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Sharp Bounds for Eigenvalues of Triangles

Bartłomiej Siudeja

1. Introduction

The purpose of this paper is to prove the following theorem.

Theorem 1.1. Let T be a triangle in a plane and suppose T has area A and
perimeter L. Then the first eigenvalue λT of the Dirichlet Laplacian on T satisfies

π2L2

16A2
< λT ≤ π2L2

9A2
. (1.1)

The constants 9 and 16 are optimal, and equality in the upper bound holds only
for the equilateral triangle.

The lower bound was proved in a more general context in [3]. In Section 6 we
show that for “tall” isosceles triangles there is an asymptotic equality in the lower
bound. Hence it is impossible to decrease the constant 16.

The upper bound was recently stated as a conjecture in [2], and numerical evi-
dence for its validity is given in [1]. Bounds of this form but with different con-
stants have been the subject of many papers in the literature. The eigenvalue of
any doubly connected domain is bounded above by the same fraction but with the
constant 4; see [7] and remarks in [5]. There is also a sharper upper bound due to
Freitas [2] that is not of this form, but it seems that in the worst case (“tall” isos-
celes triangle) it gives the constant 6 and in the best (equilateral) 9. Observe that
the constant 9 cannot be improved because equilateral triangles give equality in
the upper bound of Theorem 1.1.

It is worth mentioning that the same theorem can be equivalently stated in terms
of the inradius R = 2A/L of the triangle.

Theorem 1.2. Let T be a triangle in a plane and let T have inradius R. Then
the first eigenvalue λT of the Dirichlet Laplacian on T satisfies

π2

4
< λTR

2 ≤ 4π2

9
. (1.2)

The equality in the upper bound holds only for the equilateral triangle.
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The spectral properties of a Dirichlet Laplacian on an arbitrary planar domain are
important both in physics and in mathematics. Unfortunately, it is almost impos-
sible to find the exact spectrum even for some simple classes of domains. Except
for rectangles, balls, and annuli, not much can be said in general. In the case of
triangles, the full spectrum is known only for equilateral and right triangles with
smallest angles π/4 or π/6 (for more information about these see [4; 6]). For all
other triangles, the best we can do is give bounds for the eigenvalues, such as those
described here.

Even though Theorem 1.1 gives sharp bounds in the sense that the constants are
the best possible given the form of the bound, there is certainly room for improve-
ment. In fact, sharper lower bounds are already known (see [2]). One of these
bounds is good for both equilateral and “tall” triangles; it gives the constant 9 for
the first and 16 for the second. An upper bound that is good in both cases is still
unknown.

By comparing our numerical results with the numerical studies contained in [1,
Sec. 5.1], we conjecture as follows.

Conjecture 1.3. Let T be a triangle in a plane and let T have area A and
perimeter L. Then the first eigenvalue λT of the Dirichlet Laplacian on T satisfies

π2L2

16A2
+ 7

√
3π2

12A
≤ λT ≤ π2L2

12A2
+

√
3π2

3A
. (1.3)

Here both bounds are of the form

E3(L,A, θ) = 4π2

√
3A

+ θ
L2 − 12

√
3A

A2

considered in [1].
The lower bound with θ = π2/16 is the best bound we can expect given this

particular form. Indeed, this is the only bound that is sharper than the lower bound
of Theorem 1.1 and that might hold for “tall” triangles. The upper bound from our
main result is also of this form but with θ = π2/9. Hence the conjectured upper
bound is sharper (θ = π2/12), and it is best in the sense that the bound with θ =
π2/13 is not valid. However, since only the constant 16 can give a good upper
bound for “tall” triangles, it is not possible to find a bound of the form E3 that is
good for both equilateral and “tall” triangles.

