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A Counterexample to the Fourteenth Problem
of Hilbert in Dimension Three

Shigeru Kuroda

1. Introduction

Let K be a field, K[X] = K[X1, . . . ,Xm] the polynomial ring in m variables over
K, and K(X) its field of fractions. Then, the fourteenth problem of Hilbert asks
whether the K-subalgebra L∩K[X] of K[X] is finitely generated whenever L is
a subfield of K(X) containing K. Zariski [23] showed that L ∩ K[X] is finitely
generated if the transcendence degree of L over K is at most two. Consequently,
the problem has an affirmative answer if m ≤ 2. On the other hand, a counter-
example to the problem was first found by Nagata [17] in 1958 form ≥ 32 (see [8]
for the progress on this problem).

Recently the author [12] gave a counterexample for m = 4, whereby the prob-
lem remained open only for m = 3. In fact, if L∩K[X] is not finitely generated,
then L ∩K[X][Xm+1, . . . ,Xm+r ] is also not finitely generated for each r ≥ 0. In
this paper we give the first counterexample to the problem for m = 3. Thus, the
fourteenth problem of Hilbert is settled for all m at last.

Let γ and δi,j be positive integers for i, j = 1, 2, and let


1 = Xδ2,1
1 X−δ2,2

2 −X−δ1,1
1 Xδ1,2

2 ,


2 = Xγ
3 −X−δ1,1

1 Xδ1,2
2 , (1.1)


3 = 2Xδ2,1−δ1,1
1 Xδ1,2−δ2,2

2 −X−2δ1,1
1 X2δ1,2

2 .

Then we have the following result.

Theorem 1.1. Assume that the characteristic of K is zero. If

δ1,1

δ1,1 + δ2,1
+ δ2,2

δ2,2 + δ1,2
<

1

2
, (1.2)

then K(
1,
2 ,
3) ∩K[X1,X2 ,X3] is not finitely generated over K.

We remark that m = 3 is an exceptional dimension for the fourteenth problem
of Hilbert with many partial positive answers as follows. As already mentioned,
the answer to the fourteenth problem of Hilbert is affirmative when m ≤ 2 by
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Zariski’s result. Zariski’s result also implies that no counterexample to Hilbert’s
original fourteenth problem can be found even if m = 3 (cf. [8]). Here, Hilbert’s
original fourteenth problem is a special case of his fourteenth problem as follows.
LetG be a group of linear automorphisms ofK[X]. Then, is the invariant subring
K[X]G of K[X] for G finitely generated over K? Nagata [17] gave a counter-
example to this problem (see also [1], [16], [21], and [22] for counterexamples to
Hilbert’s original fourteenth problem).

A K-linear map D : A → A of a commutative K-algebra A is called a deriva-
tion if D(ab) = D(a)b + aD(b) for any a, b ∈ A. For a K-subalgebra B of A,
we define

BD = {b ∈B | D(b) = 0},
which is aK-subalgebra of B. Then, the problem of finite generation of the kernel
K[X]D of a derivation D on K[X] is a part of the fourteenth problem of Hilbert
and is well studied. In the case where the characteristic of K is zero, Zariski’s
result implies that K[X]D is always finitely generated if m ≤ 3 [18]. Various
sufficient conditions for finite generation of the kernels of derivations are found
in [3], [9], [11], [13], and [15]. Derksen [4] showed that Nagata’s counterexample
is obtained as the kernel of a derivation (see also [19]). Moreover, several coun-
terexamples to the fourteenth problem of Hilbert were constructed or described
as the kernels of derivations (cf. [2; 5; 7; 10; 14; 19; 20]). However, Zariski’s re-
sult implies that we can never obtain a counterexample in dimension three as the
kernel of a derivation on K[X1,X2 ,X3].

Acknowledgments. The author expresses gratitude to Professor Harm Derksen
and Professor Igor Dolgachev for stimulating conversations, to Professor Gene
Freudenburg for informing him of some results on invariant theory, and to the
referee for suggesting simpler proofs of Lemmas 2.5 and 2.6. This paper was writ-
ten when the author visited the Department of Mathematics at the University of
Michigan. He is grateful to his host Professor Karen Smith, who also proofread
this paper.

