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Convergence in Capacity of the
Perron–Bremermann Envelope

Rafał Czyż

1. Introduction

In [CK1], Cegrell and Kołodziej constructed a sequence of measures in a ball µj

converging to µ in the weak∗ topology such that the solutions of the Dirichlet
problems

(ddcuj )
n = dµj , uj = 0 on the boundary

are uniformly bounded yet uj does not converge to u, the solution of the Dirichlet
problem

(ddcu)n = dµ, u = 0 on the boundary.

In [CK2] the authors gave conditions on the Monge–Ampère mass of the solu-
tions uj , with fixed continuous boundary values ϕ, that guarantee the stability of
the complex Monge–Ampère operator. They introduced the set A(µ) of all solu-
tions u of the Dirichlet problem u∈ F(ϕ), (ddcu)n = gdµ, where µ is a positive
finite measure that does not put mass on pluripolar sets and where g varies over
all µ-measurable functions satisfying 0 ≤ g ≤ 1. Cegrell and Kołodziej proved
that, in A(µ), weak∗ convergence is equivalent to convergence in capacity.

Our main goal is to generalize this statement by admitting a large variation of
the boundary data. Let � be a bounded domain in Cn, let f be a bounded function
on ∂�, and let µ be a positive Borel measure on �. Following [BT1], we define

PB(f ,µ)

= {u∈ F(g) : (ddcu)n ≥ µ, g ≤ f , and g is upper semicontinuous on ∂�}.
We shall refer to the following function as the Perron–Bremermann envelope:

U(f ,µ) = sup{v : v ∈ PB(f ,µ)}.
For a fixed positive finite measure µ that does not put mass on pluripolar sets and
for a fixed positive constant k, we shall consider the family D(µ, k) of plurisub-
harmonic functions U(f , gdµ), where g is µ-measurable function such that 0 ≤
g ≤ 1 and where f varies over all upper semicontinuous functions on the bound-
ary such that |f | ≤ k. We shall prove that, in D(µ, k), pointwise convergence is
equivalent to convergence in capacity.
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This paper is organized as follows. In Section 2 we recall some basic facts about
the harmonic measures that will be useful in the subsequent sections.

Section 3 is devoted to the Cegrell classes. We recall the definitions of the Ce-
grell classes with continuous boundary data and give the analogous definition for
upper semicontinuous boundary data. We also prove that, for f a bounded and
upper semicontinuous function and forµ a positive finite measure that does not put
mass on pluripolar sets, the function U(f ,µ) belongs to the Cegrell class F(f )

and lim supz→wU(f ,µ)(z) = f(w) whenever the function f is continuous at
w ∈ ∂�.

In Section 4 we give the proof of the main theorem. We also show that, if uni-
formly bounded upper semicontinuous functions fj tend pointwise (as j → ∞)

to a bounded upper semicontinuous function f , then U(fj ,µ) → U(f ,µ) in ca-
pacity as j → ∞. Then, by a theorem of Xing [X],

(ddc(U(fj ,µ))
n → (ddcU(f ,µ))n

weakly as j → ∞.

2. Preliminaries

We begin with two easy propositions, which will be useful later. For the proofs,
see [Ru].

Proposition 2.1. Let X be a complete metric space and f a function that is
upper semicontinuous in X. Then there exists a family Vq , q ∈ Q, of open dense
sets in X such that f is continuous in Y, where

Y =
⋂
q∈Q

Vq

is a dense Gδ-subset in X.

Proposition 2.2. Let X be a complete metric space, x0 ∈ X, and let f : X →
R be a bounded function that is continuous at x0. Then there exists a continuous
function g : X → R such that g ≤ f and g(x0) = f(x0).

Now we recall some basic facts about harmonic measures. All definitions and
theorems concerning harmonic functions and harmonic measures can be found in
[ArG].