Our proof of the upper bound from Theorem 1.1 contains two main parts. The
first deals with “almost equilateral” triangles—that is, with triangles for which the
longest side is comparable to the shortest side. For these our strategy is to find a
suitable test function ψ. That is, we try to find a function that is 0 on the boundary
of the triangle T and than apply the Rayleigh quotient to derive the upper bound
for λT . Thus,

λT ≤
∫
T
|∇ψ |2∫
T
ψ 2

. (1.4)

This part of the proof is contained in Sections 2–5. Section 2 includes also some
preliminary results.
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The second part of the proof, contained in Section 6, deals with “tall” triangles.
These can be approximated by circular sections for which the eigenvalues can be
found explicitly.

2. Eigenfunctions and Notation

An arbitrary triangle T ′ can be rotated and rescaled to obtain a triangle T with ver-
tices (0, 0), (1, 0), and (a, b). This—together with the fact that the bound in the
main theorem is invariant under translations, rotations, and scaling—allows us to
restrict our attention to the triangles with such vertices. We can also assume that
the side contained in the x-axis is the shortest. Hence we have

a2 + b2 ≥ 1 and a ≤ 1/2

for our triangles. We will denote the length of the other two sides by M and N,
with N denoting the longest.

We start with the first eigenfunction of an equilateral triangle, proceeding as in
[2]. Such a function is given by

f(x, y) = sin

(
4πy√

3

)
− sin

[
2π

(
x + y√

3

)]
+ sin

[
2π

(
x − y√

3

)]
. (2.1)

We can compose f with a linear transformation to obtain a function φ that is
equal to 0 on the boundary of T. Namely, consider

φ(x, y) = f

(
x − a − 1/2

b
y,

√
3

2b
y

)

= sin

(
2πy

b

)
− sin

[
2π

(
x + (1 − a)y

b

)]
+ sin

[
2π

(
x − ay

b

)]
. (2.2)

This function was used in [2] to obtain the upper bound from the Rayleigh quo-
tient. Since the function f is the first eigenfunction of the Dirichlet Laplacian on
an equilateral triangle and since its eigenvalue yields equality in the main bound,
it is reasonable to expect that taking any linear transformation can only decrease
the constant 9 in Theorem 1.1.

Hence we want to find another eigenfunction of some other triangle. We will
use the eigenfunctions of the equilateral triangle to find a test function for the
right triangle with angles π/3 and π/6. In [4] the author constructs two families of
eigenfunctions of the equilateral triangle. The antisymmetric mode has the prop-
erty that it is 0 on the altitude. Thus, such a function is also the eigenfunction for
the right triangle. We can then take the antisymmetric eigenfunction correspond-
ing to the smallest eigenvalue as our test function. A calculation then leads to

g(x, y) = sin
(√

3πy
)

sin

(
πx

3

)

+ sin

(√
3πy

3

)
sin

(
5πx

3

)

+ sin

(
2
√

3πy

3

)
sin

(
4πx

3

)
. (2.3)
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This function, as can be easily checked, is the eigenfunction of the Dirichlet
Laplacian on the triangle with vertices (0, 0), (1, 0), and

(
0,

√
3

)
. The correspond-

ing eigenvalue gives a better bound than the one in Theorem 1.1: the constant is
about 9.6. Therefore, a linear transformation of this function should give a cor-
rect bound at least for the neighborhood of the point

(
0,

√
3

)
. Applying a suitable

linear transformation yields the second test function

ϕ1(x, y) = g

(
x − ay

b
,

√
3y

b

)

= sin

(
3πy

b

)
sin

[
π

3

(
x − ay

b

)]

+ sin

(
πy

b

)
sin

[
5π

3

(
x − ay

b

)]

+ sin

(
2πy

b

)
sin

[
4π

3

(
x − ay

b

)]
. (2.4)

We can similarly obtain the last two test functions. One will be a linear transfor-
mation of the eigenfunction of the triangle with vertices (0, 0), (1, 0), and

(
1,

√
3

);
the other will be a linear transformation of the eigenfunction of the triangle with
vertices (0, 0), (1, 0), and

(
0,1/

√
3

)
. Thus:

ϕ2(x, y) = sin

(
3πy

b

)
sin

[
π

3

(
1 − x + (a − 1)y

b

)]