2. The Structure of K(�1, �2 , �3)∩ K[X1, X2 , X3]

Let A be a finitely generated domain over a field K of characteristic zero, and let
K(A) be its field of fractions. Assume that D is a derivation on A. Then D ex-
tends naturally to a derivation on K(A). We say that D is locally nilpotent if, for
each a ∈A, there exists r ≥ 0 such that Dr(a) = 0.

First, we review some basic properties of the kernel of a locally nilpotent deriva-
tion. Lemmas 2.1 and 2.2 are well known (see e.g. [6, Chap. 1.3]).

Lemma 2.1. Let D be a locally nilpotent derivation on A.

(i) If D(ab) = 0 for a, b ∈A \ {0}, then D(a) = 0 and D(b) = 0.
(ii) K(A)D is equal to the field of fractions of AD.

(iii) If D(a) is divisible by a, then D(a) = 0 for a ∈A.
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We say that s ∈ A is a slice of D if D(s) = 1. Assume that D has a slice s ∈ A.
Then we may consider the Dixmier map σ : A → A defined by

σ(a) =
∞∑
k=0

(−s)k D
k(a)

k!
(2.1)

for each a ∈A. Since D is locally nilpotent, Dk(a) = 0 for all k ≥ r for some r.
Hence, the sum in (2.1) is well-defined.

Lemma 2.2. Let D be a locally nilpotent derivation on A with a slice s ∈ A. If
A is generated by S ⊂ A over K, then AD is generated by {σ(a) | a ∈ S} over K.

Now let K[Y ] = K[Y1,Y2 ,Y3,Y4] be the polynomial ring in four variables over
K, and let K(Y ) be its field of fractions. Consider the derivation

D = ∂

∂Y1
+ ∂

∂Y2
+ ∂

∂Y3
+ Y1

∂

∂Y4
(2.2)

on K[Y ], that is, the derivation defined by D(Y1) = D(Y2) = D(Y3) = 1 and
D(Y4) = Y1. We note that D is locally nilpotent. Let σ be the Dixmier map de-
fined for the slice s = Y1. Then, K[Y ]D is generated by

σ(Y2) = Y2 − Y1, σ(Y3) = Y3 − Y1, σ(Y4) = Y4 − Y 2
1/2 (2.3)

over K by Lemma 2.2, since σ(Y1) = 0.
In what follows we assume that m = 3. For f = ∑

a∈Z3 λaX
a ∈K[X], define

the support supp(f ) of f by

supp(f ) = {a ∈ Z3 | λa �= 0},
where λa ∈ K and Xa denotes Xa1

1 X
a2
2 X

a3
3 for a = (a1, a2 , a3) ∈ Z3. We define

the support of each element of K[Y ] similarly. For the definition of the support
of f , one should allow f to be a Laurent polynomial, not just a polynomial.

We set

δ1 = (−δ1,1, δ1,2 , 0), δ2 = (δ2,1, −δ2,2 , 0), δ3 = (0, 0,1), δ4 = δ1 + δ2. (2.4)

It would be good to recall at this point that 
1 = Xδ2 − Xδ1, 
2 = Xδ3 − Xδ1,
and 
3 = 2Xδ4 − X2δ1. Let K[Xδ] = K[Xδ1,Xδ2 ,Xδ3 ,Xδ4 ] and K[X±δ] =
K[X±δ1,X±δ2 ,X±δ3 ,X±δ4 ], and let K(Xδ) be the field of fractions. Define the
homomorphism�0 : K[Y ] → K(Xδ) ofK-algebras byYi �→ Xδi for each i. Then
the kernel of�0 is πK[Y ], where π = Y1Y2 −Y4. Let us denote byK[Y ](π) the lo-
calization ofK[Y ] by the prime ideal πK[Y ]. Then�0 can be extended to the ho-
momorphism � : K[Y ](π) → K(Xδ). We remark that K[Y ](π) contains K(Y )D.
Actually, K(Y )D is equal to the field of fractions of K[Y ]D by Lemma 2.1(ii),
and π is not a factor of any element of K[Y ]D \ {0} by Lemma 2.1(iii), since
D(π) = Y2 �= 0.