Let � ⊂ Rn be a bounded domain. Then for any x ∈ � there exists a positive
measure ωx such that suppωx ⊂ ∂�, ωx(∂�) = 1, and such that

h(x) =
∫
∂�

h dωx

for all h∈ H(�) ∩ C(�̄). For any Borel set B in ∂�, we write

ω(x,B) =
∫
B

dωx.
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Observe that ω(·,B) is a positive harmonic function. Recall that the harmonic
measure in the ball B(z, r) is equal to

dωw(ξ) = 1

σ(∂B(z, r))

r 2 − |w − z|2
|ξ − w|2n dσ (2.1)

for w ∈B(z, r), where dσ is the Lebesgue measure on ∂B(z, r).
Let f be a bounded function on ∂�. We will denote the Perron envelope for

subharmonic functions by

Hf = sup{u∈ SH(�) : lim supz→∂� u ≤ f }.
It it a well-known fact that Hf is harmonic in the regular, bounded domain � ⊂
Rn and

Hf (x) =
∫
∂�

f dωx.

Let us finally recall the definition of the relative capacity and of convergence in
capacity.

Definition 2.3. The relative capacity of the Borel set E ⊂ � ⊂ Cn with re-
spect to � is defined in [BT2] as

cap(E,�) = sup

{∫
E

(ddcu)n : u∈ PSH(�), −1 ≤ u ≤ 0

}
.

Definition 2.4. Let uj , u ∈ PSH(�). We say that a sequence uj converges in
capacity to u if, for any ε > 0 and K ⊂⊂ �,

lim
j→∞ cap(K ∩ {|uj − u| > ε}) = 0.

We will need the following well-known proposition (see [K]).

Proposition 2.5. Let � be a bounded hyperconvex domain in Cn and let a se-
quence uj ∈ PSH(�) be uniformly bounded. If uj increases almost everywhere
(with respect to the Lebesgue measure) to some u ∈ PSH(�) ∩ L∞

loc(�) as j →
∞, then uj → u in capacity as j → ∞.

Proof. Fix ε > 0 and K ⊂⊂ �. Because the functions uj and u are uniformly
bounded, we can assume that uj < −1 and u < −1 in �. Let ψ be the exhaustion
function for �. Then there exists a constant A > 0 such that Aψ < uj on K for
all j ≥ 1. Now define

vj = max(uj ,Aψ),

v = max(u,Aψ).

Observe that vj increases a.e. to v as j → ∞, so (ddcvj )
n → (ddcv)n weakly

as j → ∞ (see [BT2]). We also know that vj = v = Aψ in some neighborhood
of ∂� and that vj = uj and v = u on K. By [X] we get vj → v in capacity as
j → ∞, so
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lim
j→∞ cap(K ∩ {|uj − u| > ε}) = lim

j→∞ cap(K ∩ {|vj − v| > ε}) = 0,

completing the proof.

3. The Cegrell Classes with
Upper Semicontinuous Boundary Data

The Cegrell classes were first introduced in [C1]. More information about Cegrell
classes can be found in [C2; C3; A; ACz].

Recall that a bounded domain � in Cn is called hyperconvex (see [Kl]) if
every boundary point of � admits a weak plurisubharmonic barrier or (equiva-
lently) if there exists a smooth, strictly plurisubharmonic function ψ in � such
that limz→∂� ψ(z) = 0.

Definition 3.1. Let � be bounded hyperconvex domain in Cn. We say that u∈
E0 if u is a bounded plurisubharmonic function in �, limz→∂� u(z) = 0, and∫

�

(ddcu)n < +∞.

For p ≥ 1, define Ep to be the class of all plurisubharmonic functions u in � for
which there exists a decreasing sequence uj ∈ E0 such that uj ↘ u as j → ∞ and

sup
j

∫
�

(−uj )
p(ddcuj )

n < +∞. (3.1)

If the sequence uj can be chosen so that it satisfies also the condition

sup
j

∫
�

(ddcuj )
n < +∞, (3.2)

then we say that u belongs to the class Fp.

