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Borel Images and Analytic Functions

A. Cantón, A. Granados , & Ch. Pommerenke

1. Introduction

The σ -algebra B of Borel sets in Ĉ = C ∪ {∞} is, by definition, the smallest σ -
algebra that contains all open sets.

It is well known that the preimage of a Borel set under a continuous mapping
is again a Borel set, whereas the image of a Borel set need not be a Borel set. See
[13; 25; 26] for a discussion from the point of view of descriptive set theory.

We say that the mapping f preserves Borel sets on A if f is defined on A and if

B ⊂ A, B ∈ B 	⇒ f(B)∈ B.
There seems to be no standard name for this property.

The notion of injectivity plays an important role. Lusin and Suslin showed that
any injective Borel measurable map f : B → C (B ∈ B) preserves Borel sets. In
[7] it was shown that conformal maps of D into Ĉ preserve Borel sets for radial
limits.

Lusin and Purves have characterized the functions that preserve Borel sets in
terms of the number of preimages at the points in their domain. All that we shall
prove is based on the following result (see [14, p. 406; 21]).

Theorem (Lusin–Purves). Let A∈ B and let f : A → Ĉ have the property that
f −1(E) ∈ B for every E ∈ B. Then f preserves Borel sets on A if and only if
the set

{w : w = f(z) for uncountably many z∈A}
is countable.

We shall be interested in functions that are analytic (holomorphic) in the unit disk
D and are continuous in D̄ (see Section 2) or have radial limits on subsets of T =
∂D (see Sections 3 and 4). In Section 5 we characterize the plane domains whose
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universal covering maps preserve Borel sets. The remarkable Lusin–Purves theo-
rem now allows us to apply results on value distribution to the problem of Borel
images.

A Suslin set (or analytic set) is, by definition, the continuous image of some
Borel set (see e.g. [13, pp. 85–87]). The images of Borel sets that we consider are
always Suslin sets [16, Thm. 7(i)].

There are several results ([6; 11; 23], among others) showing that essentially
any Suslin analytic set can occur as the image of a Borel set for various classes of
meromorphic functions. Berman and Nishiura [5] proved that, for any nowhere
dense perfect set B ⊂ T and any Suslin set A ⊂ Ĉ, there is an analytic function in
D with radial limits on B such that f(B) = A. We want to thank the two authors
for their valuable information.

2. Continuous Functions and Lacunary Series

Belov [4, Cor. 3.1] has proved an interesting result on lacunary series that improves
an earlier result of Kahane, Weiss, and Weiss [12].

Theorem 1 (Belov). Let q = 3, 4, . . . and let

f(z) =
∞∑
k=1

akz
qk.

If β and γ satisfy γ (1 + β) < 1 and if

2π
q − 1

q − 2

m∑
k=1

|ak|qk ≤ γ |am+1|qm+1 for m ≥ 0, (1)

|am+1| ≤ β

∞∑
k=m+2

|ak| for m ≥ 0, (2)

then f is continuous in D̄ and assumes every value in some disk uncountably often
on T. Hence f does not preserve Borel sets on T.

The last statement follows from the Lusin–Purves theorem.

Example 1 (Kahane–Weiss–Weiss–Baranski). The lacunary series

f(z) =
∞∑
k=1

1

k2
zq

k

is continuous in D̄ and does not preserve Borel sets on T.

This is perhaps the simplest example of this kind. The fact that f does not preserve
Borel sets follows from [12, Thm. II′ ] (which, however, shows this only for the
sum starting at some m) and more explicitly from a recent paper of Baranski [3].

