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1. Main Theorem

Let P(l,r) be an embedded once-punctured torus, k(l,a;r,b) a knot in P(l,r) in S3 de-
fined as in Figure 1, and

p(l,a;r,b) := la2 + ab + rb2,

where (a, b) is a coprime pair of integers a, b with 1 < a < b and where l and r

are integers. We will study the knots k(l,a;r,b) themselves later. Our main theorem
concerns Dehn surgery along k(l,a;r,b).

Figure 1 k(l,a;r,b) in P(l,r) (here, k(4,2;1,3))

Theorem 1.1. For each (l, a; r, b) as described previously, the resulting mani-
fold (k(l,a;r,b); p(l,a;r,b)) of p(l,a;r,b)-surgery along the knot k(l,a;r,b) is “at most”
a graph manifold obtained by splicing two Seifert manifolds over S2 ( possibly re-
duced to a Seifert manifold over S2, a lens space, or a connected sum of two lens
spaces in some cases).

In fact, (k(l,a;r,b); p(l,a;r,b)) bounds a plumbing manifold [O, p. 22] corresponding
to the weighted graph in Figure 2; that is, (k(l,a;r,b); p(l,a;r,b)) is described by the
framed link in the figure. We will give an algorithm to decide the integers nL, nR
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Figure 2 (k(l,a;r,b), p(l,a;r,b))

and the weights (i.e., framings) {aj} in Section 2, where a−(nR+1) = −1. Each ver-
tex with weight aj corresponds to a disk bundle over S2 whose self-intersection
number of the zero-section is aj , and each edge corresponds to a plumbing. The
reason why the weight r (or l, respectively) is in the left (or right) half of the figure
will become clear in Sections 2 and 3.

Theorem 1.1 includes the following Dehn surgeries, which were discovered one
by one.

(1) ab-surgery along T(a, b) is a connected sum of two lens spaces as the cases
(l, a; r, b) = (0, a; 0, b); see [M].

(2) A subfamily of Berge’s lens surgery [Be] (see also [Ba]; denoted by k±(a, b)

in [Y3]) as the cases (l, a; r, b) = (±1, a;1, b); it includes 19-surgery along
the pretzel knot Pr(−2, 3, 7) as the case (l, a; r, b) = (1, 2;1, 3).

(3) (4l + 15)-surgery on the pretzel knot Pr(−2, 3, 2 l + 5) is a Seifert manifold
[BH, Prop. 16] as the case (l, a; r, b) = (l, 2;1, 3) with l ≥ 2.

These surgeries may be alternatively proved by Theorem 1.1 and moves of graphs
[FS] in Figure 3 or Kirby calculus [K; GS].

In Section 3, we will prove Theorem 1.1 by Kirby calculus on framed links. The
process incorporates a Euclidean algorithm and the resolution [HKK; L] of the
singularity of the complex curve of type za − wb = 0 or the twisting sequence
on torus knots. This method was also discussed in [Y3] for the special case (2) of
lens surgery just listed. In order to extend this method to the more general case,
in this paper we will arrange the suffixes (js) of the sequence {aj}.

In Section 4 we will study the knots k(l,a;r,b) themselves. Each k(l,a;r,b) belongs
to the class of twisted torus knots studied in [D] and to the class of A’Campo’s
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Figure 3 Moves on graphs

divide knots if l and r are nonnegative; see [A1; A2; A3] (and also [GHY; Hi; Y1;
Y2]) for A’Campo’s divide knots.

2. Algorithm

Here we present the algorithm for defining the integers nR and nL as well as the
sequences

a1, a2 , . . . , anL
, a(nL+1) and a−(nR+1), a−nR

, . . . , a−2 , a−1

of weights (framings) in Figure 2, where a−(nR+1) = −1. The algorithm depends
only on (a, b) and is independent of l and r.

