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Self-Duality of Coble’s Quartic
Hypersurface and Applications

CHRISTIAN PauLY

1. Introduction

In [C] Coble constructs for any nonhyperelliptic cureof genws 3 a quartic hy-
persurface irP’ that is singular along the Kummer varietyp ¢ P’ of C. It is
shown in [NR] that this hypersurface is isomorphic to the moduli spetgeof
semistable rank-2 vector bundles with fixed trivial determinant. For many reasons
Coble’s quartic hypersurface may be viewed as a genus-3 analogue of a Kummer
surface—that is, a quartic surfaSec P2 with sixteen nodes. For example, the
restriction of M, to an eigenspade’® c P’ for the action of a 2-torsion poimt €
JC[2] is isomorphic to a Kummer surface (of the corresponding Prym variety). It
is classically known (see e.g. [GH]) that a Kummer surfsice P2 is self-dual.

In this paper we show that this property holds also for the Coble qu&ttc
(Theorem 3.1). The rational polar ma@p P’ — (P7)* mapsM, birationally to
M, C (P7)*, whereM,, (= My) is the moduli space parametrizing vector bun-
dles with fixed canonical determinant. More precisely, we show that the embed-
ded tangent space at a stable buridi® M, corresponds to a semistable bundle
D(E) = F € M,,, which is characterized by the condition diP(C, E ® F) =
4 (its maximum). We also show th@ resolves to a morphism by two succes-
sive blow-ups and tha? contracts the trisecant scroll &% to the Kummer variety
Ko C M.

The condition dimH °(C, E® F) = 4, which relatesE to its “tangent space bun-
dle” F, leads to many geometric properties. First we observePH&(C, E ® F)
is naturally equipped with a net of quadri€s whose base points (Cayley oc-
tad) correspond bijectively to the eight line subbundles of maximal degrée of
(and of F). The Hessian curve He@s) of the net of quadricdl = |w|* is a
plane quartic curve, which is everywhere tangent (Proposition 4.7) to the canoni-
cal curveC C |w|*; thatis, Hes6E) N C = 2A(E) for some divisorA(E) € |w?).
Since these constructions ar€[2]-invariant, we introduce the quotiew’ =
M/JC[2] parametrizingPSL,-bundles over and then show (Proposition 4.13)
that the map\V/ N lw?|, E — A(E), is the restriction of the projection from
the projective spac&’ C |£|* = P2 (£ is the ample generator of Rit/)) with
center of projection given by the linear span of the Kummer varéfyc N
(Ko parametrizes decomposal#§L,-bundles).
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We also show (Corollary 4.16) that the Hessian map> R, E — HessE),
is finite of degree 72, wher® is the rational space parametrizing plane quartics
everywhere tangent t6 C |w|* = P2. Considering the isomorphism class of
HesgE), we deduce that the map Hes§: — M3 is dominant, where\s is
the moduli space of smooth genus-3 curves. We actually prove that some Galois
coversN' — N andP¢c — R are birational (Proposition 4.15). In particular we
endow the space/, parametrizing?SL,-bundlesE with an ordered set of eight
line subbundles of of maximal degree, with an action of the Weyl grogE 7)
such that the action of the central elemegte W(E7) coincides with the polar
mapD.

We hope that these results will be useful for dealing with several open
problems—for example, rationality of the moduli spagég and.\.

I would like to thank S. Ramanan for some inspiring discussions on Coble’s
quartic.

2. The Geometry of Coble’s Quartic

In this section we briefly recall some known results related to Coble’s quartic hy-
persurface that can be found in the literature (see e.g. [DO; L2; NR; OPP]). We
refer to [B1; B2] for the results on the geometry of the moduli of rank-2 vector
bundles.

2.1. Coble’s Quartic as Moduli of Vector Bundles

Let C be a smooth nonhyperelliptic curve of genus 3 with canonical line bundle
w. Let Pic?(C) be the Picard variety parametrizing degegne bundles oveC

and letJC := Pic®(C) be the Jacobian variety. We denote By the Kummer
variety of JC and byK,, the quotient of Pié(C) by the involutiont — w&™L

Let ® C Pic?(C) be the Riemann Theta divisor and &y C JC be a symmet-

ric Theta divisor (i.e., a translate &f by a theta characteristic). We also recall
that the two linear system2@| and|20,| are canonically dual to each other via
Wirtinger duality [M2, p. 335]; that is, we have an isomorphig®|* = |20|.

Let Mg (resp.M,,) denote the moduli space of semistable rank-2 vector bun-
dles overC with fixed trivial (resp. canonical) determinant. The singular locus
of My is isomorphic toKy, and points inKo correspond to bundlegE whose
S-equivalence classH] contains a decomposable bundle of the favfnp M~
for M € JC. We have natural morphisms

Mo 2 120 =P7 and M, 2 120,| = |20,

which send a stable bundlg € My to the divisorD(E) whose support equals
the set{L e Pic’(C) | dmH%C,E ® L) > 0} (if E € M,,, replace Pié(C) by

JC). On the semistable boundakip (resp.K,,), the morphismD restricts to the
Kummer map. The moduli spacad, andM,, are isomorphic, albeit noncanon-
ically (consider tensor product with a theta characteristic). It is known that the
Picard group PieM) is Z and thaf £|* = |20|, whereL is the ample generator

of Pic(My).
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The main theorem of [NR] asserts tHattmbedsM as a quartic hypersurface
in |20| = P’, which was originally described by Coble [C, Sec. 33(6)]. Coble’s
guartic is characterized by a uniqueness property: it is the unique (Heisenberg-
invariant) quartic that is singular along the Kummer variégy(see [L2, Prop. 5]).