Observe that �(σ(Y2)) = 
1, �(σ(Y3)) = 
2 , and �(2σ(Y4)) = 
3. We
now set K[
] = K[
1,
2 ,
3] and K(
) = K(
1,
2 ,
3). Then it follows
that �(K[Y ]D) = K[
] and �(K(Y )D) = K(
) by Lemmas 2.2 and 2.1(ii).
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Proposition 2.3. With notation as before, we have

K(
) ∩K[X] = K[
] ∩K[X].

To prove this proposition, we need some lemmas.

Lemma 2.4. (K[Y ] + πK[Y ](π))D = K[Y ]D.

Proof. It suffices to show that D(F + G) �= 0 for any F ∈ K[Y ] and any G ∈
πK[Y ](π) \ K[Y ]. Suppose to the contrary that D(F + G) = 0 for such F and
G. WriteG = πG1/G2 , whereG1,G2 ∈K[Y ] with gcd(πG1,G2) = 1. ThenG2

2
divides D(πG1)G2 − πG1D(G2), since D(G) = −D(F ) is in K[Y ]. This im-
plies that G2 divides D(G2). Hence, D(G2) = 0 by Lemma 2.1(iii). Therefore,
(F +G)G2 is in K[Y ]D, since D(F +G) = 0 and (F +G)G2 ∈K[Y ]. On the
other hand,G2 divides πG1 − (F +G)G2 = −G2F. This contradicts Lemma 2.5
(to follow), since G2 ∈ K[Y ]D \ K, gcd(G1,G2) = 1, π = Y1Y2 − Y4 is prime,
and D(π) = Y2 is not divisible by any element of K[Y ]D \ K. Consequently,
D(F +G) �= 0.

The proofs of the following two lemmas have been simplified thanks to the ref-
eree’s suggestion.

Lemma 2.5. Let D be a locally nilpotent derivation on K[Y ]. Let f , g ∈K[Y ]
and w ∈K[Y ]D \K be such that gcd(g,w) = 1, f is a prime element of K[Y ],
and D(f ) is not divisible by any element of K[Y ]D \K. Then w does not divide
fg + v for any v ∈K[Y ]D.

Proof. Without loss of generality, we may assume that w is irreducible. Let A =
K[Y ]/(w). The derivation D also induces a locally nilpotent derivation on A,
which we also will denote by D. Suppose that w divides fg + v for some v ∈
K[Y ]D. Then we have f̄ ḡ ∈AD, where h̄ denotes the image of h inA for each h∈
K[Y ]. Since ḡ �= 0 by assumption, we have f̄ ∈AD by Lemma 2.1(i). It follows
thatD(f ) = D(f̄ ) = 0, sow dividesD(f ). This contradicts the choice of f.

Lemma 2.6. K(
) ∩K[X] ⊂ K[Xδ].

Proof. We have
∑4

i=1 Zδi = ∑3
i=1 Zδi . If

∑3
i=1 αiδi is in (Z≥0)

3 for α1,α2 ,α3 ∈
Z , then α1,α2 ,α3 are nonnegative. Hence

( ∑4
i=1 Zδi

) ∩ (Z≥0)
3 is contained in∑4

i=1 Z≥0δi, which impliesK[X±δ]∩K[X] = K[Xδ]∩K[X]. So, we show that
K(
) ∩ K[X] ⊂ K[X±δ]. Clearly, K(
) ∩ K[X] ⊂ K(Xδ) ∩ K[X±1], where
K[X±1] = K[X±1

1 ,X±1
2 ,X±1

3 ]. Hence, it suffices to show thatK(Xδ)∩K[X±1] =
K[X±δ].

Without loss of generality, we may assume that K is algebraically closed. By
(1.2), the rank of

∑4
i=1 Zδi is three. Let {v1, v2 , v3} be a Z-basis of Z3 such

that
∑4

i=1 Zδi = ∑3
i=1 tivi for some integers t1, t2 , t3 > 0. Then, K[X±1] =

K[X±v1,X±v2 ,X±v3 ]. We define an action of the group G = ∏3
i=1(Z/tiZ) on

K[X±1] by (u1, u2 , u3)X
vi = ζ

ui
i X

vi for each i and (u1, u2 , u3)∈G, where ζi is a
primitive (ti)th root of unity. Then
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K(Xδ) ∩K[X±1] = K(X)G ∩K[X±1] = K[X±1]G = K[X±δ].