We say that u ∈ E if u is a plurisubharmonic function in � and if, for each z ∈
�, there exist a neighborhood ω of z and a decreasing sequence uj ∈ E0 satisfying
(3.2) such that uj ↘ u on ω as j → ∞. If the sequence can be chosen so that uj
converges pointwise to u on all of �, then we say that u belongs to the class F.

Now we recall the definition of the Cegrell class with continuous boundary data.

Definition 3.2. Let K ∈ {E0, Ep, Fp, F, E}, let � be bounded hyperconvex do-
main in Cn, and let f ∈ C(∂�) be such that limz→wU(f , 0)(z) = f(w) for all w ∈
∂�. A plurisubharmonic function u on � belongs to the class K(f ) if there exists
a v ∈ K such that

U(f , 0) ≥ u ≥ v + U(f , 0). (3.3)

A bounded domain � in Cn is called B-regular (see [S]) if every boundary point
of � admits a strong plurisubharmonic barrier or (equivalently) if there exists a
smooth, strictly plurisubharmonic function ϕ in� such that limz→∂� ϕ(z) = 0 and
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n∑
j,k=1

∂ 2ϕ

∂zj∂z̄k
αj ᾱk ≥ |α|2 ∀α ∈ Cn.

Sibony [S] showed that these conditions are equivalent to the condition that every
continuous function on ∂� is extendable to a continuous plurisubharmonic func-
tion on �.

As in the continuous case, we can define the Cegrell classes with upper semi-
continuous boundary data.

Definition 3.3. Let K ∈ {E0, Ep, Fp, F, E}, let � be bounded B-regular domain
in Cn, and let f be an upper semicontinuous function on ∂�. A plurisubharmonic
function u on � belongs to the class K(f ) if there exists a v ∈ K such that

U(f , 0) ≥ u ≥ v + U(f , 0).

Later we shall give an example (see Example 3.11) showing that the Cegrell classes
with upper semicontinuous boundary values are different from the Cegrell classes
with continuous boundary values.

Definition 3.4. Define the class F a (resp. F a(f )) to be the set of all u ∈ F
(resp. u∈ F(f )) such that (ddcu)n vanishes on every pluripolar set; that is,∫

E

(ddcu)n = 0

for any pluripolar set E.

Cegrell proved in [C1] that the comparison principle holds in the class F a. Later,
Åhag [A] and Cegrell [C2] separately proved that the comparison principle holds
also in the class F a(f ). Following the method used in [C2] and [A], one can prove
the following theorem.

Theorem 3.5. Let � be bounded B-regular domain in Cn, let f and g be bounded
upper semicontinuous functions on ∂� such that f ≥ g, and let u ∈ F a(f ) and
v ∈ F(g). If (ddcu)n ≤ (ddcv)n, then v ≤ u on �.

Now we define the following class of measures.

Definition 3.6. Let�be a bounded hyperconvex domain in Cn. Define MF a =
MF a(�) to be the set of all positive, finite measures µ on � such that µ vanishes
on all pluripolar sets in �.

Definition 3.7. Let� be a bounded hyperconvex domain in Cn. Define MFp =
MFp(�) (p ≥ 1) to be the set of all positive, finite measures µ on � for which
there exists a constant A > 0 such that, for every ϕ ∈ E0,∫

�

(−ϕ)p dµ ≤ A

(∫
�

(−ϕ)p(ddcϕ)n
)p/(n+p)

.

Cegrell [C1] proved that, for every p ≥ 1, MFp ⊂ MF a.
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The first part of the following theorem was proved in [C1], and the second part
was proved in [A].

Theorem 3.8. Let � be a bounded hyperconvex domain in Cn. For every µ ∈
MF a (resp.µ∈ MFp,p ≥ 1) there exists a unique u∈ F (resp. u∈ Fp) such that
(ddcu)n = µ. Moreover, if f ∈ C(∂�) and if limz→wU(f , 0)(z) = f(w) for all
w ∈ ∂�, then for every µ ∈ MF a (resp. µ ∈ MFp, p ≥ 1) there exists a unique
u∈ F(f ) (resp. u∈ Fp(f )) such that (ddcu)n = µ and lim supz→w u(z) = f(w)

for all w ∈ ∂�.