Example 2 (Belov). Let q = 5, 6, . . . and

f(z) =
∞∑
k=1

q−αkzq
k

. (3)
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Now, by [4, Cor. 3.4], if α ∈ (0,1/2) is small enough then conditions (1) and (2) are
satisfied, so that f does not preserve Borel sets on T. Furthermore, if |z| = r → 1
then

r|f ′(z)|
1 − r

≤ 1

1 − r

∞∑
k=1

q(1−α)kr q
k ≤

∞∑
n=1

( ∑
qk≤n

q(1−α)k
)
r n

=
∞∑
n=1

O(n1−α)r n = O((1 − r)α−2).

Hence, f belongs to the class �α of functions that are Hölder-continuous with
exponent α (see [8, Thm. 5.1]).

In order to apply Theorem 1, we must have α ≤ 1/2 because every function with
Hölder exponent greater than 1/2 maps T into a set of zero area (see [24]). But
we only need some uncountable set (and not a disk) to be assumed uncountably
often.

Problem 1. Does the function (3) fail to preserve Borel sets for any α < 1?

This, in turn, raises to the following general question.

Problem 2. If an analytic function f preserves Borel sets, is the same true for
f + P for any polynomial P ?

Suppose the answer is yes; then it would follow that any analytic function g with
|g ′(z)| < M for z∈ D also preserves Borel sets. Indeed, let f(z) = Mz+g(z) and
observe that it satisfies Re(f ′(z)) > 0, so that f is univalent (see [9, Thm. 2.16]).
Hence f preserves Borel sets and so would g.

Problem 3. Does f preserve Borel sets on T if f ′ is bounded?

As we have just seen, this would be true if Problem 2 had a positive answer. Com-
pare also Corollary 2.

3. Radial Limits and Injectivity

Let f : D → Ĉ be continuous; we do not assume that f is analytic. We consider
the radial limit

f(ζ) := lim
r→1

f(rζ)∈ Ĉ, ζ ∈ T, (4)

wherever it exists. The set where the limit exists is a Borel set, and f −1(E) ∈ B
for E ⊂ B (see [20, Prop. 6.5]). Our positive results will be based on the follow-
ing rather technical theorem, where we make essential use of the fact that we are
working in two dimensions.

Theorem 2. Let f : D → Ĉ be continuous and let B ⊂ T be a Borel set such
that f(ζ) exists for ζ ∈B. If there are setsUn ⊂ D (n∈ N) such that f is injective
in each Un and if
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[rζ, ζ)∈Un for some n = n(ζ) and r = r(ζ) < 1 ∀ζ ∈B, (5)

then f(B) is a Borel set.

Proof. Let Z(w) = {ζ ∈B : f(ζ) = w} and

X = {w ∈ C : Z(w) is uncountable}. (6)

If w ∈X then, by (5), there exist anm∈ N and three distinct ζk = ζk(w)∈B such
that f(ζk) = w and n(ζk) = m for k = 1, 2, 3. Let Xm denote the set of these
w ∈X. Thus X ⊂ ⋃∞

m=1Xm.

Now let w ∈Xm. Since f is continuous and injective in Um and since the radial
limits f(ζk(w)) = w exist, the set

T(w) := {w} ∪
3⋃
k=1

{f(ρζk(w)) : r(ζk(w)) ≤ ρ < 1}

is a triod (in the sense of R. L. Moore)—that is, the union of three Jordan arcs that
meet only at their junction point w. Since f is injective in Um, we see from (5)
that T(w)∩ T(w ′) = ∅ for distinct w,w ′ ∈Xm. Hence it follows from the Moore
triod theorem ([17]; see also [20, Prop. 2.18]) that Xm is countable.

Therefore, X is also countable. Applying now the Lusin–Purves theorem to the
restriction of f to the Borel set {ζ ∈B : f(ζ)∈ C}, we deduce from (6) that f(B)
is a Borel set.

Corollary 1. Let f be a homeomorphism of D into Ĉ extended to the subset A
of T where the radial limit exists. Then f preserves Borel sets on D ∪ A.
This result was essentially proved in [7]. Since f is a homeomorphism of D we
have f(B ∩ D) ∈ B, and f(B ∩ A) ∈ B follows from Theorem 1 because we can
choose U1 = D.