Hence the lemma is proved.

Proof of Proposition 2.3. It is clear thatK(
)∩K[X] ⊃ K[
]∩K[X]. We must
prove the reverse inclusion. By Lemma 2.4, we have

�−1(K(
) ∩K[Xδ])

= �−1(K(
)) ∩�−1(K[Xδ])

= (K(Y )D + πK[Y ](π)) ∩ (K[Y ] + πK[Y ](π))

= (K[Y ] + πK[Y ](π))
D + πK[Y ](π)

= K[Y ]D + πK[Y ](π). (2.5)

SinceK(
)∩K[Xδ] is contained in the image of�, it follows that�(�−1(K(
)∩
K[Xδ])) = K(
)∩K[Xδ]. On the other hand,�(K[Y ]D +πK[Y ](π)) = K[
].
Hence K(
) ∩ K[Xδ] = K[
] by (2.5). Since K(
) ∩ K[X] ⊂ K[Xδ] by
Lemma 2.6, we haveK(
)∩K[X] ⊂ K[
]. ThusK(
)∩K[X] ⊂ K[
]∩K[X]
and so Proposition 2.3 is proved.

Now set ω1 = (−δ1,1, δ2,1, 0, δ2,1 − δ1,1) and ω2 = (δ1,2 , −δ2,2 , 0, δ1,2 − δ2,2).

Then
�(Y b) = X

ω1·b
1 X

ω2·b
2 X

γb3
3 (2.6)

for b = (b1, b2 , b3, b4) ∈ Z4. Here, ωi · b is the inner product of ωi and b for
i = 1, 2.

Lemma 2.7. If (a1, a2 , a3) is in supp(f ) for some f ∈K(
)∩K[X] with a3 > 0,
then a1 + a2 > 0.

Proof. Suppose to the contrary that (0, 0, a3) is in supp(f ) with a3 > 0 for some
f ∈ K(
) ∩ K[X]. Since K(
) ∩ K[X] = K[
] ∩ K[X] by Proposition 2.3,
there exists a polynomial g ∈ K[Y ]D such that f = �(g). Then there exists an
element b = (b1, b2 , b3, b4) of supp(g) such that�(Y b) = X

a3
3 . By (2.6) we have

0 = ω1 · b = −(b1 + b2 + 2b4)δ1,1 + (b2 + b4)(δ1,1 + δ2,1),

0 = ω2 · b = −(b1 + b2 + 2b4)δ2,2 + (b1 + b4)(δ2,2 + δ1,2),

and b3 = a3/γ. This implies b1 = b2 = b4 = 0 by (1.2), because bi ≥ 0 for

each i. Moreover, b3 is positive. Since D(Y b3
3 ) = b3Y

b3−1
3 and D(g) = 0, there

exists an element c of supp(g) \ {b} such that Y b3−1
3 appears in D(Y c). Then,

c must be (1, 0, b3 − 1, 0) or (0,1, b3 − 1, 0). Since �(Y1Y
b3−1

3 ) = Xδ1X
(b3−1)γ
3

and �(Y2Y
b3−1

3 ) = Xδ2X
(b3−1)γ
3 are not in K[X], the monomial �(Y c) does not

appear in �(g). Hence there exists an element c ′ of supp(g) \ {c} such that
�(Y c ′

) = �(Y c). It follows that Y c − Y c ′
is in πK[Y ]. However, c is not con-

tained in the support of any element of πK[Y ], since π = Y1Y2 − Y4. This is a
contradiction. Therefore, (0, 0, a3) is not contained in supp(f ).
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Let C be the set of a ∈ (R≥0)
4 such that ωi · a ≥ 0 for i = 1, 2. Then C is a con-

vex polyhedral cone in R4. We remark that, if supp(g) ⊂ C, then �(g) ∈ K[X]
for g ∈K[Y ] by (2.6).

The following is the key lemma, which will be proved in Section 3.