Next we prove the following lemma.

Lemma 3.9. Let � be a bounded, B-regular domain in Cn, let µ∈ MF a (resp.
µ ∈ MFp, p ≥ 1), and let f be a bounded, upper semicontinuous function on
∂�. Then U(f ,µ) ∈ F(f ) (resp. U(f ,µ) ∈ Fp(f )), (ddcU(f ,µ))n = µ, and
lim supz→wU(f ,µ)(z) ≤ f(w) for all w ∈ ∂�. Moreover, if f is continuous at
w0 ∈ ∂� then lim supz→w0 U(f ,µ)(z) = f(w0).

Proof. Assume that µ∈ MF a; the proof is analogous in the case µ∈ MFp. First
observe that PB(f ,µ) �= ∅ because, by Theorem 3.8, U(inf∂� f ,µ) ∈ PB(f ,µ).
Since f is an upper semicontinuous function, there exists a sequence of contin-
uous functions fj decreasing to f. By Theorem 3.8 we know that there exists a
sequence uj ∈ F(fj ) such that (ddcuj )

n = µ and lim supz→w uj(z) = fj(w) for
all w ∈ ∂�. By Theorem 3.5, uj is decreasing and so there exists a v ∈ PSH(�)
such that uj ↘ v as j → ∞ and (ddcv)n = µ. By Theorem 3.8 there exists a ϕ ∈
F such that (ddcϕ)n = µ. Hence from Theorem 3.5 we obtain

U(0, fj ) ≥ uj ≥ ϕ + U(0, fj ),

and if j → ∞ then we have

U(0, f ) ≥ v ≥ ϕ + U(0, f ).

So v ∈ F(f ), which implies that v ≤ U(f ,µ).
On the other hand, if u∈ PB(f ,µ) and u∈ F(g), where g is an upper semicon-

tinuous function on ∂� and g ≤ f , then

lim sup
z→w

u(z) ≤ g(w) ≤ f(w) ≤ fj(w)

for every w ∈ ∂�; thus, by Theorem 3.5, u ≤ uj in �. Taking supremum over all
u yields U(f ,µ) ≤ v, so U(f ,µ) = v. This implies that U(f ,µ) ∈ F(f ), since
U(0,µ)∈ F and

U(f , 0) ≥ U(f ,µ) ≥ U(0,µ) + U(f , 0).

Now suppose that f is continuous at w0 ∈ ∂�. By Proposition 2.2 there exists
a g ∈ C(∂�) such that g ≤ f and g(w0) = f(w0). Hence there exists a u∈ F(g)

such that (ddcu)n = µ and lim supz→w u(z) = g(w) for all w ∈ ∂�. Now ob-
serve that u∈ PB(f ,µ), so u ≤ U(f ,µ) on �. We also have
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f(w0) = g(w0) = lim sup
z→w0

u(z) ≤ lim sup
z→w0

U(f ,µ)(z) ≤ f(w0).

This implies that lim supz→w0 U(f ,µ)(z) = f(w0).

Remark. If we assume in Lemma 3.9 that the measure µ = (ddcu)n where u∈
E0, then U(f ,µ) is a bounded plurisubharmonic function. Moreover, if f is con-
tinuous at w0 ∈ ∂� then limz→w0 U(f ,µ)(z) = f(w0).

The following example shows that it is not possible to obtain that, for every w ∈
∂�, lim supz→wU(f ,µ)(z) = f(w).

Example 3.10. Define the upper semicontinuous function f on the boundary of
the unit ball in C2 by

f(z,w) =
{

1 if |z| = 1,

0 if |z| < 1.

