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C*-Estimates for the d,-Equation on
Convex Domains of Finite Type

WILLIAM ALEXANDRE

1. Introduction

Since the construction in [8] of a support function for convex domains of finite
type, many results about the regularity of Cauchy—Riemann equations have been
obtained on these domains. We should mention [7], in which a 8-solving operator
for all convex domains of finite type was constructed that satisfies optimal uni-
form Holder estimates. Note that this result was already obtained in [5] by using
properties of the Bergman kernel. For a convex domain of finite type, Hefer [12]
obtained Holder and L”-estimates depending on Catlin’s multitype. In [2], a mod-
ification of the operator of [7] led to C k_estimates for all k € N. In this work, we
are interested in the regularity of tangential Cauchy—Riemann equations.

Let D be a bounded convex domain in C" of finite type m, with bD its bound-
ary. We denote by r a C*°-defining convex function for D such that grad r(¢) #
0 for all ¢ in a neighborhood V of bD. We use the definition of the equivalence
classes and of the 3, operator given in [13] and denote by [ f] the class of a form f.

Let C§ ,(bD), o = 0, be the set of (0, ¢)-forms of regularity C* in a neighbor-
hood of bD and let C(‘)’ (bD) be the set of equivalence classes [ f] such that f €
Co. q(bD) The tangent1a1 norm ||[ f1llsp,« is then defined by

1L/ Mop,o == inf{ligllop,a. & € Cg ,(bD), [g] = [f1}.

Now we state our main result.

THEOREM 1.1.  Let D be a bounded convex domain with C *°-smooth boundary of
finite type m in C", and letq =1,...,n — 1. Then there exist two linear operators
[7,1,[T,]: C0 (bD) — Coq_l(bD) such that the following statements hold.

(i) Forall k e N there is a constant c; > 0 such that, for all [ f] € C0 q(bD)
[T,1[f] and [T,]1 f] are in C0+1 m(bD) and

T AL Mop kr1ym + WTAL oD kriym < ckllLFbn.4-

(ii) Forall [f] € (j’o,q(bD) such that 5b[f] belongs to 607q+1(bD) and_with the
additional hypothesis when q = n — 1 that th f A¢ =0 for all 3-closed
Jorms ¢ € C,(bD), we have

Received April 2, 2004. Revision received February 22, 2005.

357



358 WILLIAM ALEXANDRE

[f1= 8([T,] — [T,DLf1+ ([ Tysi] — [T,411)3p[ f]
(in the case ¢ = n — 1 we set [T,] = [T,,] =0).

Theorem 1.1 for k = 0 was already shown for strictly pseudoconvex domains in
[13], and the method we follow here is close to that used by Henkin. More pre-
cisely, when f is a continuous representative of [ f] € 6‘8 q(bD) we write f as
the jump on bD of two (0, g)-forms f, and f_, where f, is defined on D and f
on C" \ D. Then we use two integral formulas with the kernels ,, , and Q’
represent f, and f_, yielding the two operators [T,] and [T 1.

In the strictly pseudoconvex case, Henkin first defined €2, ,. Next he defined a
second kernel fln,q by swapping (in €2,, ,) the roles of z and the integration vari-
able ¢. We define 2, , as in [13] and get the kernel already used in [7]. This gives
us an operator T satisfying Holder estimates and inducing [T, ]. However, we can-
not define the second kernel as in Henkin [13] because the normal component in ¢
of ©,, , has a bad behavior. This does not matter in [7] because the main difficulty
is the control of a boundary integral and so the normal component in the integra-
tion variable does not play any role. If we define fzn 4 by exchanging ¢ and z in
Q, 4, then the normal component in z of Q,, , will have a bad behavior and will
not disappear when integrating over the boundary. An operator T defined with
such a kernel and a continuous (0, g)-form f may give a form 7, f unbounded
in a neighborhood of D and will not induce an equivalence class! However, by
definition the equivalence classes do not take the normal component into account.
Hence we define a suitable kernel fZ’ , by keeping only the tangential component
inz of Q, .q- Now Q’ n,q S1Ves us an operator T’ such that T f is Holder continu-
ous of order 1/m prov1ded f is continuous. Therefore T’ 1nduces [T ].

Once the two operators [7;] and [T] are correctly deﬁned to show (i) of
Theorem 1.1 we estimate the kernels and their tangential derivatives with respect
to e-extremal bases and, using an induction argument, we integrate by parts many
times.

2. Definition of the Operators

We recall the definition from [8] of the support function F. For @ € R we set
D, :={z€C", r(z) < a}. We fix some ¢ in V and denote by TchD,.(g) the com-
plex tangent space to bD, () at { and by 7, the outer unit normal at ¢ to bD, ).
Then we choose an orthonormal basis wj, ..., w;, such that w| = .. Set r.(w) =
r(¢ +ww; + -+ w,w,) and

1 or
Fr(w) :=3w; + Ko} — KZ M”Zﬁva ;() w?,
|Bl= /

Bi1=
where K, K’, M are positive real numbers and

1 if j =0 mod 4,
kj=1 —1 if j=2mod4,

0 otherwise.
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Let z € C" be written as z = { + wy ;w; + - - - + @, ;w,. We define
F(¢,2) i= Fe(wi,z, ..., 05,2).
THEOREM 2.1.  The neighborhood V of bD and the constants K, K', M in the def-
inition of F can be chosen such that, for some positive real numbers k', c, R and

for any ¢ €V, any unit vector v € TCCbD,.(;), and any w = (wy,w,) € C? with
lw| < Randr(¢ + win; + wyv) —r(¢) <0, F satisfies

NRF(, ¢+ winy + wov)

ERU)]
< —
=2

m

, KK BIr (L + )
——(“wl) - §j
=5 ET

+c(r (€ +wing + wav) —r(Z)).

‘|w2|j

A=0

This theorem was proved in [8]. However, we may have F(¢,z) = Owhen [ —z| >
R and so we should use the global version § of [2]. The construction of S does
not require any ideas other than those of [16]. As in the strictly pseudoconvex case
(see [16, Proof of Thm. 1.13, p. 224]), S satisfies the following conditions.

(i) S is of regularity C* in V x U, where U is a neighborhood of D and S,
is holomorphic on Uf.
(i) S, ¢)=0forced NV.
(iii) There exists a constant ¢ > 0 such that RS(¢,z) < —c|¢ —z|™" forall (¢,2) €
YV x U withr(¢) > r(z).
(iv) On {(¢,2) €V x U, |¢ — z|] < R/2}, there is a C*°-function A with

I<]AQG <2 and S=A-F.

Moreover, A(¢,z) = 1/(1+ (m" — v(¢,2))F(¢,2)), where m' is a constant
and v a bounded C*° function defined on V x U such that all its derivatives
are also bounded on V x U.

