
Michigan Math. J. 52 (2004)

Porteous’s Formula for Maps
between Coherent Sheaves
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1. Introduction

Recall what the Thom–Porteous formula for vector bundles tells us (see [2, Sec.
14.4] for details). Let X be an n-dimensional variety. Let E and F be vector bun-
dles on X of ranks e and f , respectively, and let σ : E → F be a homomorphism
of vector bundles. Choose an integer k with k ≤ min(e, f ). Define

Dk(σ) = {x ∈X | rank(σx) ≤ k}.
Give Dk(σ) the scheme structure defined locally by the vanishing of the k × k

minors of a matrix representing σ. If each component ofDk(σ) is either empty or
of the expected codimension (e−k)(f −k) inX and ifX is Cohen–Macaulay, then
the Thom–Porteous formula gives the class of Dk(σ) in the Chow group of X as
an explicit polynomial in the Chern classes of the vector bundles E and F. When
X is not Cohen–Macaulay, one gets a positive cycle whose support is Dk(σ).

Now suppose instead that E and F are assumed only to be coherent sheaves.
What might one hope for from a formula of Thom–Porteous type in this situation?
Consider Question (3.134) from [3].

Question. Is there a Porteous-type formula for maps of torsion-free coherent
sheaves? That is, given a map ϕ : E → F of such sheaves on X, can we give the
locus

Xr := closure of {p : E and F are locally free at p and rankp(ϕ) ≤ r}
a scheme structure and then express its class in terms of the Chern classes of E
and F and of local contributions, where E and F aren’t locally free?

It is also perhaps useful to consider how excess and residual intersection formulas
are used in enumerative geometry. Consider for instance Examples 9.1.8 and 9.1.9
of [2]. When counting the number of plane conics tangent to five given lines or five
given conics, one knows that the excess component consists of double lines. Thus
we know that one wishes to count not the excess component but instead only the
number of points outside the excess component. Similarly, when trying to apply
some sort of Porteous formula for coherent sheaves, we will need to determine
from the specifics of the given problem whether one wants to count degeneracies
that may occur in the nonlocally free locus of the sheaves involved.
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What is presented in this paper cannot really be called a Thom–Porteous for-
mula for coherent sheaves. It is a process or procedure, rather than a formula,
which proceeds as follows. Let Y ⊂ X be the locus over which either E or F fails
to be locally free. Restricting to the complement X − Y, σ is a homomorphism
of vector bundles. We will show that, by blowing up Fitting ideals related to E
and F, one can obtain a variety X ′ with its natural map g to X with the following
properties. The map g gives an isomorphism between X − Y and g−1(X − Y ),
the pullbacks of the restrictions of E and F to X − Y extend to vector bundles
on all of X ′, and the pullback of the restriction of σ to X − Y extends to a homo-
morphism of these extended vector bundles over all of X ′. One then applies the
standard Thom–Porteous formula to this homomorphism of vector bundles onX ′.
Since the map g is given explicitly in terms of blowing up Fitting ideals, the hope
is that one can understand what is going on in X ′ − g−1(X − Y ) well enough to
decide how degeneracies there (if any) should be counted and how to relate the
Chern classes of E and F with those of the extended vector bundles on X ′.

In Section 2 we explain the process in detail, constructing X ′ with its map g to
X and showing that the claimed properties are satisfied. In Section 3 we apply the
process to a specific question from [3].

The author would like to thank Joe Harris for a suggestion that helped in an
earlier proof of Lemma 1. The current proof follows a suggestion of the referee.
The author would also like to thank Joe Harris and Harvard University for support
during a visit to Harvard during which his suggestion was made.

2. The General Setup

We shall always assume that our base scheme X is an n-dimensional variety (by
variety we mean an integral separated scheme of finite type over an algebraically
closed field k). We start with a lemma about coherent sheaves on X. See [1,
Sec. 20.2] for some information on Fitting ideals.