We recall that Coble’s quartic hypersurfackty C |20] and M, C |20g|
contain some distinguished points. First [C, Sec. 48(4); L1; OPP], there exists a
unique stable bundld, € M,, such that dinH%(C, Ag) = 3 (its maximal di-
mension). We define for any theta characteristamd for any 2-torsion poini €
JC[2] the stable bundles, callakceptionabundles,

A, = AgQ®@kTeMy and Ay = Ag®aeM,. (2.1)

2.2. Global and Local Equations of Coble’s Quartic

Let F4 be the Coble quartic, that is, the equation\df c |20| = P’. Then the
eight partialsC; = 3F4 forl < i < 8 (the X; are coordinates fo20|) define
the Kummer vanetyco scheme-theoretically [L2, Thm. IV.6]. We also need the
following results [L2, Thm. 6 bis].

(i) The étale local equation (in affine spa&é of Coble’s quartic at the point
[0 ® O] is T? = det[T;;] with coordinatesT” and T;;, whereT;; = T;; and
1<i,j<3.

(ii) The étale local equation at the poin#[@ M ~1] with M? # O is a rank-4
quadric detf;;] = 0, whereT;; (1 < i, j < 2) are four coordinates o&'.

Hence any pointlf @ M Y] € Ko has multiplicity 2 onM.

2.3. Extension Spaces

Given L e Pic}(C), we introduce the 3-dimensional spaB§(L) := |wL?|* =
P ExtY(L, L™). A point e € Po(L) corresponds to an isomorphism class of
extensions

O>LYTSE—L—->0 (o), (2.2)

and the composite of the classifying még L) — M, followed by the embed-
ding D: My — |20] is linear and injective [B2, Lemme 3.6]. It is shown that
a pointe € Pp(L) represents a stable bundle precisely away fegidi), wheregp
is the map induced by the linear systé@al.?|. A pointe = ¢(p) for p € C is
represented by the decomposable butdie p) & L(p).

We also introduce the projective spaBg$L) = |w?L 2" = PExti(wL ™% L).
A point f € P, (L) corresponds to an extension

0—>L—>F—>wL?r>0 (). (2.3)

Similarly, we have an injective classifying m&p(L) — M,,. Although we will
not use this fact, we observe thai(L) = P, (k L™1) for any theta characteristic

It is well known (see e.g. [M3]) that the Kummer variéfyy C |20| admits a
4-dimensional family of trisecant lines. It follows from [OPP, Thm. 1.4, Thm. 2.1]
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that any trisecant line t& is contained in some spag(L) where it is a trise-
cant to the curve(C) C Po(L). We denote byJ, the trisecant scroll, which is a
divisor in Mg. Similarly we define7,, C M,,.

The main tool for the proof of the self-duality is that, (resp..M,,) can be
covered by the projective spacBg(L) (resp.P,(L)). This is expressed by the
following result of [NR] (see also [OP2]): There exist rank-4 vector buntigs
andi{,, over Pid(C) such that, for all. € Pic/(C), (PUp); = Po(L), (PU,). =
P, (L), and their associated classifying morphisgnsand,,,

PUy 25 Mo C |20 PU, Lo M, C 20|
l and l
Picl(C) Picl(C),

are surjective (Nagata’s theorem) and of degree 8 (see Section 4.1).

2.4. Tangent Spaces to Theta Divisors

Following [B2, Sec. 2], we associate to ang][€ M, C |20¢| the divisor

A(F) C Mg C |26], which has the following properties:

(1) SUPPA(F) = {[E] € Mo | dimHYC,E ® F) > O};

(2) A(F) € |L£] = |20]|* is mapped to '] under the canonical dualitg®|* =
1200].

Symmetrically, we associate to ay e My the divisorA(E) c M, with the

analogous properties.

For anyE, F with[E] € Mg and [F] € M,,, the rank-4 vector bundlE ® F =
HOM(E, F) is equipped with am-valued nondegenerate quadratic form (given
by the determinant of local sections); hence, by Mumford’s parity theorem [M1],
the parity of dimH°(C, E ® F) is constant under degeneration. Considering for
example a degeneration of eithgior F' to a decomposable bundle, we obtain that
dimH%(C, E ® F) is even. The divisonA(F) is defined as the Pfaffian divisor
associated to a famil§y ® F of orthogonal bundles [LS] and satisfies the equality

2A(F) = detdivé ® F),

where detdiV€ ® F) is the determinant divisor of the fami§y® F. Thus, for any
stable bundl&Z € Mg we have
multiz] A(F) = 3 multiz) detdi(é ® F) > 2dimH(C,E ® F).

The last inequality is [L1, Cor. I1.3].

