, z) dσr(z) dσκr(w) = c.

Now we are able to prove our final lemma.

Lemma 4.4. For all * > 0, there exists a c > 0 such that, for all r > R,

Prob

({
1

r 2

∫
z∈∂B(0,r)

log|ψω| dσr(z) ≤ 1

2
− *

})
≤ exp{−cr 2n+2}.

Proof. It suffices to prove the result for small *. Let an = 1/2(2n + 2)(2n − 1).
Set δ = (*/λ)1/an < 1

6 , with λ > 0 to be determined later. Choose m ∈ N such
that 1/(2n)m2n−1 ≤ δ, and for notational purposes let N = (2n)m2n−1. Also, let
κ = 1 − δan.

Form a disjoint partition {I κrj } of Sκr as in Lemma 4.2. In particular,

diam(I κrj ) ≤ cδ1/(2n−1)r.

Let σj = σκr(I
κr
j ), which does not depend on r, and for all j fix a point xj ∈ I κrj .

By Corollary 3.3, for each j there exists a ζj ∈B(xj , δr) such that

log(|ψω(ζj )|) >
(

1

2
− 3δ

)
|xj |2 =

(
1

2
− 3δ

)
κ 2r 2,

except for N different events each of probability less than exp{−c ′r 2n+2} (and
thus the union of these N events also has probability less than exp{−cr 2n+2}).

Since for each j we have the same estimate for |ψω(ζj )| and since
∑

σj = 1, it
follows that(

1

2
− 3δ

)
(1 − δan)2r 2 ≤

N∑
j=1

σj log(|ψω(ζj )|)

≤
∫
∂B(0,r)

(∑
j

σjPr(ζj , z) log(|ψω(z)|) dσr(z)
)

=
∫
∂(B(0,r))

(∑
j

σj(Pr(ζj , z) − 1)

)
log(|ψω(z)|) dσr(z)

+
∫
∂(B(0,r))

log(|ψω(z)|) dσr(z).
Therefore,
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∂B(0,r)

log(|ψω|) dσr

≥
(

1

2
− 3δ

)
(1 − δan)2r 2 −

∫
|log|ψω|| dσr · max

z

∣∣∣∣∑
j

σj(Pr(ζj , z) − 1)

∣∣∣∣
≥
(

1

2
− 3δ

)
(1 − δan)r 2 − (32n + 1)r 2 · Cnδ

1/2(2n−1) ≥ 1

2
r 2 − λδanr 2

by Lemma 4.1 and the following claim, so proving this claim will establish Lem-
ma 4.4.

Claim:

max
z∈∂(B(0,r))

∣∣∣∣∑
j

σj(Pr(ζj , z) − 1)

∣∣∣∣ ≤ Cnδ
1/2(2n−1).

Proof of Claim: By Lemma 4.3 we know that, for all z∈ ∂B(0, r),∫
ζ∈∂B(0,κr)

Pr(ζ, z) dσκr(ζ) = 1.

Hence

1 =
j=N∑
j=1

σjPr(ζj , z) +
j=N∑
j=1

∫
ζ∈Iκr

j

(Pr(ζ, z) − Pr(ζj , z)) dσκr(ζ)

and∣∣∣∣
j=N∑
j=1

σj(Pr(ζj , z) − 1)

∣∣∣∣ =
∣∣∣∣
j=N∑
j=1

∫
ζ∈Iκr

j

(Pr(ζ, z) − Pr(ζj , z)) dσκr(ζ)

∣∣∣∣
≤ max

j,ζ∈Iκr
j

|ζ − ζj | · max
w∈B(0,(κ+δ)r)\B(0,(κ−δ)r)

∣∣∣∣∂Pr(w, z)

∂w

∣∣∣∣.
Then

∂Pr(w, z)

∂w
= −r 2n−2 w̄|z − w|2 + (r 2 − |w|2)n(z̄ − w̄)

|z − w|2n+2
.

Since |z| = r and since |w| = (1 − ε)r ∈ [(κ − δ)r, (κ + δ)r], it follows that∣∣∣∣∂Pr(w, z)

∂w

∣∣∣∣ ≤ 2 + 4εn

rε2n+2
≤ cn

rε2n+2
= cn

r
δ−1/2(2n−1).