4. The Angular Derivative and Inner Functions

Let f be analytic in D. This assumption guarantees that Borel sets in D are mapped
to Borel sets. Hence only sets on T are of interest. We say that f has the angular
derivative f ′(ζ) at ζ ∈ T if the radial limit f(ζ) �= ∞ exists and

f(z)− f(ζ)

z− ζ
→ f ′(ζ) as z → ζ, z∈$, (7)

for every Stolz angle $ at ζ. The function f has a finite angular derivative if and
only if (see [20, Prop. 4.7])

f ′(z) → f ′(ζ) as z → ζ, z∈$. (8)

Theorem 3. Let f be analytic in D and let B ∈ T be a Borel set such that f has
a finite nonzero angular derivative for ζ ∈B. Then f(B) is a Borel set.
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Proof. Let L be the countable collection of all oriented lines L ⊂ C that pass
through two points with rational coordinates. Since f ′(ζ) �= 0, ∞, it follows (see
e.g. [19, p. 291]) from (7) and (8) that f is injective in

$(ζ) = {z : |arg(1 − ζ̄z)| < 3π/4, r < |z| < 1}
for suitable r = r(ζ) and that f is angle-preserving at ζ in$(ζ). Hence there exist
an L ∈ L and an open isosceles triangle T(ζ), with base in L and angle π/2 at its
vertex f(ζ) to the left of L, such that f maps some domainG(ζ) one-to-one onto
T(ζ) and

(rζ, ζ) ⊂ G(ζ) for some r = r(ζ) < 1. (9)

Given L ∈ L and k ∈ N, let B(L, k) denote the set of all ζ ∈ B for which there is
such a triangle T(ζ) of height ≥ 1/k. Each of the countably many open sets⋃

ζ∈B(L,k)

G(ζ) (L∈ L, k ∈ N)

has countably many components. Altogether we obtain countably many domains
in D, which we arrange in a sequence (Un).

The triangles T(ζ) for ζ ∈B(L, k) are all congruent, have their base on L, and
lie to the left of L. Furthermore, Un is connected. Hence Vn = f(Un) is a Jordan
domain; see [20, p. 146] for a diagram.

Fix ζn ∈B ∩ ∂Un. Now f has an inverse function gn in T(ζn) because f maps
G(ζn) one-to-one onto T(ζn). Since f is locally univalent in Un, we can con-
tinue gn analytically throughout Vn with values in Un. Hence we conclude from
the monodromy theorem that gn is well-defined in Vn and gn(Vn) ⊂ Un. By the
identity theorem, we have g(f(z)) = z for z∈Un.

Hence f is injective in Un, and in view of (9) it follows from Theorem 2 that
f(B) is a Borel set.

Corollary 2. Let f be analytic in D and with a finite angular derivative f ′ for
all ζ ∈ T. If f has only countably many critical values, then f preserves Borel
sets on T.

A critical value is an angular limit f(ζ) such that f ′(ζ) = 0. If f ′ has only count-
ably many zeros then there are only countably many critical values. Compare
Problem 3.

Proof of Corollary 2. Let C be the set of critical values. Then B \ f −1(C) ∈ B,
so that f(B \ f −1(C)) ∈ B by Theorem 3. Since f(B ∩ f −1(C)) ⊂ C is count-
able by assumption, we conclude that f(B)∈ B.
By [20, Prop. 4.12] there exist conformal maps of D onto a Jordan domain that do
not have a finite nonzero angular derivative at any point, whereas Borel sets are
mapped onto Borel sets by [7] or Corollary 1. In this situation the angular deriva-
tive has no bearing on the problem of Borel images.