Lemma 1. Let F be a coherent sheaf on the n-dimensional variety X. Let Y ⊂
X be the locus where F fails to be locally free. Restricted to X− Y, F is a vector
bundle; call its rank f. Let I be the f th Fitting ideal sheaf of F on X. The zero
scheme of I has support equal to Y. Let h : Z →X be the blow-up of X along I.
Let h∗F be the pullback of F to Z. Then the double dual (h∗F )∗∗ is locally free,
that is, a vector bundle.

Proof. The question is clearly local on Z, so for any point p ∈Z we may replace
Z by an affine open set containing p and assume that Z is affine equal to Spec A
and that h∗F is the sheaf associated to anA-moduleM. LetMt be the torsion sub-
module of M. Because Z was obtained by blowing up the f th Fitting ideal of F,
we have that the f th Fitting ideal of M is generated by a single regular element
of A. Also, because f was chosen to be the rank of F on its locally free locus,
the f th Fitting ideal of M is its smallest nonzero Fitting ideal. Thus Lemma 1 of
[4] applies to say that the quotient M/Mt is free. Dualizing the exact sequence
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0 → Mt → M → M/Mt → 0, we obtain 0 → (M/Mt)∗ → M ∗ → (M t)∗ =
0. Since M/Mt is free, its dual is free. Thus, M ∗ is free, so M ∗∗ is free.

Now we may proceed with our general setup. Let X be an n-dimensional variety,
let E and F be coherent sheaves on X, let σ : E → F be a homomorphism of co-
herent sheaves, and let Y ⊂ X be the locus where either E or F fails to be locally
free. On X − Y, E and F are vector bundles. Let e and f (respectively) be their
ranks.

Let h1 : Z → X be the blow-up of X along the f th Fitting ideal of F. On Z
we have a homomorphism of coherent sheaves h∗

1σ : h∗
1E → h∗

1F. Taking dou-
ble duals yields (h∗

1σ)
∗∗ : (h∗

1E)
∗∗ → (h∗

1F )
∗∗, which extends the vector bundle

homomorphism h∗
1σ on Z−h−1

1 (Y ); by the lemma, the target sheaf (h∗
1F )

∗∗ is lo-
cally free. Now let h2 : X ′ → Z be the blow-up of Z along the eth Fitting ideal of
(h∗

1E)
∗∗. We then (using the lemma once again) have a homomorphism of vector

bundles on X ′:

(h∗
2(h

∗
1σ)

∗∗)∗∗ : (h∗
2(h

∗
1E)

∗∗)∗∗ → (h∗
2(h

∗
1F )

∗∗)∗∗. (1)

For notational convenience, rename the objects in equation (1) as

σ ′ : E ′ → F ′. (2)

Also let g = h1 � h2 : X ′ →X. We have proven the following theorem.

Theorem 1. The map g gives an isomorphism between X− Y and g−1(X− Y ),
the pullbacks of the restrictions of E and F to X − Y extend to vector bundles on
all of X ′, and the pullback of the restriction of σ to X− Y extends to a homomor-
phism of these extended vector bundles over all of X ′.

For each nonnegative integer k ≤ min(e, f ), set m = n− (e − k)(f − k). Since
σ ′ is a morphism of vector bundles, the standard Porteous formula gives a degen-
eracy class whose image in the Chow group Am(X

′) is

�
(e−k)
f−k (c(F

′ − E ′)) ∩ [X ′ ]

(see [2, Sec. 14.4]). The construction between Lemma 1 and Theorem 1 did not
involve any unspecified choices. Thus, it is reasonable to make the following
definition.

Definition 1. The kth degeneracy class of the morphism of coherent sheaves
σ : E → F is

g∗(�(e−k)f−k (c(F
′ − E ′)) ∩ [X ′ ]).