Moreover, maxζ |ζ − ζj | ≤ diam(Ij )+ δr ≤ cδ1/(2n−1)r + δr ≤ c ′rδ1/(2n−1) and so

∣∣∣∣
j=N∑
j=1

σj(Pr(ζj , z) − 1)

∣∣∣∣ ≤ Cδ1/(2n−1) · δ−1/2(2n−1) = Cδ1/2(2n−1),

which proves the claim and hence the lemma.

Lemma 4.4 gives an alternate proof for the growth rate of the characteristic func-
tion. Let T(f , r) = ∫

Sr
log+|f(z)| dσr(z), the Nevanlinna characteristic function.
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Corollary 4.5. For all δ ∈ (0, 1
3

]
:

(a) Prob

({
lim
r→∞

(∫
Sr

log|ψω| dσr
)− 1

2 r
2

r 2
/∈ [−δ, δ]

})
= 0;

(b) Prob

({
lim
r→∞

(∫
Sr

log|ψω| dσr
)− 1

2 r
2

r 2
�= 0

})
= 0;

(c) Prob

({
lim
r→∞

T(ψω, r) − 1
2 r

2

r 2
�= 0

})
= 0.

Because
∫
Sr

log|ψω| dσr is increasing, the proof of Corollary 3.4 can be used in
conjunction with Lemma 4.4 to prove that ψω(z) is a.s. of finite order 2. A more
elementary proof of this is already available [14].

5. Proof of Main Results

We can now put the pieces together and estimate the number of zeros in a large
ball for a random holomorphic function ψω(z).

Definition 5.1. For f ∈ O(B(0, r)) and B(0, r) ⊂ Cn, the unintegrated count-
ing function

nf (r) :=
∫
B(0,t)∩Zf

(
i

2π
∂∂̄ log|z|2

)n−1

=
∫
B(0,t)

(
i

2π
∂∂̄ log|z|2

)n−1

∧ i

2π
∂∂̄ log|f |.

The equivalence of these two definitions follows by the Poincaré–Lelong formula.
The form

(
i

2π ∂∂̄ log|z|2)n−1 gives a projective volume, which is more convenient
for measuring the zero set of a random function. The Euclidean volume may be
recovered as∫

B(0,t)∩Zf

(
i

2π
∂∂̄ log|z|2

)n−1

=
∫
B(0,t)∩Zf

(
i

2πt 2
∂∂̄|z|2

)n−1

.

Lemma 5.2. If u∈L1(B̄r ) and ∂∂̄u is a measure, then∫ t=R

t=r �=0

dt

t

∫
Bt

i

2π
∂∂̄u ∧

(
i

2π
∂∂̄ log|z|2

)m−1

= 1

2

∫
SR

u dσR − 1

2

∫
Sr

u dσr .

A proof of this result is available in the literature (see [13]).
We may now prove one of our two main theorems.

Proof of Theorem 1.1. It suffices to prove the result for small δ.
Since nψω

(r) is increasing, it follows that

nψω
(r) log(κ) ≤

∫ t=κr

t=r

nψω
(t)

dt

t
≤ nψω

(κr) log(κ). (2)
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Let κ = 1+√
δ. Except for an event whose probability is less than exp{−cr 2n+2},

we have:

nψω
(r) log(κ) ≤

∫ t=κr

t=r

nψω
(t)

dt

t

=
∫ t=κr

t=r

∫
B(0,t)

i

2π
∂∂̄ log|ψω(z)| ∧

(
i

2π
∂∂̄ log|z|2

)n−1
dt

t

= 1

2

∫
Sκr

log|ψω(z)| dσ − 1

2

∫
Sr

log|ψω(z)| dσ (by Lemma 5.2)

≤ 1

2

((
1

2
+ δ

)
κ 2r 2 −

∫
Sr

log|ψω(z)| dσ
)

(by Lemma 3.2)

≤ 1

2

((
1

2
+ δ

)
r 2κ 2 −

(
1

2
− δ

)
r 2

)
(by Lemma 4.4);

2
nψω

(r)

r 2
≤ 1

log(κ)

(
κ 2

(
1

2
+ δ

)
−
(

1

2
− δ

))

= κ 2 − 1

2 log(κ)
+ δ

κ 2 + 1

log(κ)
≤ 1 + c

√
δ.