We need a Hefer—Leray section for S. We choose an arbitrary unitary matrix U
of C™" and set

(o) =S¢, ¢ + Uo), )
oy

Jj(é—’ (,()) = / a_(g’ [(,()) dt’ (2)
0 0wj

0(t,2) = U015, Uz = ©)), ..., 0u(¢, U'(z = O))). 3)

One can easily see that X (¢, w) = Z;’zl w;0;(¢, w) and that Q does not depend
on U and satisfies S(¢,z) = Z;zl 0;(,2)(& — zj)-
Later on we will choose U = U(¢) so that U'n, = (1,0,...,0). With that
choice, the o; will locally have the same behavior as the Qg of [7].
Now we define the kernels and set 70(¢,2) = D_7_ & — ¢ — z;d¢;, m(¢,z) =
Z?:] Qj(;» Z)dé'j, and
no(¢,2) m(¢,z)

A7) =0 —A + A .
N, x,z) = ( )|§—z|2 5.0
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For0 <g <n—1,set
—14e=D/2
o, _ b
’ im)"
and Q, _1 = Q,, = 0. Then, forall z € D and all f € Cy,(bD), we define

n _1 3 n—q— a
( . )m(am) RN CEN

T, f(2) =/b FE) ARy g-1(8, A, 2).
Dx[0,1]

In order to define Q;ﬂ we set §(§, z) = S(z,¢) and Q(g, z) = —0(z,¢), so that
5(.2) =Y_, 0;(¢.2)(&; — z;) forall (,2) € U x V. We then set 7j(,2) =
Y01 0)(¢,2)dg; and

n0(¢,2) )\ﬁl((,z)
-z " T 3,2

Next we define an operator 3’ that removes the normal component of 3. For z € V
let ¥ := W(z) be a unitary matrix such that Wn, = (1,0,...,0). We set

_ " 0 - r = _
Lf = jgl\ylja—z] and llz :;\I’Udzj

n¢,r,z) =1-2)

Note that, for i = 2,...,n, the L7 are tangential vectors fields and the [ are tan-
gential forms. Moreover, since U s a unitary matrix, for all (p, g)-forms f we
have Z;’zl L;(f) A ljZ = (=1)PTaqf.

For all (p, q)-forms f we set 'f = af + (—1)P 9+ Li(f) A I7. Note that 3’
is well-defined and does not depend on \il, since

n

- 1 or 0 - 1 -
LZ = = —\Z)— and 2= _—8 r(z2).
' Zwr(znazj( )8z.,~ = G @

j=1
Forg =1,...,n — 1 we define

Q=
™4 Qim)n
and Q! | =Q! =0.ForzeV— Dand f € Cp,(bD) we set

n,n

(_1)q(q—1)/2 n—1\_ = ol _
=~ A @)™ A AL

B =[ @A, .

bDx[0,1]
LEmMmA 2.2. For A = % or %, j =1,...,n,and for f € C((){q(bD), q =
1,...,n — 1, the following inequalities hold uniformly with respect to z and f:

(@) AT, fI S I flbpolr ()" forallz € DNV
(i) 1AT, f(I S I f .ol r ()™ forall z €V — D.

We will prove Lemma 2.2 in Section 5. This lemma and Hardy-Littlewood’s
lemma imply that 7, f and th f belong to C(l){ Z(bD) when f belongs to C& 4(0D).
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Moreover, for f,g € ng(bD) such that [f] = [g] we have [T, f] = [T,g].
Indeed, we set ®,(¢) = f/\e[O,l] Qg1 ,z)forzeDand ¢ €V \ D,_(Z) Since
S(¢,z) #O0forall (¢,2) €V x D with r(¢) > r(z), it follows that &, is of regu-
larity C® on V' \ D, ;). Therefore, by definition of the equivalent class, T,f(z) =
T,g(z) forall z € D. Lemma 2.2 implies that T, f and T, g belong to Cé{;’fl(l}).
Thus we have [T, f1 = [T,g]. Analogously, we also have [Tq’f] = [Tq’g]. Hence
we can set

[TLf1=[T,f] and [T,[f]1=1T,[]
for [f]e C‘&q(bD) such that f belongs to ng(bD).

Proof of Theorem 1.1(ii). We fix [f] € C{ (bD) with f € C{ ,(bD), let g €
C& p +1(bD) be a representative of 5;,[ f1, and set
) C"x {1} xC"— C" x [0,1] x C",
e { (€.32) > (£.0,2);
o {C” x {0} x C" — C" x [0,1] x C",
& 2,2) = (&4, 2).
Wealsoset B | = 05(Q1 ), Kb, = 5(Q4 ). Kug = (}(Qug) Bug = (R ),

(=D2@=D/2 rp — 1\ _ =l _
=G\ g JIA @D T T AGD g =1n 1,

BT Qim)n
and Qn,_l = fZ,,,n = 0. Since B,’l,q is the tangential part in z of the Bochner—
Martinelli kernel, it follows that IB,ﬁyq(C, DI <1/|¢ =z ! for all z,¢ € C",
¢ #z
Next we set

f+(Z)=/bDf(§)/\Bn,q(§,z), z€D,
f—(Z)=/bDf(§)/\Bn,q(§,Z), zeC"\ D,

1) = /h J© A B0, zeV\D,

and first show that f, = T,,,g + 0 T, f. Using a cutoff function, we assume that
f has compact support in C". In order to apply the Stokes theorem we consider a
sequence (fy)nen C C(‘)’fq((C”) that converges uniformly to f. The Stokes theo-
rem gives

/ fN(;) A Bn,q(c’ Z) - / fN(;) A Kn,q(g, 2)
bD bD
= / 5{fN(§) A Qn,q({a A, Z)
bDx[0,1]

+ (—1)q/ V@) A 05 Qg (81, 2). 4)
bDx[0,1]
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On one hand, by Stokes’ theorem and the definition of Al f1 we have
/ 8(6) A2y (A, z) = lim I fn () A QgL 1, 2).
Dx[0,1] N—00 Jppx[0,1]

On the other hand, (—l)qéan,q,l = 5{7,\9,,74 and so N — oo in (4) yields
f(g) A Bn,q(é" Z) - / f({) A Kn,q(g’ Z)
bD bD

_ / (0) A Qg (6.0 2) + / F@) AT Qngt(0 1, 2).
D x[0,1] bD x[0,1]

Both Q and S are holomorphic in z, so fbD f@) ANKuyt,2) =0foral g =
1,...,n — 1 and the following equality holds on D:

fr=Tyig + (T, ). 5)

Observe that Q' . 18 the tangential part in z of 2, , and therefore 9, AQ;y g =
(=179’ Q! Pt Moreover, since S and Q are holomorphic with respect to ¢,
Jop F@) A nq(g“ z)=0forallzeV—Dandallg =1,...,n —2. Whenq =
n—1,wehave [, f(t) AK!, (¢,z) =0forallzinV — D because K ,_,isa
smooth d-closed form of bidegree (n,0) in ¢. Therefore, as for (5) one can show
that,on VY — D,

fL=T/ 8+ LT, ). (6)

Now we use the jump formula, which was already used in [13] and proved in
[16, Prop. IV 2.2] for the case of a function and in [11, par. 7; 3, Chaps. 19.2 &
2411 when g > 0. For all ¢ € Cn g 1(bD),

/ fNP(2) = 111%/ (fi(z—en) = frz+en)) Aep(2). (T)
bD £20Jbp

In (7) we replace f_ by f’. There exists a form & of bidegree (n,n — q —1in¢
and (0,¢ — 1) in z such that | (¢, 2)| < 1/1¢ —z[**"' and B} ,(¢,2) — By 4(£,2) =
h(¢,z) Ad.r(z) forall z,; € C", ¢ # z. Soforall¢ € CJ - ((bD) and all ¢ >
0 we have