3. An Example

This is the example that led Harris and Morrison to pose the question about Por-
teous’s formula for nonlocally free sheaves mentioned in the Introduction. Their
work on the example occurs in Chapter 3 (sections E through H) of [3]. For this
example we work over the field of complex numbers.
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Let M̄3 be the Deligne–Mumford compactification of the moduli space of curves
of genus 3 with open set M3 corresponding to nonsingular curves. Inside M3 we
have the codimension-1 locus H of points corresponding to hyperelliptic curves.
Harris and Morrison compute the class in the Picard group Pic(M̄3) of the closure
H̄ ofH in M̄3 in terms of the first Chern class λ of the Hodge bundle and boundary
divisors δ0 (the closure of the locus of points corresponding to irreducible stable
curves with one node) and δ1 (the closure of the locus of points corresponding to
an elliptic curve and a curve of genus 2 meeting at one point). They start by work-
ing on a generic 1-parameter family of curves of genus 3, π : X → B. The plan is
to construct a homomorphism of vector bundles σ : E → F on X for which the
locus of points where the rank is less than or equal to unity consists of the hyper-
elliptic Weierstrass points of fibers of π.

Toward this end (see [3, pp. 162–164]), let ωX/B be the relative dualizing sheaf
of the family, let X2 := X ×B X be the fiber product of X with itself over B with
projection maps π1 and π2 , and let � ⊂ X2 be the diagonal with ideal sheaf I�.
On X2 we have the natural restriction map OX2 → OX2/I 2

�. Tensor both sides
with π∗

2ωX/B and then push down via π1 to obtain

σ : (π1)∗(π∗
2ωX/B) → (π1)∗(π∗

2ωX/B ⊗ OX2/I 2
�).

This is hoped to be the desired map σ, and E and F are the domain and target (re-
spectively). Away from the singular fibers of π, this works well. The fiber of E
over a point x of X is identified with global sections of the canonical bundle of
the curve π−1(π(x)), and the map σ takes the constant and linear terms of those
sections written as power series centered at x; thus, σ has rank ≤ 1 exactly at the
hyperelliptic Weierstrass points of fibers of π. This allows Harris and Morrison to
use the standard Thom–Porteous formula to find the coefficient of λ in the expres-
sion for the class of H̄.

The authors point out [3, p. 169] that, at singular points of fibers of π, F fails
to be locally free (this can also be seen from the Fitting ideal computation in the
proof of our Lemma 2, which will come up shortly), so one cannot use the stan-
dard Thom–Porteous formula to obtain the coefficients of δ0 and δ1. Thus they
pose Question (3.134), mentioned in our Introduction. Harris and Morrison do ob-
tain these coefficients by other means. In what follows we will use the process
described in Sections 1 and 2 in order to use the Thom–Porteous formula to find
the coefficients of δ0.

We do not find the coefficient of δ1; more than a coherent Thom–Porteous for-
mula is needed for that. At singular curves corresponding to points of δ1, not only
does the sheaf F fail to be locally free at singular points of fibers of π, but also the
map σ has rank ≤ 1 at all points of the elliptic component of the fiber. Perhaps
someone could combine the coherent Porteous process presented here with an ex-
cess Porteous formula such as found in [2, Ex. 14.4.7] to compute the coefficient
of δ1. So, for the rest of this section we will use the coherent Porteous process of
Sections 1 and 2 to prove the following proposition.

Proposition 1. Letting h equal the class of H̄ in Pic(M̄3), we have

h = 9λ− δ0 + (??)δ1.
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In order to apply the process of Sections 1 and 2, we must first compute the Fitting
ideal of F.

Lemma 2. Near a node p of a fiber of π, the second Fitting ideal of F is the
maximal ideal of p.

Proof. Letp be a node of a fiber ofπ. The construction ofF involves taking a prod-
uct ofX with itself. To help keep things organized, think of two copies of the fam-
ily of curves π : X → B. Choose local coordinates xi and yi (i = 1, 2) centered at
p on each copy ofX, with the map π given locally by xiyi = ti, so that ti is a local
coordinate on B centered at π(p). Recall that F = (π1)∗(π∗

2ωX/B ⊗ OX2/I 2
�).