2.1. LEMMA. Suppose thak is stable and thatim H%(C, E ® F) > 4. Then
A(F) C Myis singular atE and the embedded tangent spageM € [20* =
|20| corresponds to the poiftF'] € |20g|.

Proof. The first assertion is an immediate consequence of the previous inequal-
ity. To show the second, it is enough to observe that, sificis a singular
point of the divisorA(F'), we have equality between the Zariski tangent spaces
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T A(F) = Tg Mg and soTg A(F) coincides with the hyperplane cutting out the
divisor A(F), which corresponds to the poink| by property (2). O

We will also need the dual version.

2.2. LEMMA. Suppose thafF is stable and thatim Ho(C, E ® F) > 4. Then
A(E) C M, issingularatF and the embedded tangent spdigeM , € |20q|* =
|20 | corresponds to the poiftE] € |20)|.

3. Self-Duality

3.1. Statement of the Main Theorem

Let D be the rational map defined by the polars of Coble’s qudtfichat is, the
eight cubicsC;,
D: 20| —> |20* = 20|

U U

Mo M,,.

Note thatD is defined away froniCo. Geometrically,D maps a stable bundig €
M tothe hyperplane defined by the embedded tangent &halek) at the smooth
point E. The main theorem of this paper is the following.

3.1. THEOREM (Self-Duality). The moduli spacéA is birationally mapped by
D to M,,; that is, M, is the dual hypersurface af1y. More precisely, we have
the following statements.

(1) D restricts to an isomorphismMg \ To = M, \ To.-

(2) D contracts the divisoffg to K,,, whereTp € |£8).

(3) For any stableE € My, the moduli pointD(E) € M, can be represented
by a semistable bundIE that satisfieslim H%(C, E ® F) > 4. Moreover, if
E € Mg \ To then there exists a unique stable bundle= D(E) for which
dim H(C, E ® F) has its maximal value ¢f.

(4) D resolves to a morphism from a blow-upM,,

whereM is obtained by two successive blow-ups: first we blow up the sin-
gular points of Ko and then we blow upsl;(M,) along the smooth proper
transformiCq of KCo. The exceptional divisaf is mapped by onto the divi-
sor 7.
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3.2. Restriction ofD to the Extension Spaces

The strategy of the proof is to restribtto the extension spac@g(L). We start
by defining a map
Dp: Po(L) > M,

as follows. Consider a poiate Po(L) asin (2.2) and denote By, ¢ H%(C, wL?)

the corresponding 3-dimensional linear subspace of divisors. If we suppose that
e ¢ (C), then the evaluation map: @ W, = wL?is surjective and we define

F, = Dy (e) to be the rank-2 vector bundle such that(esy = (F,L)*. That is,

we have an exact sequence

0— (FL)" — Oc®W, & wl? = 0. 3.1

If there is no ambiguity then we will drop the subscript

3.2. LEMMaA. Suppose that ¢ ¢(C). Then

(1) the bundleF, has canonical determinant and is semistable, & is gener-
ated by global sections

(2) there exists a nonzero mdp— F, and so[ F,] defines a point if®,,(L);

(3) we havadim H(C, E ® F,) > 4, whereE is the stable bundle associated to
easin(2.2).

Proof. (1) The first assertion is immediately deduced from the exact sequence
(3.1). We take the dual of (3.1),

0— w2 0, W"— FL — 0. (3.2)

Taking global sections leads to the inclusiaft ¢ H(FL), which proves the
last assertion. Let us check semistability: suppose that there exists a line sub-
bundle M that destabilizesFL (assumeM saturated), that is, 0—- M —
FL — wL?M~' — 0. Then deg/ > 4, which implies that degL?M ~* <
2. Hence dimH %(wL?M 1) < 1 and so the subspadé®(M) c H°(FL) has
codimension< 1, which contradicts thaf'L is globally generated.

(2) Since def = w, we have( FL)* = FL~'w™L. Taking global sections of the
exact sequence (3.1) tensored witlheads to

0— HYFL™Y - HY ) @ W — H%w?L?) — --- .

Now we observe that ditH %(w) ® W = 9 and dimH %(w?L?) = 8 (Riemann—
Roch), which implies that dintf °(FL™1) > 1

(3) We tensor the exact sequence (2.2) defineeWwith F and take global sec-
tions:

0— HYFL™Y — HYE® F) — HOFL) 2% HYFL™Y — ...

The coboundary map is the cup product with the extension elag$'(L~?) and,
since det” = w, the coboundary map] e is skew-symmetric (by Serre duality,
HYFL™) = H%(FL)*). Hence the linear map> | J ¢ factorizes as follows:
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H%wL?®* — NHYFL)* ¢ Hom(H(FL), HY(FL)), (3.3)

and its dual map\2HO(FL) £ H%wL?) coincides with exterior product of
global sections (see e.g. [L1]). On the other hand, it is easy to check that the im-
age unden of the subspaca?W* c A’HO(FL) equalsW c H%wL?) and
that u restricts to the canonical isomorphistiW* = W. The linear mag_J e

is thus zero orW* c HO(FL), from which we deduce that diH%(E ® F) =

dim Ho(FL™) + dimker({Je) > 4. O

It follows that the maD,, factorizes
Dp:Po(L) - P,(L) C M,. (3.4)

Moreover, by Lemma 3.2(3) and Lemma 2.1, the p@pte) corresponds to the
embedded tangent spacecat Po(L), henceD;, is the restriction oD to Po(L).
In particular,Dy is given by a linear system of cubics througiC).