+ sin

(
πy

b

)
sin

[
5π

3

(
1 − x + (a − 1)y

b

)]

+ sin

(
2πy

b

)
sin

[
4π

3

(
1 − x + (a − 1)y

b

)]
; (2.5)

ϕ3(x, y) = sin

(
5πy

3b

)
sin

[
π

(
x − ay

b

)]

+ sin

(
4πy

3b

)
sin

[
2π

(
x − ay

b

)]

+ sin

(
πy

3b

)
sin

[
3π

(
x − ay

b

)]
. (2.6)

Now we can take a linear combination of these test functions. That is, consider

ψ(x, y) = αϕ1(x, y)+ βϕ2(x, y)+ γϕ3(x, y)+ εφ(x, y). (2.7)

We can calculate the Rayleigh quotient for this function. Optimizing over all pos-
sible values of α, β, γ, and ε will give us an appropriate bound for the first eigen-
value. To prove Theorem 1.1, we must check that

λT ≤
∫
T
|∇ψ |2∫
T
ψ 2

≤ π2L2

9A2
(2.8)
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for some α, β, γ, and ε (possibly depending on T ) and also that the last inequality
becomes an equality only for the equilateral triangle.

The last inequality of (2.8) is equivalent to

9A2
∫
T

|∇ψ |2 ≤ π2L2
∫
T

ψ 2. (2.9)

Because the function ψ is given explicitly and is a trigonometric function, it is
possible to find the exact values for these integrals. Yet because the calculations
are cumbersome, we will use Mathematica for the long ones. We emphasize, how-
ever, that all the calculations are done symbolically.

By our assumptions we have L = 1 +
√
a2 + b2 +

√
(a − 1)2 + b2 and A =

b/2. Now running Mathematica shows that, in order to prove (2.9), we must find
α,β, γ, ε such that the following inequality is valid:

0 ≥ 8041366333

× {(−1594323 − 1792090a + 531441(a2 + b2)+ 201600(3 + a2 + b2)π2)α2

+ (−2854972 + 729208a + 531441(a2 + b2)+ 201600(3 + (a − 1)2 + b2)π2)β2

+ (531441 − 1792090a − 1594323(a2 + b2)+ 201600(1 + 3a2 + 3b2)π2)γ 2}
+ 5558192409369600(1 − a + (a2 + b2))π2ε2

+ 67672797192

× {(
729

√
3(454 − 128a + 339(a2 + b2)

) + 24640(4 − 8a + 9(a2 + b2))π
)
γε

+ (
729

√
3(665 − 780a + 454(a2 + b2))+ 24640(5 + 4(a2 + b2))π

)
βε

+ (
729

√
3(339 − 128a + 454(a2 + b2))+ 24640(9 − 8a + 4(a2 + b2))π

)
αε}

+ (
1990033124626008a + 2553294638054160

√
3(3 − 2a + 3(a2 + b2))π

)
αγ

+ 1151172000(35341051 − 26756686a + 32479596(a2 + b2))βγ

+ 189
{
819452341268271 − 73323642839420a + 73323642839420(a2 + b2)

− 79935610875120
√

3π + 24336134222400
√

3(−a + a2 + b2)π
}
αβ

− 9
(
1 +

√
(−1 + a)2 + b2 +

√
a2 + b2

)2

× {
444001222376712

√
3(α + γ )ε

− 1629547920π
(√

3α(4251β − 99484γ )− 113696(α + β + γ )ε
)

+ 51464744531200π 2(α2 + β2 + γ 2 + 2ε2)

+ 3β
(
346474423262177α+ 85272

(
3297684500γ +1735627257

√
3ε

))}
. (2.10)

We will actually show that this inequality is strict for the triangles that are not
equilateral.