Lemma 2.8. There exist integers p1,p2 > 0 such that, for each integer l > 0,
we may find Fl ∈K[Y ]D with supp(Fl) ⊂ C of the form

Fl = (Y 2
1 − 2Y4)

p1(Y 2
2 − 2Y1Y2 + 2Y4)

p2Y l
3

+ (terms of lower degree in Y3). (2.7)

Now, we prove Theorem 1.1 as a consequence of Lemma 2.8. Suppose to the con-
trary thatK(
)∩K[X] is generated by a finite number of elements g1, . . . , gr . By
Lemma 2.7, there exists µ > 0 such that N(a) < µ for every a ∈ ⋃r

i=1 supp(gi) \
{0}, where N(a) = a3/(a1 + a2) for a = (a1, a2 , a3). Since g1, . . . , gr generate
K(
)∩K[X], the set S of the union of the supports of elements ofK(
)∩K[X]
is contained in the subsemigroup of Z4 generated by

⋃r
i=1 supp(gi). On the other

hand,N(a+b) < µ for any a, b withN(a),N(b) < µ. Hence we haveN(a) < µ

for all a ∈ S \ {0}. Take p1,p2 > 0 as in Lemma 2.8. Then, for each l > 0, there
exists a polynomial Fl ∈ K[Y ]D as in (2.7) with supp(Fl) ⊂ C by Lemma 2.8.
Since

�(Fl) = (X2δ1 − 2Xδ1+δ2)p1X2p2δ2X
lγ

3 + (terms of lower degree in X3)

is contained in K(
) ∩ K[X], it follows that the vector al = 2p1δ1 + 2p2δ2 +
(0, 0, lγ ) is contained in S for any l > 0. This is a contradiction, since N(al) > µ

for sufficiently large l. Thus, K(
)∩K[X] is not finitely generated. This proves
Theorem 1.1 under the assumption that Lemma 2.8 is true.

3. Proof of Lemma 2.8

For each integer q > 0, we set ε(q) = 0 if q is even and ε(q) = 1 otherwise, and
we set η(q) = �q/2� = (q − ε(q))/2. Then, define

fq,p = (−σ(Y2))
ε(q)(−2σ(Y4))

η(q)−p(σ(Y2)
2 + 2σ(Y4))

p

= (Y1 − Y2)
ε(q)(Y 2

1 − 2Y4)
η(q)−p(Y 2

2 − 2Y1Y2 + 2Y4)
p (3.1)

for q > 0 and 0 ≤ p ≤ η(q).

Let q0 be an integer such that

q0

(
1

2
− δ1,1

δ1,1 + δ2,1
− δ2,2

δ2,2 + δ1,2

)
≥ 3

2
. (3.2)

Then, for an integer q ≥ q0, we have

η(q) >
q

2
−

(
qδ2,2

δ2,2 + δ1,2
+ 3

2

)
≥ qδ1,1

δ1,1 + δ2,1
. (3.3)
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Lemma 3.1. Let q ≥ q0 be an integer, and let p be the minimal integer such that

p >
qδ1,1

δ1,1 + δ2,1
. (3.4)

Then supp(fq,p) ⊂ C, and ω2 · a ≥ 0 for each a ∈ supp(fq,p ′) for 0 ≤ p ′ ≤ p.

Proof. By (3.3) we have p ≤ η(q). Hence, fq,p ′ is defined for 0 ≤ p ′ ≤ p. Note
that each monomial appearing in fq,p ′ is written as

(Y
ε(q)−α

1 Yα2 )(Y
2β

1 Y
η(q)−p ′−β

4 )(Y
2γ1

2 (Y1Y2)
γ2Y

γ3
4 )

= Y
ε(q)−α+2β+γ2

1 Y
α+2γ1+γ2
2 Y

η(q)−p ′−β+γ3
4

for some 0 ≤ α ≤ ε(q), 0 ≤ β ≤ η(q)−p ′, and γ1, γ2 , γ3 ≥ 0 with γ1+γ2 +γ3 =
p ′. We set

bq,p ′ = (ε(q)− α + 2β + γ2)e1 + (α + 2γ1 + γ2)e2 + (η(q)− p ′ − β + γ3)e4

for q,p ′ and α,β, γ1, γ2 , γ3 as before. Here, e1, e2 , e3, e4 are the coordinate unit
vectors of R4. Then we have