We recall from Section 2.3 that the restriction of the trisecant s@gath Po(L)
is the surface, denoted lig(L), ruled out by the trisecants ta(C) C Po(L).

3.3. LEmma. Let a pointe € Pg(L) be such that ¢ ¢(C). Then the bundl&,
is stable if and only it ¢ 75. Moreover

(i) if dimH%L? = 0, then the trisecanpgr to ¢(C) is contracted to the
semistable pointL(x) ® wL(—u)] = ¢(u) € P, (L) for some poink € C
satisfyingp + q +r € |L?(u)|;

(i) if dmH%L?) > 0, thenwL 2 = O¢(u + v) for some points, v € C, and
any trisecantpgr is contracted to the semistable po[it(x) & L (v)].

Proof. The bundleF fits into an exact sequence-& L — F — oLt — 0.
Suppose thar’ has a line subbundI®/ of degree 2 and consider the composite
mapa: M — F — oL

First we consider the cagse = 0. ThenM = L(u) — F for someu € C,
or equivalently dimH °(FL™Y(—u)) > 0. We tensor (3.1) withw(—u) and take
global sections:

0— HYAFL™Y(~u)) > H%w(—u) @ W 2 H%w?L?(—u)) — - -

The second mam: is the multiplication map of global sections. As long as
W c H%wL?), let us consider for a moment the extended multiplication map
m: H%w(—u)) ® HYwL?) — H%w?L?(—u)). By the “base-point—free pencil
trick” applied to the pencilw(—u)|, we have kefi = H°(L?(u)), and a tensor
in kers is of the forms ® ra — t ® s with {s, ¢} a basis of °(w(—u)) anda €
HO(L?(u)). We denote by + ¢ +r the zero divisor of. Then we see that ker #
{0} if and only if W contains the linear space spanneddyndsa. Dually, this
means that € pgr, the trisecant through the poings ¢, r. Conversely, any e
pqr is mapped byD; to [L(u) ® wL~(—u)].

We next consider the case# 0. ThenM = wL Y (—u) < F for someu € C,
or equivalently dimH°(FoL(x)) > 0. As in the first case, we take global sec-
tions of (3.1) tensored witfi?(x) and obtain thatH °%(Fw L (u)) is the kernel of
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the multiplication mapd °(L2(u)) @ W > H%wL*(u)). Then kern # {0} im-
plies that dimH °(L?(u)) = 2. HenceL?(u) = w(—v) for some poinv € C (i.e.,
wL™? = O¢(u + v)), which implies that din %(wL~?) = dimH°%L? > 0.
Also, the multiplication map becomés®(w(—v)) ® W > H%w2L?(—v)). We
now conclude exactly as in the first case, with the additional observation that any
trisecantpgr is contracted to the poinLf(v) ® wL(—v)] = [L() ® Lw)]. O

We shall now construct (along the same lines) an inverse mayp (8.4):
D; : Py(L) — Po(L).

Given an extension clasg € P, (L) such thatf ¢ ¢(C), we denote byW; C
HOC, w?L~?) the corresponding 3-dimensional linear space of divisors and de-
fine E; = D; (f) to be the rank-2 vector bundle that fits in the exact sequence

0— Ejo 'L — W; ® Oc = ’L™2 — 0.
Exactly as in Lemma 3.2, we show th&t has the following properties.

3.4. LEmMa. Suppose that ¢ ¢(C). Then

(1) the bundleE, has trivial determinant and is semistable, afgwL ! is gen-
erated by global sections

(2) there exists a nonzero mdp* — E; and so[ E;] defines a point ifPo(L);

(3) we havadim HO(C, E; ® F) > 4, whereF is the stable bundle associated to
fasin(2.3).

Similarly, the analogue of Lemma 3.3 holds for the bungle

3.5. LemMa. The magD; is the birational inverse oD, . That is,

'DL o DL = IdPo(L) and DL o DL/, = Id]P’w(L)'

Proof. Start withe € Po(L) for e ¢ To(L). Then (by Lemma 3.3D,(e) = F,
is stable and (by Lemma 3.2(3)) dit°(C, E ® F,) > 4. Now the stable bun-
dle F, determines an extension clagse P, (L) with f ¢ ¢(C). Let us denote
Ey =D (f). We know (Lemma 3.4(3)) that di °(C, E;® F,) > 4 and, since
F is stable, we deduce from Lemma 2.2 that the embedded tangentBpacte
corresponds tof] and [Ef]. Hence [E] = [Ef] and, sinceF is stable, we have
E=E;. U

We deduce thab; restricts to an isomorphisi®y(L) \ To(L) = P, (L) \ T,,(L).
SinceM is covered by the spac®s(L) and sinceD restricts taD; onPy(L), we
obtain thatD restricts to a birational bijective morphism frotg \ 7o to M, \ 7o,.
Hence, by Zariski’'s main theorerm,is an isomorphism on these open sets, which
proves part (1) of Theorem 3.1. Lemma 3.3 implies part (2). As for part (3), we
choose @y(L) containingE € M. This determines a poirt € Po(L) and we
considerF := F, = Dy(e). By Lemma 3.2(3) and Lemma 2D, (e¢) = D(e),
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which shows that this construction does not depend on the choiceMbreover,
if e ¢ To thenF is stable and is characterized by the property HifiC, E® F) >
4. One easily shows that difi%(C, E ® F) > 6 cannot occur it ¢ T (see also
Remark 3.4(2)).