Now we discuss a situation where the angular derivative is very important. Let
f be analytic in D and let f(D) ⊂ D. Then the radial limit f(ζ) exists for almost
all ζ ∈ T. Let
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E = {ζ ∈ T : f(ζ) exists and f(ζ)∈ T}. (10)

The Julia–Wolff lemma (see [20, Prop. 4.13]) states that f ′(ζ) exists for ζ ∈E and

0 < |f ′(ζ)| = sup
z∈D

1 − |z|2
|ζ − z|2

|f(ζ)− f(z)|2
1 − |f(z)|2 ≤ +∞. (11)

Let mes(E) denote the Lebesgue measure of the set E. Aleksandrov [2, Thm. 2]
has proved that

mes{w ∈ f(E) : w = f(ζ) for uncountably many ζ} = 0 (12)

holds if and only if the set E∞ = {ζ ∈E : |f ′(ζ)| = ∞} has measure 0.
By the Lusin–Purves theorem, it follows that f does not preserve Borel sets on

E if mes(E∞) > 0, whereas by Theorem 3 the function preserves Borel sets on E
ifE∞ is countable. There is no conclusion ifE∞ is uncountable and of measure 0.

We call f an inner function if mes(E) = 2π; see (10). Every Blaschke prod-
uct is an inner function, and if f is an inner function then (f − a)/(1 − āf ) is a
Blaschke product for almost all a ∈ D; (see e.g. [10, p. 79]). If T \E is countable
and nowhere dense on T then f is analytic on E, so f preserves Borel sets on T.

Example 3. We consider the Blaschke product

f(z) =
∞∏
n=1

r 2n
n − z2n

1 − (rnz)2
n , rn = 1 − 1/3n. (13)

Given t, we choose k = kn such that |t − 2πkn/2n| ≤ π/2n. Now

f(rn exp(2πik/2n)) = 0

by (13) and thus, by (11),

|f ′(e it )| ≥ 1 − r 2
n

(1 − rn + |t − 2πkn/2n|)2 ≥ const · (4/3)n.

Hence |f ′(ζ)| = ∞ for all ζ ∈ T, so that (12) is false and f does not preserve
Borel sets on E.

If the inner function f satisfies (1 − |z|)f ′(z) → 0 as |z| → 1 but is not a finite
Blaschke product, then f −1(w) has Hausdorff dimension 1 for every w ∈ D (by a
theorem of Rohde [22]) and is therefore uncountable. Hence f does not preserve
Borel sets on T \ E.

5. Universal Covering Maps

A universal covering map f from D onto the domain G ⊂ Ĉ is a locally univa-
lent meromorphic function with f(D) = G such that every branch of f −1 has an
analytic continuation throughout G with values in D. For every domain G with
at least three boundary points, there are infinitely many universal covering maps
from D onto G. If G is simply connected then f is a Riemann map; otherwise, f
assumes every value in G infinitely often. See, for instance, [1, Thm. 10.3].
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Theorem 4. Let f be a universal covering map from D onto G and let E be the
set of ζ ∈ T where the radial limit f(ζ) exists. Then f preserves Borel sets on E
if and only if there are only countably many w ∈ ∂G with the following property:

There exist an arc C ⊂ G ∪ {w} with endpoint w and Jordan domains
Hn (n∈ N) with

∂Hn ⊂ G, Hn ∩ C �= ∅, Hn ∩ ∂G �= ∅, w /∈Hn, (14)

such that Hn → {w} as n → ∞.

Proof. (a) We may assume that f(0) = ∞ so that ∂G is a compact subset of C.

First we prove: If there are only countably many w ∈ ∂G that satisfy (14), then
f(B) ∈ B for every Borel set B ⊂ E. We may assume that no point w = f(ζ)

(ζ ∈B) satisfies (14) nor is an isolated point of ∂G. Indeed, there are only count-
ably many such points w, and f −1(w) is a Borel set.

We consider the collection D of all disks D ⊂ C with rational center and ra-
tional radius. The collection V of all components V of all D ∩ G (D ∈ D) is
countable, and so is the collection U of all components U of all f −1(V ) (V ∈ V ).