Expression (2.10) clearly shows that it would be most difficult to do the calcu-
lations by hand. Notice that this expression depends only on b2 and a and that
its “building blocks” are exactly equal to the length of the sides of the triangle T.
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Hence we make the substitution M 2 = a2 + b2 and N 2 = (a − 1)2 + b2. The
result is a polynomial of degree 2 in M and N, where N ≥ M ≥ 1. For further
simplification (and to improve our chances of finding the appropriate coefficients)
we divide all triangles into four classes:

1. N ≥ 2 and M ≤ 15;
2. 1 ≤ N ≤ 2 and (N + 1)/2 ≤ M ≤ 2;
3. 1 ≤ N ≤ 2 and 1 ≤ M ≤ (N + 1)/2;
4. M ≥ 15.

Each class will be handled separately in the sections that follow. The method used
to handle the last case will be totally different than the previous ones.

3. Class 1: N ≥ 2 and M ≤ 15

Let us take ε = β = 0, α = 1, and γ = −1/6. Then (2.10) simplifies to

0 < P(M,N)

= −90851035780 − 16374894040M 2 + 33929984593N 2

− 272432160
√

3(10 − 8M + 10M 2 − 8N − 8MN + 3N 2)π

+ 28828800(689 − 148M + 199M 2 − 148N − 148MN − 74N 2)π2. (3.1)

To prove this inequality we first find all the critical points of the right side and later
check the values on the boundary. Both ∂MP and ∂NP are linear with respect toM
and N, so we have exactly one critical point with N ≈ −42.2. Hence it is enough
to check this inequality on the boundary.

The boundary conditions are given by M = N, M = 15, N = 2, and M =
N − 1. For each of these conditions, P is a quadratic equation and we need only
check (i) that the roots are outside of the bounds for M or N and (ii) that the in-
equality is true at the endpoints. Thus:

• P(M,M) = 0 for M ≈ 1.6 and M ≈ 15.15, P(2, 2) < 0 and P(15,15) < 0;
• P(15,N) = 0 for N ≈ 14.97 and N ≈ 42.5, P(15,15) < 0 and P(15,16) < 0;
• P(M, 2) = 0 for M ≈ 0.96 and M ≈ 2.61, P(1, 2) < 0 and P(2, 2) < 0;
• P(N−1,N) = 0 forN ≈ 1.97 andN ≈ 20.56, P(1, 2) < 0 and P(15,16) < 0.

This shows that the desired inequality is true on the boundary and therefore holds
everywhere.

4. Class 2: 1 ≤N ≤ 2 and (N + 1)/2 ≤M ≤ 2

In this section and the next we must deal with cases for which an equilateral trian-
gle (N = M = 1) is one of the possible triangles. We take ε = 1, since only the
eigenfunction of the equilateral triangle can give the constant 9 in Theorem 1.1.
We also require that all the other coefficients vanish near the equilateral triangle.
Let us take γ = 0 and α = β; then we just have to choose the common value for α
and β. The calculations are already so complicated that we cannot afford to pick
a complicated coefficient, and hence we take α = (N + M − 2)/2. This choice
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has one additional advantage: here we are working with the eigenfunctions of one
equilateral triangle and two right triangles with shortest side (0, 0)− (1, 0); hence
we have a symmetry about a = 1/2 or (in terms of M and N) about M = N.

It is therefore natural to introduce the rotated coordinates U = (M + N)/2 − 1
and V = (N −M)/2. Observe that α = β = U. This also moves the equilateral
triangle to the origin.

After these transformations are applied, the inequality (2.10) becomes

0 ≥ P(U,V )

= U 2(
3293385188722144 − 451048860827136

√
3 − 952832984463360π

− 874782993324240
√

3π + 463182700780800π2 − 4817666363010084U

+ 916192998555120
√

3U + 710514087323040
√

3πU

− 330844786272000π 2U − 1072431834636645U 2

+ 346350633108480
√

3πU 2 − 33084478627200π2U 2)

+ 9V 2(
44112638169600π2 + 355514206276944

√
3U + 105870331607040πU

+ 177818984344461U 2 + 36504201333600
√

3πU 2

+ 25732372265600π 2U 2)
. (4.1)

This is a polynomial of degree 4 in U and of degree 2 in V. Hence we expect it
is possible to solve ∂VP(U,V ) = 0. (In fact, ∂VP is equal to V multiplied by an
irreducible quadratic polynomial in U.) We therefore have exactly one solution:
V = 0, or N = M. But this is a boundary of the region, so we need only check
the boundary values.