Algorithm—from (a, b) to the sequence {aj}.
(1) Euclidean algorithm: Get a word w(a, b) = w1w2 · · · wn of two letters L

(left) and R (right) from the pair (a, b) (=: (a0, b0)) inductively by the following
rule:

if ai > bi, then wi+1 := L and (ai+1, bi+1) := (ai − bi, bi);
if ai < bi, then wi+1 := R and (ai+1, bi+1) := (ai, bi − ai).

By the coprimeness of (a, b), after some n steps the pair (an, bn) becomes (1,1),
which is the end of this step. We define nR (and nL, respectively) as the number
of R (and L) in the word w(a, b).

(2) Next, starting with

{a(0)
∗ } = (a

(0)
−1 , a(0)

0 , a(0)
1 ) := (−1, −1, −1),

we define the sequence {a(i)∗ } (i = 1, 2, . . . , n) inductively as follows.
(a) For each i, a

(i)
0 = −1.

(b) If wi = R, then we define {a(i)∗ } as


a
(i)
j := a

(i−1)
j if j > 1 and a

(i−1)
j is defined,

a
(i)
1 := a

(i−1)
1 − 1,

a
(i)
−1 := −2,

a
(i)
j := a

(i−1)
j+1 if j < −1 and a

(i−1)
j+1 is defined.
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(c) If wi = L, then we define {a(i)∗ } as



a
(i)
j := a

(i−1)
j if j < −1 and a

(i−1)
j is defined,

a
(i)
−1 := a

(i−1)
−1 − 1,

a
(i)
1 := −2,

a
(i)
j := a

(i−1)
j−1 if j > 1 and a

(i−1)
j−1 is defined.

(3) For each integer j with −(nR + 1) ≤ j ≤ (nL + 1), we define aj as a
(n)
j in

the sequence {a(n)∗ } obtained after the nth step, where n is the length of the word
w(a, b).

By the assumption a < b, we have w1 = R and a−(nR+1) = −1. The resulting
sequence {aj} satisfies

[|a−(nR+1)|, |a−nR
|, . . . , |a−2|, |a−1|] = a

b
, [|a(nL+1)|, |anL

|, . . . , |a2|, |a1|] = b

a
,

where [x1, x2 , . . . , xn] is the continued fraction expansion

[x1, x2 , . . . , xn] := x1 − 1

x2 − 1

. . . − 1

xn

.

Example. (2, 7) →R (2, 5) →R (2, 3) →R (2,1) →L (1,1), with nR = 3 and
nL = 1.

i a
(i)

−4 a
(i)

−3 a
(i)

−2 a
(i)

−1 a
(i)

0 a
(i)

1 a
(i)

2

0 −1 −1 −1
1 −1 −2 −1 −2
2 −1 −2 −2 −1 −3
3 −1 −2 −2 −2 −1 −4
4 −1 −2 −2 −3 −1 −2 −4

See Figure 4.

3. Proof of Main Theorem

Let P := P(0,0) be a standardly embedded once-punctured torus in the position
S3 (cf. Figure 1); it consists of a disk D and two bands bL and bR. We take a sim-
ple closed curve k0(a, b) := k(0,a;0,b) in P as in Figure 1. The framing of k0(a, b)

defined by the surface P is ab. From now on, we call such a framing P -framing
(“surface framing”).

Twisting the bands bL right-handed l-fully, bR r-fully, and the curve k0(a, b) in
it simultaneously, we have the knot k(l,a;r,b) in the surface P(l,r). This operation is
realized by the framed link in the complement of P in S3; see Figure 5. Observe
that P(l,r)-framing of k(l,a;r,b) is p(l,a;r,b).
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Figure 4 Blow-ups

Figure 5 From (P, k0(a, b)) to (P(l,r), k(l,a;r,b))