We have just shown that

Prob

({
nψω

(r)

r 2
≥ 1

2
+ δ

})
≤ exp{−cδr

2n+2},
so now only half of the result remains to be proven. We complete the proof by
observing that (except for an event whose probability is less than exp{−cr 2n+2}):
nψω

(r) log(κ) ≥
∫ t=r

t=r/κ

nψω
(t)

dt

t
(by (2))

=
∫ t=r

t=r/κ

∫
B(0,t)

i

2π
∂∂̄ log|ψω(z)| ∧

(
i

2π
∂∂̄ log|z|2

)n−1
dt

t

= 1

2

∫
Sr

log|ψω(z)| dσ − 1

2

∫
Sr/κ

log|ψω(z)| dσ (by Lemma 5.2)

≥ 1

2

[(
1

2
− δ

)
r 2 −

∫
Sr/κ

log|ψω(z)| dσ
]

(by Lemma 4.4)

≥ 1

2

[(
1

2
− δ

)
r 2 −

(
1

2
+ δ

)
r 2κ−2

]
(by Lemma 3.2);

2
nψω

(r)

r 2
≥ 1

log(κ)

((
1

2
− δ

)
−
(

1

2
+ δ

)
κ−2

)

= 1 − κ−2

2 log(κ)
− δ

1 + κ−2

log(κ)
≥ 1 − 2

√
δ.

We have now finished the proof by showing that:

Prob

({
nψω

(r)

r 2
≤ 1

2
− δ

})
≤ exp{−cδr

2n+2}.
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Using this estimate for the typical measure of the zero set of a random function,
we obtain an upper bound for the hole probability. A lower bound with the same
order of decay is easy to prove, as follows.

Proof of Theorem 1.2. The upper estimate is a consequence of the previous theo-
rem: if there is a hole in a ball of radius r then nψω

(r) = 0, and this can occur only
for an event with probability less than exp{−cr 2n+2}. Hence it suffices to show
that the event where there is a hole in the ball of radius r contains an event whose
probability is larger than exp{−cr 2n+2}. We now design such a set. Let �r be the
event where |ω0| ≥ En + 1 and

|ωj | ≤
{
e−(1+n/2)r 2

if 1 ≤ |j | ≤ �24nr 2� = �(n · 2 · 12)r 2�,

2|j |/2 if |j | > �24nr 2� ≥ 24nr 2.

Then, by Proposition 3.1, we have

Prob({|ωj | ≤ exp{−(1 + n/2)r 2}}) ≥ 1
2 (exp{−(1 + n/2)r 2})2

= 1
2 exp{−(2 + n)r 2}

and so
#{j ∈ Nn : 1 ≤ |j | ≤ �24nr 2�} = (( �24nr 2�+n

n

)) ≈ cr 2n.

Therefore, Prob(�r) ≥ C(exp{−cnr
2n+2}) ≥ exp{−cr 2n+2} by independence

and Proposition 3.1. It now suffices to show that, for all ω ∈�r and all z∈B(0, r),
ψω(z) �= 0. We proceed as follows:

|ψω(z)| ≥ |ω0| −
|j |≤�24nr 2�∑

|j |=1

|ωj | r
|j |√
j!

−
∑

|j |>�24nr 2�
|ωj | r

|j |√
j!

= |ω0| −
1∑

−
2∑

,

where

1∑
≤ exp{−(1 + n/2)r 2}

|j |≤�24nr 2�∑
|j |=1

r |j |√
j!

≤ exp{−(1 + n/2)r 2}
√
(24nr 2 + 1)n

√
(exp{r n})
(by the Cauchy–Schwarz inequality)

≤ Cnr
n exp{−r 2} ≤ c exp{−0.9r 2} < 1

2
∀r > Rn

and
2∑

≤
∑

|j |>24nr 2

2|j |/2

( |j |
24n

)|j |/2 1√
j!

(
since r <

√|j |/24n
)

≤ c
∑

|j |>24nr 2

2|j |/2

( |j |
24n

)|j |/2 k=n∏
k=1

(
e

jk

)jk/2

(by Sterling’s formula)

= c
∑

|j |>24nr 2

(|j |)|j |/2(∏k=n
k=1 j

jk/2
k

)
n|j |/2

(
e

12

)|j |/2

≤
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≤ c
∑
|j |>1

(
1

4

)|j |/2

(by Proposition 3.1)

≤ c
∑
l>1

(
1

2

)l
l n ≤ En.

Hence |ψω(z)| ≥ En + 1 −∑1 −∑2 ≥ 1
2 .
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