Note that the sequence fj(z,w) = |z|j is decreasing to f on ∂B(0,1) as j → ∞.

Moreover, the function uj(z,w) = |z|j satisfies the conditions (ddcuj )
2 = 0 and

uj = fj on ∂B(0,1). So by Lemma 3.9 we have U(f , 0) = limj→∞ uj = 0, which
implies that lim supz→∂B(0,1) U(f , 0) �= f.

The next example shows that Cegrell classes with upper semicontinuous boundary
values are nontrivial generalizations of Cegrell classes with continuous boundary
values. We show that there exist both an upper semicontinuous function f on the
boundary of the unit ball ∂B(0,1) in C2 and a bounded plurisubharmonic function
u on B(0,1) such that

u∈ E0(f )
∖( ⋃

g∈C(∂B)
E0(g)

)
.

Example 3.11. Let B(0,1) be the unit ball in C2. We define on ∂B(0,1) the
function

f(r1e
iθ1, r2e

iθ2) = θ1,

where r 2
1 + r 2

2 = 1 and θ1, θ2 ∈ (0, 2π]. Observe that f is an upper semicontinu-
ous function but not a continuous function. By Lemma 3.9, limz→wU(f , 0)(z) =
f(w) for all w ∈ ∂B(0,1) for which f(w) �= 2π. By definition we have U(f , 0)∈
E0(f ), but there does not exist a g ∈ C(∂B(0,1)) such that U(f , 0) ∈ E0(g). To
prove this, suppose by contradiction that there exists a g ∈ C(∂B(0,1)) such that
U(f , 0) ∈ E0(g). Then limz→wU(f , 0)(z) = g(w) for all |w| = 1; but this im-
plies that g(w) = f(w) for all w ∈ ∂B(0,1), which is impossible because f has
no continuous extension on the whole boundary.

From Lemma 3.9 we have the following corollary.

Corollary 3.12. Let � be a bounded, B-regular domain in Cn and let f be a
bounded, upper semicontinuous function on ∂�. Then, for every µ∈ MF a (resp.
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µ ∈ MFp, p ≥ 1), there exists a unique u ∈ F(f ) (resp. u ∈ Fp(f )) such that
(ddcu)n = µ.

4. Main Results

The main theorem of this paper is as follows.

Theorem 4.1. Let � ⊂ Cn be a bounded B-regular domain, let µ∈ MF a, let fj
be a uniformly bounded sequence of upper semicontinuous functions on ∂�, and
let f be a bounded upper semicontinuous function on ∂�. If fj → f pointwise
as j → ∞, then U(fj ,µ) → U(f ,µ) in capacity as j → ∞.

Remark. Theorem 4.1 does not hold if we replace pointwise convergence fj →
f by convergence in Lp(dσ), where dσ is the surface measure and p ≥ 1; this
was pointed out to the author by Professor Urban Cegrell. See [R] for the exam-
ple of a sequence of continuous functions fj defined on the boundary of the unit
ball such that, as j → ∞, fj → 0 in Lp(dσ) (for all p ≥ 1) but U(fj , 0) � 0 in
capacity.

In order to prove Theorem 4.1, we need the following lemma.

Lemma 4.2. Let � be a bounded domain in Cn, and let the sequence fj : ∂� →
R be uniformly bounded. If fj ≥ 0 and fj → 0 in L1(ωz0), as j → ∞, for some
z0 ∈�, then U(fj , 0) → 0 locally uniformly as j → ∞.

Proof. Note that

0 ≤ U(fj , 0)(z) ≤ Hfj (z) =
∫
∂�

fj dωz.

Fix a compact set K ⊂ �. By Harnack’s inequality there exists a constant C > 0
such that

‖U(fj , 0)‖K ≤ C

∫
∂�

fj dωz0 . (4.1)

By our assumptions we know that fj → 0 in L1(ωz0) as j → ∞, so we have
proved that U(fj , 0) → 0 locally uniformly as j → ∞.

Now we can prove Theorem 4.1.