3.3. Blowing Up

Even though part (4) of Theorem 3.1is a straightforward consequence of the results
obtained in [L2], we give the complete proof for the convenience of the reader.
First we consider the blow-uBl,(P’) of P” = |20| along the 64 singular points
of Ko. Because of the invariance &f, and Mg under the Heisenberg group, it
is enough to consider the blow-up at the “origi@” := [O & O]. We denote by
Ko (resp.Bly(My)) the proper transform of (resp.Mg) and byP(ToP7) C
Bl,(P7) the exceptional divisor (oveD).

By [L2, Rem. 5], the Zariski tangent spacEsK and Ty My at the originO
to Ko and Mg satisfy the relations

Syn? H%w)* = ToKo C ToMo = ToP" and ToMo/ToKo = A°H%w)*.

Moreover, in the notation of Section 2.2, the equation of the hyperflakig C
ToMois T = 0and theT;; are coordinates on Sy %(w)*. We deduce from the
local equation of\1q at the originO (Section 2.2(ii)) thak o NP Syn? H %(w)* is
the Veronese surface:= Ver H%w)* and thatC, is smooth. Moreover, the lin-
ear system spanned by the proper transforms of the cabiissgiven by the six
quadricsQ;; = %}_(det[Tij]) vanishing ons.

Given a smooth point = [M & M Y] € Ko with M? # O, the Zariski tangent
spaced, Ko andT, Mg satisfy the relations

H%w)* Z T, Ko C Te Mo = TP’

and
T Mo/ TKo = HowM?)* @ H%wM ~?)*.

The tangent spack. Ko C T, My is cut out by the four equatior; = 0, where
the T;; are natural coordinates din®(wM?)* @ H%wM ~2)*. Let £ be the excep-
tional divisor of the blow-up oI, (P’) along the smooth variet§, and let€ be
its restriction to the proper transformto. We denote by, and&, the fibers of
£ and& over a pointx € K. Then, for a smooth point, it follows from the lo-
cal equation ak (Section 2.2(ii)) that (a¥, is the Segre embeddiri®} x P! =
lwM2* x |wM ~2|* — PHYwM?)* ® H%wM ~2)* = £, and (b) the linear sys-
tem spanned by the proper transforms of the cubics given by the four linear
formsT;;.

At a singular point (we take = 0), it follows from the preceding discus-
sion thaté, is the exceptional divisor of the blow-up BfSyn? H %(w)* along
the Veronese surfacg(i.e., the projectivized normal bundle ov&y. Itis a well-
known fact (duality of conics) that the rational map given by the quadpigs
resolves by blowing ug.
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It remains to show thab maps¢ onto the trisecant scroff,,. Since is irre-
ducible, it will be enough to check this on an open subsét afe consider again
the extension spac@s(L) C My. For simplicity we choosé. such that:

(1) Po(L) does not contain a singular point&b; and
(2) the morphisny: C — Py(L) is an embedding or, equivalently,

dimH%L?) = 0.

Letm be the blow-up of?o(L) along the curve”, with exceptional divisor

&r. Because of assumptions (1) and (2), we have an embem — Mo,
£ restricts tog,, and&,, is the projectivized normal bundl¥ of the embedded
curveC C Po(L). We have the following commutative diagram:

P(N)=&L C Py(L)

I N

C C Po(L) — P,(L).

In order to study the imagéL(EL), for a pointu € C we introduce the rank-2
bundleE,, which is defined by the exact sequence

0— Ef — Oc ® HYwL?(—u)) = wL?(—u) — 0.

Note thatH °(wL?(—u)) corresponds to the hyperplane definealyC c Po(L).
Then, exactly as in Lemma 3.2(1), we show thatllgt= wL?(—u) and thatk,, is
stable and globally generated with®(E,) = H%wL?(—u))*. We introduce the
Hecke line#, defined as the set of bundles that are (negative) elementary trans-
formations ofE, L~%(u) at the pointz—namely, the set of bundles that fit into the
exact sequence

0— F— E,L”Yu) - C, — 0. (3.5)

SinceE, is stable, it follows that any is semistable (and dét = w) and so we
have a linear map (see [B2P} = H, — M,,.

3.6. LemMa. Given a pointu € C, the fiberP(N,) = &, is mapped byD, to
the Hecke lineH,, c P,(L). Moreover,H, coincides with the trisecant linggr
to C C P, (L) with p + g +r € |wL™?(u)|.