/b (fl(z4en) — f(z+en)) Ag(z)
D
:/ ( f(z:)Ah(z,anz)) A @1 (z+en.) —8.7(2) Ap(2).
zebD cebD
Now, for ¢,z € bD, |{ — (z + en,)| > e. Therefore |h(¢,z + en,)| < eV
¢ —z|*"~3/% and UgebD F&) ANh(,z +8nz)| S S llop.os™ 2.
By the smoothness of » we have |3r(z + 1.) — dr(z)| < ¢ for all z € bD, so

| [op(fL(z+en) — f-(z+en)) A¢(z)| < €"/? and then (7) becomes

f@NP(2) = lin(l)/ (f4(z —en) — fL(z+en)) Ad(2). 3
bD 58;’0 bD
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As in the strictly pseudoconvex case, (5) together with the Holder continuity of
T,f and T, g lead to

lim | fi(z—en) A@(2)
e>0 Jpp

e>0

=/ Tq+1g(Z)A¢(Z)+(—1)"/ T,f(2) A 3:¢(2), (9)
bD bD

whereas (6) together with the Holder continuity of Tq’ f and f”q’ 418 yield

lim [ f'(z+en)Ad(2)
520 Jep

= / T/ 18(2) A (D) + (—D) / T (@) Ad:6(2). (10)
bD bD

We plug (9) and (10) into the jump formula (8) and obtain, by definition of equiv-
alence classes, [ f1 = ([Ty4+1] — [Ty+1D0s[f1+ 05 ([T,] — [T, DL f]. U

3. Estimates of the Hefer Sections

In this section we estimate the Hefer sections and their derivatives, which will be
needed in Section 4.
For a vector field

. 9 9
B* = ai(z2)— + bi(2) —,
; ()3Zi ()321‘
we set

. 9 9
Bg == i —+b, _—.
;“ O, Tz

Let us define a local basis of vector fields. We fix some point ¢y € bD. Since
gradr(¢) # 0 for all ¢ € bD, there exist R’,¢ > 0 and i such that

3, >c¢ forall € B(t, R :={¢ceC" |t - <R'}.

Moreover, there is no restriction in assuming that i = 1 and that R’ and ¢ do not
depend on ¢y. We set

i = 1<<ﬁ<z>>_li - (a—r(c))_li>
7 2\\ag o \ag 3 /)’

ar
‘—(;‘)

3 or ar N\
¢ _ 2 2 - — | —
Z; = TS (;‘)(294_1 ({)) i, when j =2,...,n,
-0 3—"(;)<8—"(§))1i when j=2,....n
Tooag 8 \ag 9 STt

Here Zf,...,Zﬁ, Zg, . ..,Zf, is a basis of tangential vectors fields on B(¢p, R).
Next we set
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1
Vo= — () — - — () —.
LT B 4 Z 3L, (4) acl @) a¢;

Note that Vf is also a tangential vector field, which will be useful in Section 4
thanks to the following lemma.

LemMma 3.1.  IfR’' €10, R/2] is sufficiently small, with R as given by Theorem 2.1,
then for all z,¢ € B(Zy, R') we have

- 1
ViS@al =1 and V{32 = 5.
Proof. This is obvious because VfF(g“, 7)) =0(¢ —z|) - 3. O
For z € V near bD and ¢ > 0, as in [7] we denote by w{,..., w, an e-extremal
basis at z such that w{ = n,. We use ¢* = ({f, ..., ¢,;) to denote the e-extremal

coordinates at z of a point {. We seek estimates of the Hefer coefficients and their
derivatives in terms of the following complex directional level distances:

1(z,v,8) ;== sup{t,r(z +Av) —r(z) < eforall LeC, |A| < 1)

(see [15]). We write 7;(z,¢) = t(z,w},€),i =1,...,n, and set Ps(z) := {¢ € C",
I¢F| < ti(z,€), i = 1,...,n} the polydisc of McNeal centered at z. As in [7],
for g > O sufficiently small we cover P,,(z) with the polyannuli P;(z) =
Ps-ig(2) \ c1P2-i1.(z), where ¢ (given by [7, Prop. 3.1(i)]) is such that ¢ P5-i.(2)
is included in Py-1(5-i¢)(z) for all z, all ¢ > 0, and all i € N. This gives us the
covering
Jo
Pey(2) € Prron(2) U P (), (11)
i=0

where jj satisfies 27/0g ~ |r(z)| uniformly with respect to z and &y.
We assume that ¢ is sufficiently small that:
(i) P.(z) is included in B(z, R’) for all z € V and ¢ €10, (], with R’ given by
Lemma 3.1; and

(ii)

" >1 forall ¢eP.(z0)
ow;

uniformly with respect to z¢, ¢, and € € 10, g¢].

Now we fix zg € V, € €]0, &¢], and an e-extremal basis at zy. We denote by &,
the unitary matrix such that {* = ®,(¢ — z¢). To derive our estimates we use
the matrix W(¢), defined in [2], that satisfies W({)®.n, = (1,0,...,0) for all
¢ € B(%o, R).

In (1), (2), and (3) we set U = W(¢)®./, and we express 2, , in the e-extremal
basis by setting 0*(¢, z) := @, Q(¢, z). Thus we have (¢, z) = Y 0XE, )de
and
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_ " 80F _
Im(&2) = agi (¢, 2)dZ; A di.

i,j=1 "°J

In order to express Q;‘q in the g-extremal basis we set Q*(i, z) = CTD*Q(Q‘, 2),

_ n a ) n .
ViZ = Z ‘-IJ,,(Z)a—Z*, and qiz = Z \IJ,’J'(Z)de.
j=1 J j=1
Thus we have

Ai1(g,2) =Y 07 (& 2)d;,

i=l

iz =Y VO, 2)q; Ade].
i=1
j=2

LeEmmMmA 3.2. (i) For ¢ € 7)80(20) with r(¢) > r(zo) we have, uniformly with re-
spect to ¢, 2o, and &€,
1S(&,z0)1 2 € +1r(8) —r(zo0).
(ii) For ¢ € C" with r(¢) > r(zo) we have, uniformly with respect to ¢ and z,
1S(¢.z0)| 2 7(5) = r(z0).

(iii) For ¢ € Pgo(zo) with r(¢) < r(zg) we have, uniformly with respect to ¢,
z0, and &, -
1S(¢,z0)1 2 & +7r(z0) —r(Q).

(iv) For ¢ € C" withr(£) < r(zo) we have, uniformly with respect to ¢ and z,
15¢.20)1 2 7(20) = 7 (©).