Because π∗
2ωX/B is locally free and of rank 1, when finding a presentation of F in a

neighborhood of p we really need only find a presentation of (π1)∗OX2/I 2
�. Near

p×p,X×X has local coordinates x1, y1, x2, y2,X×BX has local equation x1y1 =
x2y2, and the diagonal has local equations x1 = x2 and y1 = y2. The ideal I 2

� is
locally generated by (x1−x2)

2, (y1−y2)
2, and (x1−x2)(y1−y2). In a neighbor-

hood of p on the first copy of X, (π1)∗OX2/I 2
� as a module over OX is generated

by 1, (x1 − x2), and (y1 − y2) with the relation y1(x1 − x2)+ x1(y1 − y2) = 0.
The Fitting ideal is the maximal ideal (x1, y1).

Let g : X ′ → X be the blow-up of X at the nodes of fibers of π, let E ′ and F ′ be
the extended vector bundles on X ′, and let σ ′ be the extended map.

There is one issue that may be of concern. Of course, there are many possi-
ble extensions of g∗F restricted to X ′ − g−1(Y ) to a vector bundle on all of X ′.
For instance, tensor any given extension with the line bundle associated to any
Cartier divisor supported on g−1(Y ). Which is the double dual that appears in Sec-
tion 2?—the one for which we know the restriction of the map σ extends. The
proof of [4, Lemma 1] shows that locally the desired extension is the one ob-
tained by factoring out the exceptional divisor in a local presentation. How do
these local pictures fit together globally? In the current example we get lucky.
The nonlocally free locus on X is a set of isolated points. The local presenta-
tion for F near each point pulls back to give local presentations of g∗F along
the exceptional divisor together with transition data on how they patch together.
For more complicated nonlocally free loci, this issue could be more difficult to
deal with.

As mentioned in the Introduction, when applying the coherent Porteous process
to a given problem one must determine (a) how points in the nonlocally free locus
need to be counted for the given enumerative problem and (b) how the coherent
Porteous process is counting them. One then makes an adjustment if these two
are not equal. We are using a generic 1-parameter family, so none of the singu-
lar fibers are elements of the closure of H. We do not want to count any singular
curves as hyperelliptic curves. That the coherent Porteous process does not in fact
count them (at least for fibers corresponding to general points of δ0) is given by
the next two lemmas.

Lemma 3. For fibers corresponding to general points of δ0, the map σ ′ is surjec-
tive at all points of the exceptional divisor.
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Proof. Let C be a singular fiber of the family with node p. Let C̃ be the normal-
ization ofC with p1 and p2 lying over p. Fibers ofE ′ at points ofC are sections of
the dualizing sheaf ωC. From [3, Sec. 3A] we see that these are rational differen-
tials on C̃ whose only allowed poles are simple poles at p1 and p2, with the sum of
the residues being zero. With coordinates chosen as in the computation of the Fit-
ting ideal in the proof of Lemma 2, x2 will be a local coordinate on C̃ at p1 and y2

will be a local coordinate on C̃ at p2. Because C is a general point of δ0, we may
assume that p1 and p2 are not conjugate under the hyperelliptic involution of C̃.
Choose {α1,α2,α3} as a basis for H0(ωC), where α1 has simple poles and no con-
stant terms atp1 andp2 and where α2 and α3 are regular differentials on C̃, with α2

vanishing at p2 but not p1 and with α3 vanishing at p1 but not p2. After blowing
up p on X and extending the bundles, the relation y1(x1 − x2)+ x1(y1 − y2) = 0
becomes ỹ1(x1−x2)+ (y1−y2) = 0 on one patch and (x1−x2)+ x̃1(y1−y2) =
0 on the other patch. After multiplying all the α by suitable constants, the map σ ′
becomes:

σ ′(α1) = 1(1)+ 0(x1 − x2)+ 0(y1 − y2),

σ ′(α2) = 0(1)+ 1(x1 − x2)+ 0(y1 − y2),

σ ′(α3) = 0(1)+ 0(x1 − x2)+ 1(y1 − y2).