Proof of Theorem 4.1. First we prove the theorem for f = 0 and µ = 0. Let us
define the upper semicontinuous functions hk = min(fk , 0) and gk = max(fk , 0).
Observe that

hk ≤ fk ≤ gk

and
U(hk , 0) ≤ U(fk , 0) ≤ U(gk , 0). (4.2)

We want to prove thatU(fk , 0) → 0 in capacity as k → ∞. By (4.2) it is enough to
show that U(gk , 0) → 0 and U(hk , 0) → 0 in capacity as k → ∞. From Lemma
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4.2 we get U(gk , 0) → 0 locally uniformly as k → ∞, so also U(gk , 0) → 0 in
capacity as k → ∞.

It remains to check that U(hk , 0) → 0 in capacity as k → ∞. We define the
upper semicontinuous function lk = infj≥k hj . Then

lk ≤ hk ≤ 0,

and lk → 0 as k → ∞ since hk → 0 as k → ∞.

Now observe thatU(lk , 0) is increasing, so there exists aψ such thatU(lk , 0) ↗
ψ; hence, by Proposition 2.5, ψ∗ ∈ PSH(�) ∩ L∞(�), (ddcψ∗)n = 0, and
U(lk , 0) → ψ∗ in capacity as k → ∞. We must show that ψ∗ = 0 in �. By
Proposition 2.1 there exists a dense Gδ-set Gk ⊂ ∂� such that lk is continuous on
Gk. Let

G =
⋂
k

Gk.

By Baire’s theorem, G is a dense subset of ∂� and so, by Lemma 3.9,

0 = lim
k→∞ lk(w) ≤ ψ∗(w) ≤ 0

for w ∈G. We have ψ∗ = 0 on G and therefore ψ∗ = 0 on ∂�.

Now fix z ∈ �. For all k ∈ N there exists a decreasing sequence of nonposi-
tive functions ljk ∈ C(∂�) such that ljk → lk as j → ∞. Moreover, there exists an
increasing sequence j(k) such that

U(lk , 0)(z) ≥ U(l
j(k)

k , 0)(z) − 1

k
.

Let Lk = l
j(k)

k . Observe that Lk → 0 as k → ∞, since lk → 0 as k → ∞. Define

ϕ = sup
k∈N

U(Lk , 0).

Then ϕ∗ ∈ PSH(�)∩L∞(�), and we will prove that limz→∂� ϕ∗(z) = 0. Fix w ∈
∂�. Since ϕ∗ ≥ U(Lk , 0) for all k, we obtain

0 ≥ lim sup
z→w

ϕ∗(z) ≥ lim inf
z→w

ϕ∗(z) ≥ lim inf
z→w

U(Lk , 0)(z) = Lk(w).

But limk→∞ Lk(w) = 0, so limz→w ϕ
∗(z) = 0.

Observe also that lim infz→∂�(ϕ
∗(z) − ψ∗(z)) ≥ 0 and ϕ∗ ≥ ψ∗ in �, so by

the comparison principle we have∫
�

(ddcϕ∗)n ≤
∫
�

(ddcψ∗)n = 0.

This implies that (ddcϕ∗)n = 0 and therefore ϕ∗ = 0 in �. But we also have

ψ∗(z) =
(

lim
k→∞U(lk , 0)(z)

)∗ ≥
(

lim sup
k→∞

(
U(Lk , 0)(z) − 1

k

))∗
= ϕ∗(z) = 0,

which means that ψ∗(z) = 0. So we have proved that ψ∗ = 0 in �.
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For the general case we define the functions

gj = max(fj , f ) and hj = min(fj , f ).