Proof. Parts (i) and (ii) were shown in [2]. Part (iv) holds by (ii) and the definition
of S. To show (iii), we note that if ¢ € PO(z) is written as ¢ = z¢ + An,, + 1,
where v is a unit vector in TZEbD,(ZO),then M| Z cieor|u| 2 c1T(20, v, €). Indeed,
by [7, Prop. 3.1(iii)] we have

lul Xn: fey
T(z0.v,8) = ti(z0,8)

i=2

Therefore, if || < ¢1¢t(29, v, €) for ¢ sufficiently small (uniformly with respect
to zo, £, and €), then |¢| < c17i(z0,€) fori = 2,...,n. But ¢ does not belong to

c1Pe(z0), 50 1] = |A| = cit1(z0, €) 2 c1&. Now the proof of (iii) is the same as
the proof of (i) in [2]. O
We define the differential operator

5 e 0 n 0

TS e

J J

LEmMA 3.3. Forall ¢ € Pe(z0), I, j,k = 1,...,n, we have uniformly in ¢, zo,
and &
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(107 (6. 20)] + 107 z0)) £
l( 0’8)

&

* )k BQI*
16707 (8, z0)| + Py (¢,z0)| S

z; ~ 1i(20,8)7/(20, )

&

~ 1i(z0,8)7{(z0, )

a *
8101, 20)] + | 2
J

90

Q* *
— (& z0)| + |8 —=(20)|
8{1 821
where T/(z0,€) = 11(20,¢) forl =2,...,nand t{(z0,€) = ¢

&

7i(20,€)7](20, )74 (20, 8)
1/2

Proof. The estimates for QF, 0Q}/ acx, 8¥Q} and 6, (0Q7/ 84:1-*) have already been
shown in Lemma 4.6 of [2]. The other estimates can be shown in the same way
using Lemma 4.5 of [2]. O

COROLLARY 3.4. The following inequality holds uniformly fori =2,...,n, j =
1,....n,and ¢ € P(z0):

7:(20.£)71(20. ©) |V (012, 20)3°] S e
Proof. We have

_ i Q _
VAO)(20)3" = Z ir(20)Wie(20) 5 (;,zO)dz,*.
k=1
Since W(zy) is the identity matrix we have

3 ) 90
VAODEz0d " =

and Lemma 3.3 then brings the desired estlmate. UJ

L(¢,720)dzZ],

COROLLARY 3.5. For B® = Z},...,Z23,Z5,...., 2%, i = 2,...,n, j = 1,...,n,
and ¢ € P:(z¢), we have uniformly with respect to ¢, z¢, and &

7j(20.€)(|(B* + B)Q}(¢,20)| + |(B* + B 07(¢.20)]) S &2
1/2

3
(B* + B%) o (¢, 20)

oL + (B + BO(V7 0} (6.2037)| £

7j(20,6)Ti(20,8)”
|(B* + BX)S(Z,z0)| + |(B* + BY)S(¢,20)| S &'/
Proof. We set §; := Bi + % For k # 1 we have
<J J

(Zi + Z2)Q} (& 20)

N or or - N
=0 Q; (8, z0) — B_Zk(ZO)(a_Zl(ZO)) 8195(¢,z0)

+(<3—’< ))13—’( >—<a—’"( )) o )) Q’*( )
9z, V) 9z k0 5, Q) ¢ £20).
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Since 7/(z¢, €) > /2 forall /, our Lemma 3.3 gives |8;07(£, z0)| < €Y/%/7i(z0, &)
and so

1/2
16107 (¢,z0)| S . (12)
T[(Z(), 8)
Lemma 3.3 from [2] gives us
< & /
3§1 341
and Propositions 3.1(iv) and (v11) from [7] yield
‘ forall [ # 1.
Gles 8?1 TZ(ZOs &
Since for all [ # 1 we have 7;(z¢,¢) > €'/, this implies for all / that
_ < gl/2, 13
o0, (zo)| S e 13)

Thus we have

‘(i< ))la—r( >—(3( ))li() <el/?
52, ) 5,0 54 9) 5 O~

which together with (12) yields |(Z,§+Z,€)Q_;k(§,zg)| < eV%/ti(z0,¢) forallk # 1.
Because Q]f* is holomorphic in z, for all k£ # 1 we have

- 907 007
z ¢ * _ J =5
(Z; +Z)Q; (8, z0) = A (¢, z0) — ({)<8§1 (§)> o, —(&,20).

Then Lemma 3.3 implies that, for all /,
1/2

90?
— <
‘ 2, (¢,z0)| < (14)

7;(z0,8)

from which we deduce |(Z,§ + Z,f)Q;.‘({,zOﬂ < 81/2/Tj(Zo,£) for all k # 1.
Observe that

(Z{ + Z)Q}(¢.20)

1 L or %
= 5(—(10)5(4“)) (-(Zo) - £(§)> o, (& z0)

1/0 %
+—<—r(zO)> 5107(¢.20) — ( (;)) —L(¢.20)-
2\ oz, 3 ¢
The estimates (12), (13), and (14) then give |(Z{ + Z{)Q}(¢.20)| < €/%/7;(z20.€).
The inequalities
1/2

|(B* + B5)07(Z.20)| <

7;(20,€)
and
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el/2

7;(20,€)Ti(20,€)
can be shown using the same method together with Lemma 3.3. The inequality
1/2

0*
(B* + Bf)a—g:;(c,m) <

l

&

: BV 0N S ——————
B+ BHWVAQNE 2041 = =50

requires more work. Lemma 3.3 and

o a0*

ViQ7i(¢,z0) = 82’]‘ (¢, z0)
imply that .
Ti(ZOsS)fj(ZO’E).

Therefore, IV,-ZQ}‘((,ZO)(BZ + B9)q;°| < e/ti(z0,€)7j(20,€). Next we have

VA0 (¢ z0)| S

S " 00 0%
(B + BOVH(0)) (& 20) = ) B (Win) (20) 5= (6 20) + (B + B = (6. 20).
=1 1 i
Lemma 3.3 implies that, for all /,
90 1/2
‘ —i (;v ZO) 5 *
321 ‘L']'(Zo,S)

In the same way as |(B* 4+ B)Q7(¢,z0)| S '/2/;(z0, €) one shows that

ol/2

90*
‘(BZ‘FB{)&(CZO) <
9Z;

7;(20,8)Ti(20,€)

in order to get |(B* + BX)(V(07) (2003 | < €"/%/7;(z0,€)Ti(z0, €). The last
inequality of Corollary 3.5 is a consequence of the first one and of (13), because
S(6,2) =327 =20 (¢ ) and [¢f — (z0)}| = 57| < 7j(20,€). Of course,
the same holds for S. U

LEMMA 3.6. For z,{ € B(Zo, R') and two tangential vectors fields BZ,~]E~?Z we
have, uniformly with respect to ¢ and z, that (B* + Bf)S~(§, 2), (B*+ B%)S(¢, 2),
(B* + B%)(B® + B%)S(¢,7), and (B* + B*)(B* + B%)S(L,z) are O(|¢ — z|).

Proof. This is obvious because S(¢,2) = Y./, (& — 2:)Qi(¢,z) and S(,2) =
Yo" (& — z)Qi(¢,z) and because the derivatives of Q and Q are uniformly
bounded. O

We also have to show good estimates of VfQ;k and VIC(BQ i ac j*). Wesetw(¢,z) =
V() (z* —¢*) sothat F(¢,2) = Fr(w(¢,2)).