In this case the boundary conditions are M = N, M = (N + 1)/2, and N = 2.
Once we change variables to U and V, these conditions become V = 0, U = 3V,
and U + V = 1, respectively. Each time we obtain a polynomial of degree 4, so
we now proceed as in the previous section.

• P(U, 0) = 0 for U = 0 (double root), U ≈ 5.65 and U ≈ −0.24; P(0, 0) = 0
and P(1, 0) < 0.

• P(3V,V ) = 0 for V = 0 (double root), V ≈ 0.55 and V ≈ −0.04; P(0, 0) =
0 and P(3/4,1/4) < 0.

• P(1 −V,V ) = 0 for V ≈ −0.52 and V ≈ 0.29 (2 complex roots); P(1, 0) < 0
and P(3/4,1/4) < 0.

Therefore, the inequality is true on the boundary and hence also inside of the re-
gion. And because we are dealing with polynomials, this inequality is strict in all
the points except for U = 0, V = 0 (equilateral triangle).

5. Class 3: 1 ≤N ≤ 2 and 1 ≤M ≤ (N + 1)/2

Here we take ε = 1, β = 0, and α = γ = (N + M − 2)/
√

2. Even though the
symmetry described in the previous section does not exist here, we still use the
same rotated coordinates U = (M + N)/2 − 1 and V = (N −M)/2. This time
the inequality (2.10) becomes
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0 ≥ P(U,V )

= 32133332U 2(−1898955433 − 549628092
√

6 + 103783680
√

2π

− 22702680
√

3π + 345945600π 2 − 1063944882U

+ 222614730
√

6U + 259459200
√

2πU − 136216080
√

3πU

+ 115315200π 2U − 531972441U 2 + 113513400
√

3πU 2

+ 172972800π 2U 2)

− 64266664
(
824442138

√
6 − 155675520

√
2π − 2201993543U

+ 158918760
√

3πU + 403603200π 2U
)
(U + U 2)V

+ 3759599844
(
1478400π2 + 10405746

√
6U + 5765760

√
2πU

− 4546773U 2 + 4074840
√

3πU 2 + 3449600π2U 2)
V 2. (5.1)

Note that this is still a polynomial of degree 2 inV, so we may proceed as in the
previous section. Unfortunately, this time the only solution of ∂VP = 0 isV a ra-
tional function ofU with an irreducible denominator of degree 2. Hence, plugging
this into ∂UP = 0 yields a rational equation with squared irreducible polynomial
of degree 2 in the denominator—an equation that is equivalent to the numerator
being 0. Fortunately, the numerator is a solvable polynomial of degree 7 with four
imaginary roots and three real roots (0, ≈−0.18, and ≈1.8).

Here we have the following bounds: U = 3V (equivalent to M = (N + 1)/2),
U +V = 1 (N = 2), and U = V (M = 1). Hence this triangle has vertices (0, 0),
(3/4,1/4), and (1/2,1/2), so neither critical point is inside of this region. This
leaves only the boundary values to check, which (as before) means we must find
the roots of certain polynomials of degree 4 as well as values at the endpoints.

• P(V,V ) = 0 for V = 0 (double root), V ≈ −0.27 and V ≈ 0.64; P(0, 0) = 0
and P(1/2,1/2) < 0.

• P(3V,V ) = 0 forV = 0 (double root), V ≈ −0.06 andV ≈ 0.51; P(0, 0) = 0
and P(3/4,1/4) < 0.

• P(U,1−U) = 0 forU ≈ 0.48 andU ≈ 0.79 (2 complex roots); P(1/2,1/2) <
0 and P(3/4,1/4) < 0.

Therefore, the inequality (5.1) holds. Note also that, as in the previous section, the
inequality is strict for any triangle other than equilateral.