ω1 · bq,p = −(ε(q)− α + 2β + γ2)δ1,1 + (α + 2γ1 + γ2)δ2,1

+ (η(q)− p − β + γ3)(δ2,1 − δ1,1)

= −(2η(q)+ ε(q))δ1,1 + (η(q)+ α − β + γ1)(δ1,1 + δ2,1)

≥ −qδ1,1 + p(δ1,1 + δ2,1) = (δ1,1 + δ2,1)

(
p − qδ1,1

δ1,1 + δ2,1

)
> 0,

where the first inequality is obtained by substituting α = 0, β = η(q) − p, and
γ1 = 0; the second inequality follows from (3.4). A similar formula holds for
ω2 · bq,p ′ . For 0 ≤ p ′ ≤ p, we have

ω2 · bq,p ′ = (ε(q)− α + 2β + γ2)δ1,2 − (α + 2γ1 + γ2)δ2,2

+ (η(q)− p ′ − β + γ3)(δ1,2 − δ2,2)

= (η(q)+ ε(q)− α + β − γ1)(δ2,2 + δ1,2)− (2η(q)+ ε(q))δ2,2

≥ (η(q)− p ′)(δ2,2 + δ1,2)− qδ2,2

= (δ2,2 + δ1,2)

(
q

2
− p ′ − qδ2,2

δ2,2 + δ1,2
− ε(q)

2

)

> (δ2,2 + δ1,2)

(
q

2
− qδ1,1

δ1,1 + δ2,1
− qδ2,2

δ2,2 + δ1,2
−

(
1 + ε(q)

2

))
≥ 0,

where the first inequality is obtained by substituting α = ε(q), β = 0, and γ1 =
p ′; the second inequality follows from p ′ ≤ p < qδ1,1/(δ1,1 + δ2,1) + 1; and the
third inequality follows from (3.2). Thus, the assertion of the lemma is true.

Let q ≥ q0 be an even number, and let p be the minimal integer such that p >

qδ1,1/(δ1,1 + δ2,1). We set p1 = η(q)− p, p2 = p, and
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f0 = (Y 2
1 − 2Y4)

p1(Y 2
2 − 2Y1Y2 + 2Y4)

p2.

Then f0 is in K[Y ]D, and supp(f0) is contained in C by Lemma 3.1 because
f0 = fq,p.

We define a Z-grading on K[Y ] by setting deg(Y1) = deg(Y2) = deg(Y3) = 1
and deg(Y4) = 2. Note that f0 is a Z-homogeneous element of Z-degree q.

Let l be any positive integer, and let S be the set of Z-homogeneous elements
F ∈ K[Y ]D of Z-degree l + q having the form F = f0Y

l
3 + (terms of lower

degree in Y3) such that ω2 ·a ≥ 0 for each a ∈ supp(F ). Since ω2 · (ie1+je3)≥ 0
for i, j ≥ 0, it follows thatω2 ·a ≥ 0 for a ∈ supp((Y3 −Y1)

l). Hence f0(Y3 −Y1)
l

is in S and so S is not empty. To complete the proof of Lemma 2.8, it suffices to
show that there exists a polynomial F ∈ S such that ω1 ·a ≥ 0 for all a ∈ supp(F ).
Suppose the contrary. Then O(F ) = (d, e)∈ (Z≥0)

2 is defined for each F ∈ S as
follows. Let fi ∈ K[Y1,Y2 ,Y4] be the coefficient of Y l−i

3 in F for each i. Then,
define e to be the minimal integer such that ω1 ·a < 0 for some a ∈ supp(feY

l−e
3 ).

Note that each monomial in Y1, Y2 , and Y4 of Z-degree q + e is written as Y a(i,d )

for some d and i, where

a(i, d) = (q + e − 2d)e1 + de4 + i(e1 + e2 − e4)

= ie2 + (d − i)e4 + (q + e − 2d + i)e1.