Then gj ,hj are upper semicontinuous functions and, as j → ∞, we have gj → f

and hj → f. From the definition of gj and hj we obtain

hj ≤ fj ≤ gj ,
so

U(hj ,µ) − U(f ,µ) ≤ U(fj ,µ) − U(f ,µ) ≤ U(gj ,µ) − U(f ,µ). (4.3)

If v ∈ PB(hj − f , 0) then, for all w ∈ ∂�,

lim sup
z→w

(v + U(f ,µ))(z) ≤ lim sup
z→w

v(z) + lim sup
z→w

U(f ,µ)(z) ≤ hj(w).

Moreover, (ddc(v + U(f ,µ)))n ≥ (ddcU(f ,µ))n = µ and so v + U(f ,µ) ∈
PB(hj ,µ). This implies that v + U(f ,µ) ≤ U(hj ,µ) and then

U(hj − f , 0) + U(f ,µ) ≤ U(hj ,µ). (4.4)

In exactly the same way we can prove that

U(gj , 0) − U(f ,µ) ≤ −U(f − gj ,µ). (4.5)

From (4.3), (4.4), and (4.5) it follows that

|U(fj ,µ) − U(f ,µ)| ≤ max(|U((hj − f ), 0)|, |U((f − gj ), 0)|).
We know (see [BT2]) thatU((hj −f ), 0) = U((hj −f ), 0)∗ andU((f −gj ), 0) =
U((f − gj ), 0)∗ outside a pluripolar set. To finish the proof it is enough to show
that U((f − gj ), 0)∗ and U((hj − f ), 0)∗ approach 0 in capacity as j → ∞.

First we prove that U((hj − f ), 0)∗ → 0 in capacity as j → ∞. There exists
a decreasing sequence of continuous functions Fj ↘ f as j → ∞. Define the
function Hj = hj − Fj . Then Hj is an upper semicontinuous function such that
Hj → 0 pointwise as j → ∞. Moreover, Hj ≤ hj − f ≤ 0 and so

U(Hj , 0) ≤ U(hj − f , 0) ≤ U(hj − f , 0)∗ ≤ 0.

By the first part of the proof we know that U(Hj , 0) → 0 in capacity as j → ∞,
so also U(hj − f , 0)∗ → 0 in capacity as j → ∞.

In exactly the same way we can prove that U((f − gj ), 0)∗ → 0 in capacity
as j → ∞. There exist sequences of continuous functions Gj

k ↘ gj , as k → ∞,
for all j ≥ 0. Let us define Lj = f − G

j

j . Then Lj is an upper semicontinuous
function such that Lj → 0 pointwise as j → ∞ and

Lj ≤ f − gj ≤ 0.

Therefore,
U(Lj , 0) ≤ U(f − gj , 0) ≤ U(f − gj , 0)∗ ≤ 0.

By the first part of the proof, U(Lj , 0) → 0 in capacity as j → ∞, so also
U(f −gj , 0)∗ → 0 in capacity as j → ∞. This finishes the proof of Theorem 4.1.
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The main purpose of this paper is to generalize the following theorem, which was
proved by Cegrell and Kołodziej in [CK2].

Theorem 4.3. Let � ⊂ Cn be a bounded strictly pseudoconvex domain, and
let µ ∈ MF a and ϕ ∈ C(∂�). Let the functions uj , u ∈ F(ϕ) solve the Dirichlet
problems

(ddcuj )
n = gj dµ and (ddcu)n = gdµ

for gj , g µ-measurable functions with values in [0,1] and satisfying gj dµ → gdµ

as j → ∞. Then uj → u in capacity as j → ∞. Moreover, if A(µ) denotes the
set of all solutions of the Dirichlet problem

u∈ F(ϕ), (ddcu)n = gdµ,

where g varies over all µ-measurable functions with 0 ≤ g ≤ 1, then in A(µ) it
follows that convergence in L1

loc(�) is equivalent to convergence in capacity.

Theorem 4.1 gives us a condition that guarantees the stability of the solutions of the
complex Monge–Ampère operator. In this condition we fix the Monge–Ampère
mass of the solutions while the boundary values of the solutions remain uniformly
bounded. Thus we may prove the following theorem.