LEmMMA 3.7. Fori =1,...,n, j = 2,...,n,and ¢ € P.(z9), the following in-
equalities hold uniformly with respect to ¢ and zy:
2

a .
< 15(20.0); Y (¢.20)
8{;‘8{;‘

< U(zo0.8)
™~ 1i(z0,8)

(¢, z0)

‘awj
ey
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Proof. We have

J
a;l (¢.2) = ,1(¢)+Z T O =)

For all k, || < tx(z0,€) and so [2, Prop. 4.2] gives

(¢,z0)| <

™~ 1i(20,8)

5

By [7, Prop. 3.1] we have t;(z¢,¢) > &'/% Therefore, the first inequality of the
lemma holds. The second is analogous. O

LEmMA 3.8. Fori,j =1,...,nand ¢ € P(z0), we have uniformly with respect
to ¢, zp,and &

1/2

+ ViQF(.20)] S

7;(20,€)

90*
vlf?-;(;:m)

75(20,€)

Proof. Since 1/(z¢, &) < &, the inequality is obvious for j = 1 and so we assume
Jj = 2. We have

ViQ1(g.20) =

—__ 007 007
ot (&, z0) — Y1k (O)—=- acr L (¢, 20),

and by [7, Prop. 3.1(v); 2, Prop. 4.2] it follows that |W;(¢)] < e/2 forall k # 1.
Moreover, by Lemma 3.3 we have

* 1/2
Q < g ’
7j(z0,8)
so it suffices to show that
* gl/2
< .
3§1 7i(20,€)

By the definition of Q7 we have

007 . _ N d01(¢, (¢, 20))
o (G20 = —; g (Do 0(8:20) = Wy (O =7

Using once again Proposition 3.1(v) of [7] and Proposition 4.2 of [2], we need
only estimate d0;(¢, w(£,20))/9¢;.
For ¢ € Vand w € C" we set A;(w) := A(Z, ¢ + V() w). Then

. L(to (L, 20)) Fr (to (£, 20)) dt
0 0wj

1'9A
a,-(z,w@,zo)):/ 94¢

! dF,
+ / A0, 20) 5 (10(¢, 20)) di. (15)
0 w;j
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Lemmas 4.3 and 4.4 of [2] together with Lemma 3.7 imply that, for j = 2,...,n

and r €[0,1],
1/2

( (£, 20)| S (16)

~ 1i(z0,8)

351 wj

Set v, (w) = v(¢, +U(0)D,'w). We have Ar(w) = 1/A+(m" —v (0)) Fr (0)).
Since v and its derivatives are bounded, Lemma 4.5 of [2] gives

a7

¢
dw; ~ 15(z0,8)

Now we plug the estimates of [2, Lemma 4.5] and the estimates (16) and (17) into

(15) to obtain

d0; 1/2

&

~ 1;(20,8)

gt

and finally |V]§Q;(§, z0)| S sl/z/rj(z(), €). As for the estimate of V]{Q;‘(Z, Zp), in
order to show

oy ol/2
1 PYs * (¢, z0)| S —Ti(Z0,8)Tj(ZO,€)
it suffices to show that
920, el/2
Arack ~ 1:(20,8)7(20,8)

By [2, Lemmas 4.3 & 4.4] and Lemma 3.7, for all 7 € [0, 1] we have

52 ol/2
‘ <—(lw(§ Zo)))‘ S

9L oC; 7j(z0.8)7i(z0,8)
Hence (16) and [2, Lemma 4.5] yield
52 1 F, 1/2
S tw Z —(tw Z d —_————— 18
‘Bg“f‘ai,*f Ao, 0)) ( (6200 di rz(zO,S)rj(ZO,e) (13)
Next, [2, Lemma 4.5] shows that
8( (1o, )))’ :
—(tw _ .
acx <0 7i(20,€)7;(20, €)
So again using Lemma 4.5 of [2] and the estimate (17), we have
. / A g o) Felto oz di| < (19)
—_— —(tw (L, z w(,z S———.
asract Jo dw; e ’ 7j(20,8)7i(20, €)
Putting together (18) and (19) then yields
0%05(¢, (¢, 20)) | _ £
gLk ~ 1i(z0,8)Ti(20, &)
and finally
1/2
O

90
1{ 82; (¢,z0)| S

7,(20,8)7j(20,€)
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LEmMA 39. Fori =1,...,n,1 =2,...,n,and { € P.(z¢), we have uniformly
with respect to ¢, z, and ¢

: 11(20,8)

Ti(2075)

(zo,

“w
,0)=0 d
8;1 (Zo 9 an ‘8{*8 ;

Proof. By definition we have w;(z,¢) = > ;_; Wi (2) (¢ — z}), and since W(zp)
is the identity matrix it follows that

=W;(z9) =0 forall [ #1.

34“1
Next we have
82
(20,0) =

2cron 0, ¢
and Proposition 4.2 of [2] implies

’ dw) (zo. 71(10,8). 0O

orr ozt ~ T(z0.6)

LEMMA 3.10. Forj=1,...,n,k=2,...,n,and { € P.(z0), we have uniformly
with respect to ¢, zg, and ¢
o _ 1/2
74(20, OV (VIO (€. 2003 + Vi Q] (¢, 20)| S ———.
: 7;(z0,8)

Proof. The inequality is obvious for j = 1 because 71(z¢,¢) ~ €. Let j > 1. We
show [V{Q¥(Z,z0)| < €2 7;(z0,8) 7"
Since for all i # 1 we have

20}
ViQ5(Z,20) = Z%,(c) (; 20)

and |W;(¢)] < "2 (see [2, Prop. 4.2; 7, Prop. 3.1(v)]), we have to show that
=

since W(zy) is the identity matrix, we will actually show

1/2

(E 20)| S

5
~ 1;(20,€)

90j(z0,@(20,6)) | _ e'/?

8{1* ~ Tj(Z058).

We have
1

. 0A.,
5. (20, (20, )) = / 0 (100(20, £)) Fog (10020, O)) di

0 8a)j

1
/ Az (tw(2o, E)) P2 (tw(zo,8)) dt. (20)
0 dwj

J
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According to Lemma 3.9,

0 9k (tw(z9,¢)) =0 forall ¢e][0,1]. 21
3?1 j

Using A(z9,¢) = 1/(1 4+ (m" — v(z20,¢))F(20,¢)) and Lemma 4.5 of [2] now
yields

' 0 & (1w(zo, g))’ for all 7 €[0,1]. (22)

]( 0’
Again using [2, Lemma 4.5] with (21) and (22) we obtain
96;(z0,(20,¢)

8;1* T](ZO: 8)

which shows that [V 07(¢,20)I7j(z0, ) < &
Now

WWQMMM)—ZWN%*VQ@Mﬁk
i=1
and, by [2, Prop. 4.2], |W;(¢)| < €'/? for all i # 1. Hence it suffices to show that

el/2

17;(z0, )Tk (20, €)

a
‘3;1 VA0 (& 20)| S

Moreover,

n

d -, ~ i 36i(z0,w(20,0)) . 0%6;(z,w(z,{))
— V2O, / + ———
e £07(8.20) = }ja;k<> o e

since (by [2, Prop. 4.3])
&

~ 1(20,8)Tk(20,€)°

l]( 0| S

0z

it suffices to estimate 825;(z, @ (z, ¢))/¢; 2} | .=z, -
We use Lemmas 4.3 and 4.4 of [2] together with Lemma 3.9 to get, for all

t€[0,1],
82
‘8§1 8Zk<a )

Next using the estimates of [2, Lemma 4.5], we obtain

0 0A(10(z,0)

&

7(20,8)7;(20,8)

(23)

~

=20

I3

< -

=zl Ti(20,8)Tk(20, )

for all ¢ € [0, 1]. With (23) and [2, Lemma 4.5] this implies that

3%6;(z, (2, 0))
3¢ 9z;

which was to be shown. O

&
<

~ 1(20,8)Tk(20,€)°

=20
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4. Multiple Integrations by Parts