We define d to be the minimal integer such that a(i, d) ∈ supp(fe) for some i.
Clearly, the cardinality of the set of O(F ′) for F ′ ∈ S is finite. Let � be the total
order on (Z≥0)

2 defined by a � b if the last nonzero component of b−a is positive.
Then, take F ∈ S such that O(F ′) � O(F ) for any F ′ ∈ S. Let fi ∈K[Y1,Y2 ,Y4]
be the coefficient of Y l−i

3 in F for each i and write fe = ∑
a∈(Z≥0 )4 λaY

a , where
O(F ) = (d, e). We remark that e is positive, since the second component of
O(f0(Y3 − Y1)

l) is positive. Define h = ∑d
i=0 λa(i)Y

a(i), where a(i) = a(i, d)
for each i. Then we have

ω1 ·a(i) = ω1 ·((q+e−2d)e1+de4) = −(q+e)δ1,1+d(δ1,1+δ2,1) < 0 (3.5)

for all i. Actually, (3.5) holds for i with λa(i) �= 0 by the definition of e and the
minimality of d. Since the left-hand side of the inequality in (3.5) does not depend
on i, the inequality holds for all i.

Lemma 3.2. There exists κ ∈K \ {0} such that h = κY
q+e−2d

1 (−Y1Y2 + Y4)
d.

Proof. It suffices to show that iλa(i) + (d − i + 1)λa(i−1) = 0 for i = 1, . . . , d.
Suppose that iλa(i) + (d − i + 1)λa(i−1) �= 0 for some i. Then the monomial
Y a(i)Y−1

2 Y l−e
3 appears in D(λa(i−1)Y

a(i−1)Y l−e
3 + λa(i)Y

a(i)Y l−e
3 ), since

(∂/∂Y2)Y
a(i)Y l−e

3 = iY a(i)Y−1
2 Y l−e

3 ,

(Y1∂/∂Y4)Y
a(i−1)Y l−e

3 = (d − i + 1)Y a(i−1)Y1Y
−1
4 Y l−e

3

= (d − i + 1)Y a(i)Y−1
2 Y l−e

3 ,

and the other monomials appearing in D(Y a(i−1)Y l−e
3 ) and D(Y a(i)Y l−e

3 ) are not
equal to Y a(i)Y−1

2 Y l−e
3 . Since fe is the coefficient of Y l−e

3 in F, the monomial
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Y a(j)Y l−e
3 appears in F with coefficient λa(j) for each j. Hence there exists an

element c of supp(F ) such that a(i) − e2 + (l − e)e3 is in supp(D(Y c)) and
c − (l − e)e3 does not equal a(i) or a(i − 1), since D(F ) = 0. Then, c must
be equal to c(1) or c(3), where c(j) = a(i) − e2 + ej + (l − e)e3 for j = 1, 3.
Since c(1) − (l − e)e3 = a(i) + 2e1 − e4 − (e1 + e2 − e4), we have c(1) /∈
supp(F ) by the minimality of d. Hence, c(3) is in supp(F ). Then c(3) belongs to
supp(fe−1Y

l−e+1
3 ) by definition. However,ω1 ·c(3) = ω1 ·a(i)−δ2,1 < ω1 ·a(i) <

0 by (3.5), which contradicts the minimality of e. Thus, iλa(i)+(d−i+1)λa(i−1) =
0 for all i = 1, . . . , d.

Now let G = F − κfq+e,d(Y3 − Y1)
l−e. Since d < (q + e)δ1,1/(δ1,1 + δ2,1)

by (3.5), it follows that ω2 · a ≥ 0 for each a ∈ supp(fq+e,d) by Lemma 3.1.
Therefore, ω2 · a ≥ 0 for each a ∈ supp(G). Because e is positive, G has the
form f0Y

l
3 + (terms of lower degree in Y3). Hence, G is in S. Moreover, O(F ) �

O(G) by definition. Note that we may write

fq+e,d = Y
q+e−2d

1 (−Y1Y2 + Y4)
d +

∑
i,d ′

µa(i,d ′ )Y
a(i,d ′ )

for some µa(i,d ′ ) ∈K, where the sum is taken over i and d ′ with d ′ < d; conse-
quently, any monomials appearing in hY l−e

3 do not appear in G, by Lemma 3.2.
This implies that O(F ) �= O(G), which contradicts the choice of F. Hence there
exists a polynomial F ∈ S such that ω1 · a ≥ 0 for each a ∈ supp(F ). We have
thus proved Lemma 2.8, thereby completing the proof of Theorem 1.1.
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