Theorem 4.4. Let � ⊂ Cn be a bounded B-regular domain, and let µ∈ MF a

and k > 0. Denote by B(µ, k) the set of all plurisubharmonic functions U(f ,µ),
where f : ∂� → R is an upper semicontinuous function such that |f | ≤ k. Then,
in B(µ, k), pointwise convergence is equivalent to convergence in capacity.

Proof. Let uj , u ∈ B(µ, k) and let uj → u pointwise as j → ∞. Suppose that
uj does not converge in capacity to u as j → ∞. Then, for some ε > 0 and
K ⊂⊂ �, there exist a subsequence ujl and constants c > 0 and N > 0 such that,
for jl ≥ N,

cap(K ∩ {|ujl − u| > ε}) ≥ c. (4.6)

There exist balls B(z1, r), . . . ,B(zm, r) such that K ⊂ ⋃m
p=1B(zp, r). There exists

a subsequence (denoted also by ujl ) such that, for any B(zp, r) with 1 ≤ p ≤ m,
ujl restricted to ∂B(zp, r) tend pointwise to u restricted to ∂B(zp, r) as l → ∞.

By Theorem 4.1, ujl → u in capacity on B(zp, r) as l → ∞, so ujl → u in capac-
ity on

⋃m
p=1B(zp, r) as l → ∞; this contradicts (4.6), concluding the proof.

Combining Theorem 4.3 and Theorem 4.4, we can obtain a new condition that
gives stability of the solutions of the complex Monge–Ampère operator.

Theorem 4.5. Let � ⊂ Cn be a bounded, strictly pseudoconvex domain, and
let µ∈ MF a. Let fj , f be uniformly bounded upper semicontinuous functions on
the boundary and let fj → f pointwise as j → ∞. Let the functions gj and g be
µ-measurable with values in [0,1] and satisfying gj dµ → gdµ as j → ∞. Then
U(fj , gj dµ) → U(f , gdµ) in capacity as j → ∞.

Proof. Let fj , f be uniformly bounded upper semicontinuous functions on ∂�

such that fj → f as j → ∞, and let gj , g be µ-measurable functions such that
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0 ≤ gj , g ≤ 1, and gj dµ → gdµ as j → ∞. Then, by Lemma 3.9, U(fj , gj dµ)∈
F(fj ) and U(f , gdµ)∈ F(f ). From the proof of Theorem 4.1 we can obtain

U(min(fj − f , 0), |gj − g|dµ) ≤ U(fj , gj dµ) − U(f , gdµ)

≤ −U(min(f − fj , 0), |gj − g|dµ).
Hence it is sufficient to show that U(min(fj − f , 0), |gj − g|dµ)∗ → 0 and
U(min(f − fj , 0), |gj − g|dµ)∗ → 0 in capacity as j → ∞. We shall prove this
for the function U(min(f −fj , 0), |gj −g|dµ)∗; the proof for the second function
is analogous.

We have the inequality

U(0, |gj − g|dµ)+U(min(f − fj , 0), 0) ≤ U(min(f − fj , 0), |gj − g|dµ)∗ ≤ 0.

By Theorem 4.3 we know that U(0, |gj − g|dµ) → 0 in capacity as j → ∞.

Repeating again the argument from the proof of Theorem 4.1, one can show that
U(min(f − fj , 0), 0)∗ → 0 in capacity as j → ∞.

Theorem 4.5 yields the following corollary.

Corollary 4.6. Let � ⊂ Cn be a bounded, strictly pseudoconvex domain, and
let µ∈ MF a and k > 0. Denote by D(µ, k) the set of all plurisubharmonic func-
tions U(f , gdµ), where f : ∂� → R is an upper semicontinuous function such
that |f | ≤ k and g is a µ-measurable function such that 0 ≤ g ≤ 1. Then, in
D(µ, k), pointwise convergence is equivalent to convergence in capacity.

Proof. The proof follows from Theorem 4.4 and the proof of Theorem 4.5.
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