Proof. Note that the Zariski tangent spagPo(L) at the pointx is identified
with Ho(wL?(—u))* = HOYE,). Under this identification, the tangent space
T,C corresponds to the subspa#E®(E,(—u)). Hence we obtain a canonical
isomorphism ofP(V,) with the projectivized fiber over the point of the bun-
dle E,, that is, the Hecke ling{,. It is straightforward to check tha®, restricts

to the isomorphisnP(N,) = H,. To show the last assertion, it is enough to
(a) observe that the Hecke lirk¢, intersects the curv€ c P, (L) at a pointp if
and only if dimH%E,LY(u — p)) > 0 and then (b) continue as in the proof of
Lemma 3.3. O
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Since the union of thos&, such thatL satisfies assumptions (1) and (2) form
an open subset &, we conclude thaD(£) = 7,. This completes the proof of
Theorem 3.1.

3.4. Some Remarks

1. The divisor7,, € |£8, which may be seen as follows. It suffices to re-
strict 7, to a generalP,(L) ¢ M, and to compute the degree of the trisecant
scroll 7,(L) c P,(L). By Lemma 3.6,7,(L) is the image o€, = P(N) under
the morphismD,. The hyperplane bundle oveéY, (L) pulls back unde®; to
Op(1) ® 7*(w°L) over the ruled surfadg(N). SinceD; |¢, is birational, we ob-
tain that deq,, (L) = degr,Op(1) ® »°L® = degN*w3L8 = 8.

2. Using the same methods as before, one can show a refinement of Theo-
rem 3.1(3). ConsideE stable withE € My and F semistable with F] € M,,.

(@) The only pairgE, F) for which dimH%(C, E ® F) = 6 are the 64 excep-
tional pairst = A, andF = «x @ « for a theta characteristicas in (2.1). We
note thatD(A,) = [k & «].

(b) Suppose@(E) = [M & wM ] for someM andE # A,; thatis,M? # w.
Then there are exactly three semistable bunfllesich thatD(E) = [F] and
dimH(C, E ® F) = 4, namely:

(i) the decomposable bundle = M @ oM ~* (note that dimH%(EM) =
2); and

(i) twoindecomposable bundles with extension classes it EktwM 1) =
HOM?)* and Ext(wM 1, M) = H%w?M —?)* defined by the images
of the exterior product maps

NHYEM) - H'M?) and A’HYEoM™) — H%w?’M ™).

3. As a corollary of Lemma 3.6, we obtain that the morph8maps the ex-
ceptional diviso€ onto the dual hypersurfaég; of the Kummer varietyCo (more
precisely,D mapst, = P2 isomorphically to the subsystem of divisors singular at
x € Kg") and that the hypersurfadé) = K intersects (set-theoreticallyy,,
along the trisecant scradll,. It is worthwhile to figure out the relationship with
other distinguished hypersurfaces|2®|, for example, the octiGg defined by
the equatiorDX(F,;) = F, - Gg and the Hessiafl;¢ of Coble’s quarticF;.

4. Applications

4.1. The Eight Maximal Line Subbundlesiog M,

In this section we recall the results of [LaN] (see also [OPP; OP2]) on line sub-
bundles of stable bundlgs e My andF € M,,. We introduce the closed subsets
Mo(E) andM ,(F) of PicY(C) parametrizing line subbundles of maximal degree
of E andF:

Mo(E) :={L € Pick(C) | L™ — E}, M, (F) :={L ePici(C) | L — F}.
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The next lemma follows from [LaN, Sec. 5] and Nagata’s theorem. For simplicity
we assume that is not bi-elliptic.

4.1. LemMa. The subsetd o(E) andM ,(F) are nonempty an@-dimensional
unlessk and F are exceptiona(see(2.1)). In these cases we have

Mo(A) ={k(=p) | peC}=C, My(Ay) ={a(p) | peC}=C.

Note thatA, € To andA, € T, (see [OPP, Thm. 5.3]) and that, in the bi-elliptic
case, we additionally have BC[2]-orbit in Mg (resp.M,,) of bundlesE (resp.
F) with 1-dimensionaM o(E) (resp.M o(F)).

SinceM o(E) is nonempty, any stablg € Mg lies in at least one extension
spacePy(L) for someL e Picl(C) with extension class ¢ ¢(C). Now [LaN,
Prop. 2.4] says that there exists a bijection between the sets of
(1) effective divisorg + ¢ on C such that lies on the secant lingg and
(2) line bundlesV € Pict(C) such that¥ ' < E andM # L.

The two data are related by the equation
LM = Oc(p+q). (4.3)

Let us count secant lines {@(C) through ageneralpointe € Po(L): compos-
ing ¢ with the projection frome mapsC birationally to a plane nodal sexti: By
the genus formula, we obtain that the number of nodes(ef number of secants)
equals 7. Hence, faE general, the cardinalityM o(E)| of the finite seM o(E) is
8. We write

Mo(E) ={L1,..., Lg}.