We fix a CP-(0, g)-form f, p € N, with compact support in B(¢y, R"), {o € bD,
R’ > R” > 0, and denote by ['*f a C?~*-(0, ¢)-form, p > s > 0, with the same
support as f and such that [|I'*f|l;p, ,—s < ¢s,pll fllsp,p, Where c;, p does not de-
pend on f. Next, for z € B(Zo, R') \ D we set

111G, j kKL 5)(2)

= / I°f(©)
bD

X" (15, 2) A @L71(C, DN Ay (g, 2) ¢
Si(g, 2)1¢ — 7|2

JLA1G, kKL $)(2)

rkz+zﬁﬂgw

i=1

XK@ D)) Amr(E2) :
= rs Zi+ Z S
/b D@ A SC oo H( )8, 2),

i=1

and for z € B(¢y, R') N D we set

111G, kKL, 5)(2)

- / PO
bD

Xk a k=1 ’
(m(,2) g]((;'ll)i Z_))Z|21) N o) 1 1_[(2Z +Z9)8(¢,2),

i=1

JLA1G, kKL, $)(2)

‘ XK (B (€. 2)") Ao (©.2) Ly me ~e
— re . Z:+7Z:)S8(,2).
/bD Hen §i¢,2)1¢ — 2 ,1]( e

Here j, j k, k', 1,l's e N; p > 5, j > 1, and k > 11nIf]andI[f] XK =
V.. \@wmvk.vkewﬁf+zﬁntz+z Zi+ 75, 25+ Z5),
Zf e {ZZ,...,Z,ZL',ZZ,..., Ziyfori = 1,...,j’; and oy is a form of bidegree
(n—k,n—q—1)in¢ in I[f] and J[f], with (n — k,n — g — k) in I[f] and
(n—k,n—q —k—1)in J[f] and such that |@y (¢, z)| = O(|¢ —zI".

We say that (j, j', k,k’,1,1") satisfies (CI) if

1<j
k=j=1
2j—j =2k—K P
(CD o<k ory k'=j"=0

20— 1" <2 —
2k+20—1' <2n—1 [—=1'=2n-3
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and that it satisfies (CJ) when

1<j o
. . J =
2j — jl <2k — k'
©)) )= ol k=k'=j =0
k' <k
= 20—1' <2n 3.

2k4+21—-1'"<2n-2

Later on we will show that Tq’ fand T, f are (respectively) finite sums of I f1(k,0,
k,2(n — k),1,0) and I[f](k,0,k,2(n — k),1,0), k € {1,...,q — 1}, that satisfy
(CD).

ProprosiTION 4.1. For B* € {ZZ,...,Z;,Zg,...,Zj} and s < p, the following
statements hold.

() If (j,jk,k',1,1") satisfies (C1) then, for all z € (V N B(,R')) — D,
B £1(j, j' k. k', 1,1, $)(z2) is a finite sum of I[ f1(], j', k, k', [,1",5)(z) and
JUF1G, Jh k&L T, 5)(2), § < s + 1, satisfying respectively (C1) and (CJ).
Gi) If (j, )k, k', 1,1") satisfies (C)) then, for all z € (V N B(¢y,R")) — D
B £1(j, 'k, k', 1,1, $)(2) is afinite sum of J[f1(], j',k, k', [,1',5)(2),5 <
s + 1, satisfying (CJ).
ai) If (j,j,k, k’,l,l ) satisfies (Cl) then, for all z € V N B(;O,R )N D,
BZI[f](] Lk, k1,1, $)(2) is a finite sum of 11 f1(], j" k., k',1,1',5)(z) and
[f](] j kKL S (2),5 < s+ 1, satisfying respectively (C1) and (CJ).
(v) If (j,j,k,k',1,1") satisfies (CJ) then, for all z € V N B(Ly,R') N D,
B J£1(j, sk, k', 1,1, $)(2) is afinite sum of J[ £1(j, j's k. k', 1,1, 5)(2),5 <

s + 1, satisfying (CJ).

Proof. We show (i). With an integration by parts we get

BI[f1(), j k. k' 1,1, 5)(2)
K, z) A (B’m(C DY A@ (g, 2)
Sitg, 2)1¢ — 7|2

J’
-1"[(2? +Z)5(, z))

= / T f(§) A (B + Bc)(
bD

+ / BETF(@) A ( {2 £ Q& ™) A v 6.2
bD Sig, 2)1¢ — z|*
j/
1@ + 293¢, .7,>)
i=l1

Now Y = i[f](j,j/,k,k/,l,l/,s—f—l)(z), where (j, j', k,k’,1,1") satisfies (CI). For
X, we should distinguish many cases depending on the values of j, k, ....
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Casel:j=1.

1(¢,2) A @ (¢, 2)(B* + BS)S(¢,2)
S(¢,2)2¢ — 71X
z I3 w-[’(é—,Z))
AN(B*+ B )<|§—z|21
(B* + B)i(¢,2) Aoy (8, 2)
+ re -
/hD F&n S, )| —z%

X=—/FV@A
bD

n1(¢,2)
+[ T
/b fON = 5¢.0)

=X+ X5+ Xs.

Since (1, j', k, k’,1,1") satisfies (CI},wehavek = land2/—1!’" < 2n—3. Moreover,
(B*+ B%)#; is bounded, so X3 = J[f](1,0,0,0,/,1’, s) and satisfies (CJ). We have

wlf(é,z)) _ o2

e —z ) g =220

(B +B§)<

so X, = I[f1(1,0,1,0,1,1’, s)(z) and satisfies (CI).
For X; we integrate by parts again. By Lemma 3.1 we have |V1 S(z,z)| > 1 for
all (¢,z) € B(¢o, R"). Therefore,

(¢, 2) A @y (g,2) (BE + BY)S(, z) ( 1 )
¢ —z[* ViS¢, 2) 5@.2)
1(¢,2) A @1 (¢, 2) (B + B9)S(¢,2)
5.2t — z221V{8(g,2)
(B* +B{)S(§ 7). (Zm (¢, z))
/ B2 S, z)v‘“S(; 2) n&DAY, 1 — 2|
_/ l—wf(é_) A 771@,2) A w']’(é‘,Z) V(((BZ + Bé‘)S(é"Z)>
bD Sole —z2 ! ViS¢, 2)
b4 Zy\ Q Co~ ,
_/ DS FE) A (B + B5)S(. )V (m(aﬁ)) A @y (8,2)
bD S, )¢ —zIP'ViS(¢,2)
= X + X + X3 + Xus.

xp=/ o) A
bD

=—/' VETSF(©)) A

Since ~ ~

(B* + B)S(L,2) ¢f (B*+ B%)S(¢,2)

— and V| —

ViS¢, z2) ViS¢, 2)
are bounded, it follows that X;; = f[f](l,O, 1,0,1,1',s+1)(z) and X3 = f[f](l,O,
1,0,1,1',5)(z) satisty (CI). We have
V;(@/(E, Z)) _ o (§,2) | wr-i(d,2)
|

6= 2P!) e =P e =2




376 WILLIAM ALEXANDRE

and, by Lemma 3.6, (Bz—i—Bf)S’({, z) = O(|¢ —z|). Therefore X1, = i[f](l,O, 1,
0,1,1',s)(z) + I[f1(1,0,1,0,1 + 1,1’ 4+ 2,s)(z) satisfies (CI). Finally, fo;l is
bounded and 2/ — 1’ <2n — 3,50 X134 = f[f](l,O, 0,0,.,1,s)(z) satisfies (CJ).