Thus, we see that σ ′ is always surjective at points of the exceptional divisor.

Lemma 4. The map σ ′ is surjective at all nonsingular points of singular fibers
corresponding to general points of δ0.

Proof. Suppose to the contrary that σ ′ failed to be surjective at q. Using the same
notation as in the proof of Lemma 3, this would be a pointq such that h0(ωC−2q) =
2. LettingK be the canonical bundle on C̃, this becomes h0(K+p1 +p2 −2q) =
2, which means that q is a hyperelliptic Weierstrass point on C̃ and that p1 and p2

are conjugate under the hyperelliptic involution—contrary to the assumption that
C corresponds to a general point of δ0.

We can now conclude that the first degeneracy class of the map σ : E → F given
in Definition 1 counts hyperelliptic curves as we wish (at least away from δ1).

What remains is to compute the Chern classes of E ′ and F ′ that come up in Por-
teous’s formula and then to apply the standard Porteous formula. Because E is
already a vector bundle, the Chern classes of E ′ are simply the pullbacks to X ′ of
the Chern classes of E. To compute the Chern classes of F, Harris and Morrison
[3, p. 163] use a two-term filtration:

0 → F2 → F → F1 → 0.

This filtration can be obtained by taking the following exact sequence on the
fiber product X2 ,

0 → I�
I 2
�

→ OX2

I 2
�

→ OX2

I�
→ 0,
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tensoring it with π∗
2ωX/B , and then pushing down via (π1)∗. The sheaf F1 is still a

vector bundle on all of X, but F2 (like F ) is only a coherent sheaf. Continue with
the notation of the proofs of Lemmas 2, 3, and 4. Locally near the node p, I�/I 2

�

is generated by (x1−x2) and (y1−y2)with the relation y1(x1−x2)+x1(y1−y2) =
0, just as OX2/I 2

� is generated by1, (x1−x2), and (y1−y2)with the same relation.
As we saw before, after blowing up p onX and extending the bundles, the relation
becomes ỹ1(x1−x2)+ (y1−y2) = 0 on one patch and (x1−x2)+ x̃1(y1−y2) =
0 on the other patch. Let g : X ′ →X be the blow-up map. Restricted to the excep-
tional divisor D, either (x1 − x2) or (y1 − y2) becomes a section of the extension
of g∗F2 with one simple zero on D. Harris and Morrison state that, on X (away
from singular fibers), F1 isωX/B and F2 is the square ofωX/B. This continues to be
true away from the singular points of singular fibers. The pullback of the square
of ωX/B toX ′ is trivial alongD, whereas the extension of g∗F2 restricted toD has
degree 1. Putting all this together, we have the following lemma.

Lemma 5. On X ′ we have a two-term filtration,

0 → F ′
2 → F ′ → F ′

1 → 0,

where F ′
1 is g∗ωX/B and F ′

2 is g∗ω2
X/B ⊗ O(−D).

Thus the Chern class and Porteous computations from [3, pp. 163–164] are modi-
fied as follows:

c(F ′) = (1 + γ )(1 + 2γ −D) = 1 + 3γ −D + 2γ 2;
c(E ′) = 1 − λ.

Let [)] denote the first degeneracy class of σ ′ : E ′ → F ′ on X ′. Porteous’s
formula says [)] = c2(E

′∗ − F ′∗). Putting in our Chern classes for E ′ and F ′
yields

[)] = 7ω2 − 3ωλ+D2.

But there is one component ofD for each fiber of π from δ0, and each component
has square −1. Hence

(πg)∗([)]) = 7κ − 12λ− δ0.

Use λ = (κ + δ)/12 from [3, eq. (3.110)] and ignore δ1 to obtain

(πg)∗([)]) = 72λ− 8δ0 + (??)δ1.

Then divide by 8, since each hyperelliptic curve has eight hyperelliptic Weierstrass
points:

h = 9λ− δ0 + (??)δ1.

This agrees with the Harris–Morrison result [3, p. 188].
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