From now on, we shall assume thatis sufficiently general in order to have
IMo(E)| = 8. SinceE € Py(L;) forl < i < 8, we deduce from relation (4.1) that

L ® Lj = Oc(D,‘j) forl1<i < j< 8, (42)
whereD;; is an effective degree-2 divisor @n

4.2. Lemma. The eight line bundles; satisfy the reIatio@?:lLi = w2

Proof. We represenk as a point € Py(Lg) and assume that the plane sextic curve
S c P2 obtained by projection with centerhas seven nodes as singularities. It
will be enough to prove the equality for such a bun&leThenC = § is the nor-
malization ofS and, by the adjunction formula, we have= 7*Os(3) @ Oc (—A),
whereA is the divisor lying over the seven nodes$fthat is, A = Zzzl Dis.
Hence

7 7 8
o= w3Lg<—Z Dis) = L3 ® RLs(~Dig) = ® ® R L7
i=1 i=1 i=1

where we have used relations (4.2). O

4.3. REMARK. Conversely, suppose we are given eight line bundilethat sat-
isfy the 28 relations (4.2). Then there exists a unique stable buhdla 1, such
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thatMo(E) = {Ly, ..., Lg}. This is seen as follows. Take for examlg and
consider any two secant linékg andDjg (i < j < 8) in Po(Lsg). Then relations
(4.2) imply that these two lines intersect in a paintt is straightforward to check
that the bundleZ associated te does not depend on the choices we made.

4.2. Nets of Quadrics

We considelE € Mo and assume tha ¢ 7o and|M o(E)| = 8. ThenF = D(E)
is stable and dint’°(C, E ® F) = 4. We recall that the rank-4 vector bundle
E ® F is equipped with a nondegenerate quadratic form

det: EQ F = HOM(E, F) —> w

(we note thatE = E*). Taking global sections on both sides endows the pro-
jective spacé?® := PHO(C, Hom(E, F)) with a netIT = |w|* of quadrics. We
denote byQ. c P3 the quadric associated o€ IT and, identifyingC with its
canonical embedding C |w|* = IT, we see that (the cone over) the quaddig

for p € C corresponds to the sections

0, = {¢ € HYC, HOM(E. F)) | E, > F, notsurjectivg, ~ (4.3)

whereE,, F, denote the fibers of, F overp e C. It follows from Lemma 3.2(2)
thatM o(E) = M, (F) or, equivalently, that any line bundle € M o(E) fits into
a sequence of maps

xi.E— L, —> F.

We denote by; € P2 the composite map (defined up to a scalar).

4.4. LemMA. The base locus of the net of quadridsconsists of the eight dis-
tinct pointsx; € P3.

Proof. A base pointc corresponds to a vector bundle mapE — F such that
rkx < 1(sincex € Q, Vp). Hence there exists a line bundlesuch thatt' —

L — F and, sinceE andF are stable and of slope 0 and 2 (respectively), we ob-
tainthat ded. =1andL e Mo(E) = M ,(F). O

The set of base poinfs= {x, ..., xg} of a net of quadrics ii?® is self-associated

(for the definition of (self-)association of point sets we refer to [DO, Chap. 3])
and is called &ayley octad We recall [DO, Chap. 3, Ex. 6] that ordered Cay-
ley octadst = {x3, ..., xg} are in 1-to-1 correspondence with ordered point sets
y = {y1, ..., y7} inP? (note that we consider here general ordered point sets up to

projective equivalence). The correspondence goes as follows: starting fingem

consider the projection with centeg, P® 2% P2, and definey to be the pro-

jection of the remaining seven points. Conversely, giveén P2, we obtain by
association seven points, ..., x7 in P2. The missing eighth pointg of x is the
additional base point of the net of quadrics through the seven paints, x7.

Consider a generdl € Mg and choose a line subbundlg € M o(E). We de-
note byxg the corresponding base point of the fietWe consider the following
two (different) projections ont?.
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(1) Projection with centexg of P? = PHY(C, Hom(E, F)) Pl p2, Lety =
{y1, ..., y7} C P? be the projection of the seven base poits .., x7.

(2) Projection with centes of Po(Lg) e, p2, Letz = {z1, ..., 27} C P2 be the
images of the seven secant linesgta” ) throughe, and note that, ..., z7
are the seven nodes of the plane sestic

4.5. Lemma. The two targetP?s of the projectiongl) and (2) are canonically
isomorphic(to PW,*), and the two point setg andz coincide.

Proof. Firstwe recall from the proof of Lemma 3.2 that we have an exact sequence,
0— HOFLgY L HYE® F) %> HYFLg) — 0,

and thatH%(FLg) = W, and dimH°(FLg") = 1. Moreover, it is easily seen
thatP(imi) = xg € P3 and hence the projectivized mapidentifies with pr,.
The images pg(x;) for 1 < i < 7 are given by the sections e H°(FLg) van-
ishing at the divisoD;g (sinceL;Lg = Oc(D;g) — FLg). It remains to check
that the section; € Ho(FLg) = W* correponds to the 2-dimensional subspace
H%wL?(—D;g)) ¢ W, ¢ H%wL?), which is standard. O

We introduce the nonempty open suhsef® c M, of stable bundle that sat-
isfy E ¢ To and|[M o(E)| = 8; for any L € M o(E), the point seg c P2 is such
that no three points ib are collinear.