6. Class 4: M ≥ 15

For this class our method is different than for the previous classes. Because we
are dealing with the triangles for which two sides are long and almost equal, we
will estimate the eigenvalue by the eigenvalue of a circular sector contained in the
triangle T.

We shall use γ to denote the angle between the sides of length N and M. First
we take the isosceles triangle with angle γ between the sides of length M. We can
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certainly put this triangle inside the triangle T. Since the shortest side of this isos-
celes triangle has length no greater than 1, the altitude h satisfies h ≥ √

M 2 − 1/4.
We now use S(α, r) to denote a circular sector with angle α and radius r. It is

known (see [8]) that the first eigenvalue of the sector S(α, r) is j 2
π/αr

−2, where jν
is the first zero of the Bessel function Jν(x) of order ν.

It is clear that we can put a sector S(γ,h) inside the triangle T. Hence, by do-
main monotonicity we have

λT ≤ λS(γ,h) = j 2
π/γ

h2
. (6.1)

We need to prove that
j 2
π/γ

h2
<
π2L2

T

9A2
T

. (6.2)

We haveLT = 1+M+N ≥ 2N andAT = sin(γ )NM/2 ≤ γNM/2. Therefore,
it is enough to show that

9j 2
π/γ (γNM/2)2

(M 2 − 1/4)2(2N)2
< 1 (6.3)

or that
9j 2
π/γ γ

2M 2

16π2(M 2 − 1/4)2
< 1. (6.4)

To find the bound for jν , we will use the estimate obtained in [9]:

jν ≤ ν − a1

21/3
ν1/3 + 3a2

1 21/3

20
ν−1/3, (6.5)

where a1 ≈ −2.338 is the first negative zero of the Airy function. Hence

jν

ν
≤ 1 + 2ν−2/3 + 2ν−4/3 (6.6)

and so

9j 2
π/γ γ

2M 2

16π2(M 2 − 1/4)2
≤

(
1 + 2

(
γ

π

)2/3

+ 2

(
γ

π

)4/3)2 9M 2

16(M 2 − 1/4)
. (6.7)

Inequality (6.7) is increasing with γ, as can be easily verified by differentiat-
ing. Given M, the angle γ is maximized for the isosceles triangle; hence γ ≤
2 sin−1(1/2M). In order to arrive at (6.4), it is enough to show that

(
1 + 2

(
2 sin−1(1/2M)

π

)2/3

+ 2

(
2 sin−1(1/2M)

π

)4/3)2 9M 2

16(M 2 − 1/4)
< 1.

(6.8)

It is easy to check that the function on the left side is decreasing with M and that,
forM = 15, the inequality is true. Hence (6.8) holds for any triangle withM ≥ 15.

Note also that if M → ∞ then the whole expression tends to 9/16. This shows
that the constant 16 in the lower bound in Theorem 1.1 is optimal.
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7. Script in Mathematica

Here we give the script written in Mathematica to handle all the cumbersome cal-
culations of Sections 2–5. It is important to note that all the calculations are done
symbolically; the exact values of the polynomials’ roots are converted to numeri-
cal form only at the end.

(* Section 2 *)

(* isosceles triangle with vertices (0,0), (1,0) and (Sqrt[3],0) *)

g[x_,y_]=Sin [Sqrt[3]\[Pi] y]Sin[\[Pi] x/3] + \

Sin[\[Pi] y/Sqrt[3]]Sin[5\[Pi] x/3] + \

Sin[2\[Pi] y/Sqrt[3]]Sin[4\[Pi] x/3];

(* other right triangles *)

g2[x_,y_]=g[1-x,y];

g3[x_,y_]=g[Sqrt[3]y,Sqrt[3]x];

(* test functions obtained from right triangles *)

\[CurlyPhi]1=g[x-(a y /b),Sqrt[3]y/b];

\[CurlyPhi]2=g2[x-((a-1) y /b),Sqrt[3]y/b];

\[CurlyPhi]3=g3[x-(a y /b),y/(Sqrt[3]b)];