Let ζ ∈ B. Then C = {f(ρζ) : 0 ≤ ρ < 1} is a half-open arc in G ending at
w = f(ζ). For every disk D ∈ D with w ∈D, there is a unique component V ∈
V that contains a subarc of C ending at w. We claim: If diam(D) is sufficiently
small, then V is simply connected.

Suppose this claim is false. Then we can find Dn ∈ D with w ∈Dn and Dn →
{w} such that Vn is multiply connected. Thus there exists a Jordan curve Jn with
Jn ⊂ Vn ⊂ G such that the inner domain Hn of Jn contains a point of ∂Vn ⊂
∂Dn ∪ ∂G and hence a point of ∂G. Since w is not an isolated point of ∂G, we can
chooseHn such that w /∈Hn. Furthermore, we can modify Jn so that Jn ∩C �= ∅.
Hence w satisfies (14) because diam(Hn) ≤ diam(Dn) → 0. But this contradicts
our assumption.

We have L = {f(ρζ) : r ≤ ρ < 1} ⊂ V for suitable r < 1. Let U ∈ U be
the component of f −1(V ) with [rζ, ζ) ⊂ U, and let g be the branch of f −1 that
maps L onto [rζ, ζ). Since V ⊂ G, it follows from the definition of a universal
covering map that we can continue g analytically throughout V with values in D;
and since V is simply connected, it follows from the monodromy theorem that g
is well-defined in V. Hence f is injective in U by the identity theorem. We can
therefore apply Theorem 2 to the collection U to conclude that f(B) is a Borel set.

(b) Let w ∈ ∂G have the property (14). We may assume that C begins at a0 =
f(0) = ∞. Let an and bn be the first and last points where C intersects Hn.

Replacing Hn by a suitable subsequence, we may assume that Hn ∩ Hm = ∅ for
n �= m and that bn comes before an+1. Let Bn be an arc of C between bn and an+1

and let Ank (k = 0,1) be the two arcs of ∂Hn \ {an, bn}.
Let x be an irrational number in (0,1); it has the unique representation

x =
∞∑
n=1

kn2
−n with kn ∈ {0,1}. (15)

We consider the half-open arc

C(x) = B0 ∪ A1k1 ∪ B1 ∪ A2k2 ∪ B2 ∪ · · · ⊂ G (16)
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that begins at ∞ and satisfies C(x) \ C(x) = {w} because diam(Hn) → 0. The
component 1(x) of f −1(C(x)) that begins at 0 thus satisfies 1(x)\1(x) = {ζ(x)}
for some ζ(x)∈ T. This follows (see [18, Cor. 9.2]) because f omits three values
and is thus a normal function. Furthermore, it follows [15; 18, Thm. 9.3] that f
has the radial limit f(ζ(x)) = w for every x.

Now let x �= x ′. By (15) there exists an n such that kn �= k ′
n. But Hn ∩ ∂G �= ∅

and w /∈Hn by (14). Since Hn ∩Hm = ∅ for n �= m, we conclude from (16) that
C(x) and C(x ′) are not homotopic in G. Hence we have ζ(x) �= ζ(x ′).

Thus there are uncountably many ζ ∈ T with f(ζ) = w for every w satisfying
(14). If f preserves Borel sets on E, then it follows from the Lusin–Purves theo-
rem that there are only countably many such w.

Example 4. Let F be a Cantor set on R and let

∂G = F ∪ {x + i/n : x ∈F, n∈ N}.
Then every point of F satisfies (14) and so f does not preserve Borel sets.

Example 5. Let F be a Cantor set on R and let

∂G =
⋃
x∈F

[x, x + i].

Then (14) is not satisfied by any point of ∂G because all components of F have
diameter 1, whereas diam(Hn) → 0 as n → ∞ in (14). Hence f preserves Borel
sets on E.
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