Case 2:j > 1. We have
k(= At k—1
X:f Ff(f)(g)A(X (m(Lz)/%@m(Lz)) ) A @y (C,z))
bD Si(¢,2)1¢ — 2|

;
: ((BZ + B9 [Zi + zH)S . z>>

i=1

z 19 <7 At k—1 ,
+/ rS(f)(C)A<<B + BOXN@16.2) A @@ ) Ay (c,z>>
bD Si¢, )¢ —z|*

j/
11z +z)Hse.o

i=l1

XX (@18, 2) A @18, D) A (e, z))
+ [ r B
/bD Wm( Sitg, )l — 7|2

j/
(B + BHS ) [ (2 + 2D . 2)

i=1
XK (7. 3z, 7))k
+/ Fs(f)(m< (6. 2) A (L (6. 2) ))
bD S71(¢,z)

@ (L,2)

[ —z|*

= X|+ X5+ X} + X,

j/
A (B + Bf)< ) (ZF+Z)8(,2)
i=1

Because
w] (C’ Z) _ w) (;» Z)

Bf + B° = ,
( )Is“ -z g —z%

we have that X, = f[f](j, j k,k’,1,1',s) and satisfies (CI).
For X| we integrate by parts and obtain
X (@1(g,2) A @4 &) ) Ay (¢.2) (G — D7
g —z| ViS(.2)

X| = —/ (@) A
bD

i’ . o 1
. (B* + Bf 7+ 7558, V§(~ )
(B + )E( P+ ZH8¢ oV, R

- [ w4 — DT | XD A GG D)) A w2
bD Vis(z,z) §i74¢,2)|¢ — 22
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E
C(B 4+ B[ [(Z; + Z)3(2.2)
i=1
, X¥@@1g,2) A @i D) Y Ao (6,2) (j— 17!
+ | I
/bD @A Si=Y¢,2)|e — 2|2 ViS(2.2)

E
vf((BZ +BO [ [z + 2D, z))
i=1
VEXF @i, 2) A @GN Y A2 (- 17!
+/r
/bD He~ Si=\(¢,2)[¢ — z|2 ViS¢ 2)
B+ BH [ [(ZF + 2DH5 .2

i=1

XM (1(g.2) A @Li(g, 2)* ) Ly @)
Si-1(¢, 2) Ve — 2

(j—n!
C(BF+ B[ [(ZF + 258 (¢, o) ——
,H ViS(¢.2)

= X + Xpp + Xj3 + X

+ /b T ()@ A

Case 3:j — 1 = 1. Here we show that (CJ) holds. We have 21 — 1’ <2n — 3
since k > 1. Now Vg((j —-D7'rs (H/v S) =T**f, and

-/

VEX (2. 2) A @LA (6, 2) 7, Vf((Bwa)]"[(Zf +Zf)3(r:,z)>,

i=1
j/
((BZ + B9 Zi + zH5 (. z)>, XK (@1¢,2) A @46, 2)

i=1
are uniformly bounded. Therefore X|, = JI£1(1,0,0,0,1,0',;s + 1), X/, and
X{; = J[f1(1,0,0,0,,1’, ) all satisfy (CJ). By Lemma 3.6,

(B¢ + B)(Z{ + Z9)8(¢,2) = w1(¢,2)  and  (Z§ + Z{)S(¢,2) = @1(3, 2).

Necessarily j' > 0, so X, = J[f1(1,0,0,0,,1',s) + J[f1(1,0,0,0,] + 1,
I" +2,s) satisfies (CJ).

Case 4:j —1 > 1. We have that V{((j — D7'T*(f)/V(§) = I'**!f and that
(B* + B (ZF + Zf)S(;, z) isbounded foralli = 1,..., j'. Consequently, X, =
111G = 1,j' — Lk,k,1,I',s + 1) satisfies (CI).

The terms of

VHZF+Z)8(¢,2),  (BS + BY(ZF + Z9)8(¢8,2),

and (B® + BYVH(ZE + Z5)5(2.2)
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are uniformly bounded fori = 1,..., j’. Hence X, is a finite sum of 111G —1,
G =1,k k1,1 s)and, if j' > 1,0f I[f1(j —1, j’ —2,k,k',1,1,s), both of which
satisfy (CI).

Note that (B¢ + BZ)(ZI,z + Zf)S'({, z) is bounded for alli = 1,..., j . Since
(j,j k,k',1,1") satisfies (CI), we have either k > k' or k = k’. If k > k’ then
X/3 =1I[f1(j = 1,j = 1,k,k' + 1,11, s) satisfies (CI). But if k = k’ then, in
XK @18, 2) A (81771(¢,2))% ), either 7y or 817 is differentiated at least two
times. Since those derivatives are uniformly bounded, if 7, is differentiated at
least two times then we geta J[ f1(j —1, j' — 1,k —1,k’,1,1’, s), and if 3.7, is dif-
ferentiated at least two times then we get an I[f](] —1,j —1,k— Lk, 1,1, s),
k' < k’ — 1, which satisfy (CJ) and (CI), respectively.

By Lemma 3.6, (B* + BS)(Z; + Z7)S(¢,2) = O(|¢ — z|) for all i. Therefore,
X, =111 - Lj = Lk, LU,s) + I[f1( — 1, j' = Lk K\ 1+ 1,I' +2,5)
satisfies (CI).

Both X; and X} can be treated as X| using integrations by parts. Then (ii), (iii),
and (iv) can be shown via the same method used to demonstrate (i). O

We now show that (CI) and (CJ) lead to estimates like those in [7, Lemma 5.5].
We denote by ¢: bD x [0,1] x C" — C” x [0,1] x C" the canonical injection and
denote by ¢* the pullback by .

PROPOSITION 4.2.  Fix A = 3% or 3% t=1,...,n,andlet ¢ €10, 80].
(i) Fors < p, (j, j. k., k',1,1") satisfying (C1), and zo € (V N B(o, R')) \ D,
respectively zo € VN D N B(¢y, R'),

A(l”f(;“)

| XF@@20) A @) D AT E20) sl L e )
$3(¢, 20)1¢ — zol? 1] ’

respectively

o (A <1”f(§)

Xk 5 k-1 ) A
(. ZO)SAJ((;:&Z_O)EOPZ)W, (¢, 20) 1—[(25 175 S(;,ZO)»,

can be uniformly estimated by a sum of products of the form

gl

[TiZ0 7 (20 &) TTiZ) T (z0, 018 — 2o =2

for ¢ ebD N ’Pgo(zo) if € #|r(zo)| and for & € bD NP,z (z0) otherwise. )
(ii) For s < p, (j,j k, k', 1,1") satisfying (CJ), and zo € (V N B(Lo, R')) \ D,

respectively zo € V N D N B(&y, R),

XK @712, 20 A 1 (£, 20) ¢

Si(¢,20)1¢ — zol*

i=1

”f”bD p—s

A(st(g“) ]_[(ZZ +Z9)S8(, ZO))
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respectively

K7 = k J'
L*(A(l”f(g)/\ X5 (0;m(&,z0)" A @ (&, z0) H(le + 795,20 )),
i=1

Si(¢,20)1¢ — zol*

can be uniformly estimated by a sum of products of the form

el

”f”hD p—s
P8k k 2n—2k—2
Hi:l‘cv[(zo"g) Hi:] ‘CM[(Z098)|§ _ZO| n=2k

when j > 1 and otherwise by
)
”f”bD,pfsW

for ¢ ebD N PSO(ZO) if € # |r(zo)| and for £ € bD NP)r;)(20) otherwise.
In all cases we have v; # vy and ju; # wi wheni # i’ and u; > 1 forall i.