Next, we move P and the curve k0(a, b) simultaneously in the total space S3 in
another way, according to each step of (2) in the Algorithm: if wi+1 = R (i.e., ai <

bi), we move the left band bL over the central (−1)-component and slide over bR

as in Figure 6. In each black box of the figure, we take a tangle T (x = y = −1)
for the first step and take the tangle that appeared in the gray box at the end of
the previous step, inductively. If wi+1 = L, the operation is similar by symmetry.
Note that, after each operation in Figure 6: P comes back to the starting position;
and k0(ai, bi) is changed to k0(ai, bi − ai) in the R case or to k0(ai − bi, bi) in
the L case—that is, to k0(ai+1, bi+1) in either case—and a new (−1)-component
appears for the next step. Note that the relation “P -framing of k0(ai, bi) is aibi”
is kept during the process.

After n steps (n is the length of the word w(a, b) in step (1) of theAlgorithm), we
have the framed link we seek: the final (−1)-curve γ and a (+1)-framed curve γ ′ :=
k0(1,1) in P. Sliding γ ′ over γ, we can cancel them. The proof of Theorem 1.1 is
completed.
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Figure 6 Operation (R case)

4. Knots k(l,a; r,b)

Here we describe the knots k(l,a;r,b) themselves, but we do not give complete proofs
because these can be established by method(s) already reported by the author [Y1;
Y2; Y3].

Theorem 4.1. If l ≥ 1 and r ≥ 1, then the knot k(l,a;r,b) is equal to a twisted
torus knot T(la + b, a; b, r) and also to T(a + rb, b; a, l ), where T(p, q; x, y) is
a knot obtained from a torus knot T(p, q) by y fully twisting of x strings in p par-
allel strings of T(p, q) in the standard position.

Outline of Proof. From k0(a, b) = k(0,a;0,b) in P = P(0,0), we have the knot
k(l,a;r,b) in the surface P(l,r) by twisting the bands bL l-fully and bR r-fully (and
the curve k0(a, b) in it simultaneously). Here, if we twist bL first, we have k(l,a;0,b)

in P(l,0) once; on the other hand, if we twist bR first then we have k(0,a;r,b) in P(0,r).

The once-punctured torus P(l,0) (and P(0,r) also) is isotopic to a subsurface of the
standard torus in S3, so both k(l,a;0,b) and k(0,a;r,b) are torus knots. Their indices
are easily calculated to be T(la + b, a) and T(a + rb, b), respectively. The sec-
ond twisting of bR or bL is easily checked to be the construction stated in the
theorem.

Next, we point out that k(l,a;r,b) belongs to A’Campo’s divide knots if l, r ≥ 0. Let
C(l,a;r,b) be a plane curve obtained by cutting out from the lattice X in the plane
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Figure 7 Curve C(l,a;r,b) (here, C(4,2;1,3))

as X ∩R(l,a;r,b) (and by smoothing), where R(l,a;r,b) is a region defined as in Fig-
ure 7. Note that R(l,a;r,b) should be in the position such that X ∩ R(l,a;r,b) is an
image of an immersion of an arc; see [Hi; Y2].

Theorem 4.2. For each (l, a; r, b) with l, r ≥ 0, the knot k(l,a;r,b) is A’Campo’s
divide knot L(C(l,a;r,b)) of C(l,a;r,b). Hence the unknotting number, minimal Seifert
genus, and 4-genus of k(l,a;r,b) are all equal to the number of double points in
C(l,a;r,b):

1
2 {la2 + ab + rb2 − (l + 1)a − (r + 1)b + 1}.

Outline of Proof. Each torus knot T(p, q) isA’Campo’s divide knot of the “billiard
curve” of a p×q rectangle region; see [GHY] (and [AGV; CP; GZ]).Adding x×x

squares along an edge of length p (x ≤ p) corresponds to once twisting x strings
among the p strings.

Note that the area of the region R(l,a;r,b) is equal to p(l,a;r,b) = la2 + ab + rb2

(see [Y1; Y2; Y3]).
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