(* equilateral triangle after linear transformation *)

\[Phi]:=Sin[2\[Pi]y/b]-Sin[2\[Pi](x+(1-a)y/b)]+Sin[2\[Pi](x-a y/b)];

(* final test function *)

\[Psi]=\[Alpha] \[CurlyPhi]1 + \[Beta] \[CurlyPhi]2 + \

\[Gamma] \[CurlyPhi]3 + \[Epsilon] \[Phi];

grad=Simplify[Integrate[D[\[Psi],x]ˆ2+D[\[Psi],y]ˆ2,{y,0,b}, \

{x,a y/b, (a-1) y/b+1}]];

int=Simplify[ Integrate[\[Psi]ˆ2,{y,0,b},{x,a y/b , (a-1)y/b +1}]];

(* we have to prove that this is <= 0 *)

in=9bˆ2grad-4\[Pi]ˆ2(1+Sqrt[aˆ2+bˆ2]+Sqrt[(a-1)ˆ2+bˆ2])ˆ2int;

(* change from (a, b) to (M, N) and cancel b *)

in2=Simplify[in/b /. bˆ2 -> Mˆ2 - aˆ2 /. a -> (Mˆ2 - Nˆ2 + 1)/2, \

(N > 0) && (M > 0)];

(* inequality (2.9) *)

Simplify[308788467187200in/b]

(* Section 3 *)

W=in2/. \[Epsilon] -> 0 /. \[Gamma] -> -1/6 /. \[Beta] -> 0 /. \

\[Alpha] -> 1;

(* Inequality (3.1) *)

Apart[1383782400W]

(* Critical point *)

Reduce[(D[W, M] == 0) && (D[W, N] == 0), {M, N}] // N

(* Boundary : roots and endpoints *)

Reduce[W == 0 /. N -> 2] // N

Reduce[W == 0 /. M -> N - 1] // N
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Reduce[W == 0 /. M -> N] // N

Reduce[W == 0 /. M -> 15] // N

W /. M -> {1, 2} /. N -> 2 // N

W /. M -> 15 /. N -> {15, 16} // N

(* Section 4 *)

W=in2/. \[Epsilon] -> 1 /. \[Gamma] -> 0 /. \[Beta] -> \[Alpha] /.\

\[Alpha] -> (N + M - 2)/2;

pol = W/. M -> U - V /. N -> U + V /. U -> U + 1;

(* inequality (4.1) *)

Apart[22056319084800pol, V]

(* Critical point *)

Reduce[D[pol, V] == 0, V] // N

(* Boundary : roots and endpoints *)

Reduce[pol == 0 /. V -> 0] // N

Reduce[pol == 0 /. U -> 1 - V] // N

Reduce[pol == 0 /. U -> 3V] // N

pol /. V -> 0 /. U -> {0, 1} // N

pol /. V -> 1/4 /. U -> 3/4 // N

(* Section 5 *)

W=in2/. \[Epsilon] -> 1 /. \[Beta] -> 0 /. \[Gamma] -> \[Alpha] /.\

\[Alpha] -> (M + N - 2)/Sqrt[2];

pol = W /. M -> U - V /. N -> U + V /. U -> U + 1;

(* inequality (5.1) *)

Apart[9609600pol, V]

(* Critical points *)

Vs = Solve[D[pol, V] == 0, V];

Reduce[D[pol, V] == 0, V, Reals]

(* denominator with complex roots only *)

Reduce[Denominator[Together[D[pol, U] /. Vs]] == 0] // N

(* polynomial of degree 7 in U *)

Reduce[Numerator[Together[

D[pol, U] /. Vs]] == 0] // N

(* Boundary : roots and endpoints *)

Reduce[pol == 0 /. U -> 3V] // N

Reduce[pol == 0 /. U -> V] // N

Reduce[pol == 0 /. V -> 1 - U] // N

pol /. U -> 1 - V /. V -> {1/4, 1/2} // N

pol /. U -> 0 /. V -> 0 // N
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