Proof. We estimate

K5 k ) I
e L*<A<st(§) R X ((0n1(8,z0))") A @ (L, 20) H(Ziz " Zf)S({,z)).
i=1

§1(5,z0)1& — zol*!

We fix ¢ > 0 and choose an e-extremal basis wj, ..., w, atzp, with { € Pso(zo) if
& # |r(zo)| and ¢ € Pe(zo) otherwise. We express I in the basis w{, ..., w;. We
must estimate terms such as

FTHE©)

N _
Xk (/\ = (¢, z0)dg,, /\dg“v*l) Ay (L, 2) ;i
[z +zHse. 2],

i=1 Hi
i=1

SIi(¢, )¢ —z|*

A A

(24)
where necessarily u; # w; and v; # vy foralli #1i'.
Now we use the estimate

30
a;
given by Lemma 3.3. For Vi,...,V, e (V{, Zi + Z{, ..., 2 + 23, Z5 + Z5, ...,
Z;; + Zﬁ}, p > 1, we use the estimate
30
‘V]...Vp(T*(C’ZO))
A

When p = 1 this estimate was shown in Lemma 3.8 and Corollary 3.5. When p >
2 we observe that 81”’/2/ri(z0, s)rj’(zo, ¢) is bounded away from 0 and that

00*
Vl---Vp<%(§9ZO))
j

&

7i(z0,€)7/(20, &)

(¢, z0)

<

1-p/2
&
<

~

ti(20,8)7/(20,8)

is uniformly bounded w.r.t. z¢ and ¢.
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Therefore the estimate holds for all p > 2. We also use the estimates

(e 0)|* s
ac; S 7i(20,€)7/(20,€)

Q* Sfp/Z
‘AVl...V,,< Lz, z<>)>‘ S—————— p=1,

7i(20,8)7/(20,8)

and

which also hold because the LHS above is uniformly bounded and the RHS is
bounded away from O.

Thus when p; # 1for all i, we may use Lemmas 3.2, 3.3, and 3.8 together with
Corollary 3.5 to estimate (24) as

; Y
gk=i=1=(k"=j"/2

”f”bD,p—x %

k _"
1_[,':1 7,,(20,€) H,‘:] 74,(20,8)¢ — ZO|21 !

If i, = 1, we estimate an (n,n — 1)-form in ¢ and note that
ar
o (=17 i
z*(/\d;i* /\d&;) = /\d; A /\dg
=i @ =
i#1 8;1

Moreover, &g is so small that |(8r/8fl*)(§)| =1, and by [7, Props. 3.1(vii), (iv),
(v)] we have
< 00,8

~ 1,(20,8)

ERE

Hence there exists a o with g # 1 and g # w; for alli > 1 such that (24) can
be estimated by

gk=i=1=(K'= "2 1

I fllon, p—s ; :
! HZ‘(:I TV,'(ZOa €) l_[],‘{:]’ui# Tui(ZOa &)l — ZO|21_Z tM()(ZO’g)

If (CJ) is fulfilled with j > Ithenk — j — (k' — j')/2—1> —land 2] — I’ <
2n — 2k — 2. So I can be estimated by a sum of terms such as

8_1

”f”bD,pfs B
Hf:] TV[(ZO, 8) Hf:l T/ti(ZO, S)l; - Z0|2’172k72
with v; # vy and p; # s wheni # i’ and u; > 1 for all i.
If (CJ) is fulfilled with j = 1thenk =k' = j'=0and 2/ —1' <2n—3,s0 1

can be estimated by
)

&
I fllep,p—s 3775 -
P7E = 2o 3
The other estimates of the lemma can be shown by the same method. UJ
COROLLARY 4.3. For A = a 0t =1,....n, we have uniformly with re-
07y 974

spect to 7 and f



C*-Estimates for the 8,-Equation on Convex Domains of Finite Type 381

IALLF1G, j kK LT s)(2)] < d (2, BDY™ Y| Fllpp.s

when (C) for L = I, 1 and (C)) for L = J, J is fulfilled. Here z is closed to bD,
withze D for L =1,J andzeV\D for L =1,J.

Proof. Since I'* f has a compact supportin B(y, R”) and since S(¢, z) is bounded
away from zero when r(¢) > r(z) and when |{ — z| is bounded away from
zero, we need only consider the case zg € B({p, R’) and then integrate over
B(¢o, R”) NbD NP,y (z¢) for some €y > 0 sufficiently small and not depending
on zop.

As in [7] we use the covering (11) and Proposition 4.2. When (CI) is fulfilled,
for all zg € D N B(Zy, R’) NV we have

Jj'
A<]‘[(25 +ZDS@ O (@)

i=l

A X¥ 18, 20) A @emi(€zo)) ) A wy(c,zO))‘
Si(¢,z0)l¢ — zol¥

< @)™ N fllpp,ss (25)

/7>0. (20)NbDNB(Zo, R")
27

.
A<]‘[(Z; +ZO)S@ Q)

i=1

'/;DV(Z())(ZO)meﬂB({OaR”)

A X 1(8,20) A (3emi(€.20) D A wz/(LZo))‘
Si(¢,z0)¢ — zol*

SIrGEOM™ N fllop,s. (26)

Adding (25) fori = 0, ..., jo and (26) and then using 27 7°gq =~ |r(z¢)|, we get

|ATLA1G, kK LT 5) (z0)] S d(z0, DY fllbp,s-
The other estimates can be shown in the same way. O

5. Final Integral Estimates

Proof of Lemma 2.2 and Theorem 1.1(i). Let [f] € C{)’,q(bD), p € N, with f €
C& 4(OD). Using the compactness of bD, we may assume that f has a compact
support in B(¢op, R") for {op € bD and R’ > R” > 0 not depending on ¢p. For
p vector fields Bf,...,B; e{Z{,.... 2, Z5,...,Z}} and A = d‘% or %, t =
1,...,n, we show that

|AB ... BiT, f(2)| < d(z,6D)""" || f1ls

uniformly with respect to z € D sufficiently close to bD.

After integrating with respect to A € [0,1], 7, f can be written as a sum fori = 0
ton—qg—1of I[f](i +1,0,i,0,2(n —i —1),1,0). An induction argument using
Proposition 4.1 shows that By ... BST, f is a finite sum of J[f](}, JLk, kL, s)
and I[f1(J,j,k,k,1,l',s), s < p, satisfying respectively (CJ) and (CI). Now
Corollary 4.3 implies that | A B ... BT, f(2)| $d(z,bD)"""7"|| f |y, , uniformly
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with respect to z and f. One may show analogously that |AB; ... By Tq’f(z)| <
d(z,bD)Y" V|| fllpp,, forall z€V — D.

When p = 0, this proves Lemma 2. Theorem 1.1(i) then follows by the Hardy—
Littlewood lemma. OJ
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