4.3. The Hessian Construction

It is classical (see e.g. [DO, Chap. 9]) to associate to a net of quddiceP? its
Hessian curve parametrizing singular quadrics—that is,

HessE) ;= {x € I1 = |w|* | Q, singulas.
Note thatC and HesgF) lie in the same projective plane.

reg

4.6. LEmmMa. We suppose thal € M;~. Then the curvéiesgE) is a smooth
plane quartic.

Proof. It follows from [DO, Chap. 9, Lemma 5] that Hgg5) is smooth if and
only if every four points ofc = {x1, ..., xg} spanP3. Projecting from one of the
x; and using Lemma 4.5, we see that this condition holdgferM gy °. O

First we determine for which bundlése Mgeg the Hessian curve Heds) equals

the base curv€'. We need to recall some facts about nets of quadrics and Cayley
octads [DO]. The nefll determines an even theta charactergtiwver the smooth
curve Hes6F) such that the Steinerian embedding

HesgE) =5 P3 = |wh|, x > Sing(0.),

is given by the complete linear systéwy|. The image StE) is called theStein-
erian curve. Given two distinct base points, x; € P2 of the netIl, the pencil
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A;; of quadrics of the nell that contain the ling;x; is a bitangent to the curve
HesgE). In this way we obtain all the 2& (g) bitangents to Hes&'). Letu, v
be the two intersection points of the bitangént with HesgE). Then the secant
line to the Steinerian curve @) determined by Si/) and Stv) coincides with
XiXj.

Conversely: given a smooth plane quaticz P? with an even theta character-
istic 0, by taking the symmetric resolution ov&f of the sheab supported at the
curve X we obtain a net of quadridd whose Hessian curve equals Thus the
correspondence between nets of quadriend the dat&X, 0) is 1-to-1.

This correspondence allows us to construct some more distinguished bundles
in Mo. We consider a tripl€o, L, x) consisting of an even theta characteristic
overC, a square rook € Pic/(C) (i.e., L? = #), and a base point of the net of
quadricsIT associated t¢C, 6). We denote by

A, L, x) € Mg (4.4)
the stable bundle defined by the point Po(L) = |w6|*. SinceC is smooth, we
haveA(, L, x) € Mg °. These bundles will be calle&ronholdbundles (see Re-
mark 4.12). We leave it to the reader to deduce the following characterizdion:

is an Aronhold bundle if and only if the 28 line bundlesl; (1 <i < j < 8) are
the odd theta characteristics, with € M o(E).

4.7. ProposiTioN.  Letthe bundl&E € M ®. Then the following statements hold.

(1) We haveHessE) = C if and only if E is an Aronhold bundle.

(2) AssumingHessE) # C, the curveL andHesgE) are everywhere tangent.
More precisely, the scheme-theoretical intersectiom HesgE) is nonre-
duced of the form2A(E), with A(E) € |w?).

Proof. We deduce from (4.3) that the intersecti@m HessE') corresponds (set-
theoretically) to the sets of points where the evaluation map of global sections

Oc ® H(C, HOm(E, F)) % Hom(E, F) (4.5)

is not surjective.

Letus suppose that = HesgE). Then ev is not generically surjectivk ev <
3). We choose a line subbundig; € M o(E) and consider (as in Lemma 4.5) the
exact sequence

0 — HYFLgY) — H°(HOM(E,F)) — H%FLg) — 0O

E Jev Jev

0 — Oc¢ — HOM(E, F) — £ — 0,

where the vertical arrows are evaluation maps. Note that—> FLg'
Hom(E, F) corresponds to the section HTO(FLgl). We denote by the rank-3
quotient. Then e\, H%(FLg) — & is not generically surjective, either. Bfihas
a quotientE — FLgwith kerneIngz. Now, sinceH °(FLg) N FLgis surjec-
tive, we obtain a direct sum decompositir= a)ng @ FLg. Furthermore, since
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E ® F is polystable (semistable and orthogonal) and of slope 2, we obtain that
wLg? is an orthogonal direct summand. Hengeg? = 6 for some theta charac-
teristic. Now we can repeat this reasoning for any line buridle M ¢(E ), estab-
lishing that aIIa)Li‘2 are theta characteristics containeddom(E, F). Projecting
to FLg shows that.? = L2 = 6 for all i and therefore the 28 line bundI&sL;
are the odd theta characteristics. It follows thas an Aronhold bundle.

AssumingC # HessE), the evaluation map (4.5) is injective:

0 — Oc ® H%C, HOM(E, F)) = Hom(E, F) — Caz) — O.

The cokernel is a skyscraper sheaf that is supported at a dixigdy. Because
detHom(E, F) = w?, we haveA(E) € |w?|. This shows that set-theoretically we
haveC NHesgE) = A(E). Let us determine the local equation of HEB$ at a
point p € A(E). We denote byn the multiplicity of A(E) at the pointp. Then,
since there is no section ®fom(E, F) vanishing twice ap (by the stability ofE
andF), we have dinH °%(%om(E, F)(—p)) = m. We choose a basig, ..., ¢,,

of sections of the subspad¢e®(Hom(E, F)(—p)) C H%(Hom(E, F)) and com-
plete it (if necessary) bg,,11, ..., ¢4. Let z be a local coordinate in an analytic
neighborhood centered at the pomtWith this notation, the quadricg, of the
net can be written as

4
Q.(h1, .., ha) = det(Z A,-qsi(z)),
i=1

where thep,(z) are a basis of the fibétom(E, F), for z # 0. By construction,
forl < i < m we havep;(z) = z¥;(z), and the local equation of Heg5) is the
determinant of the symmetric>4 4 matrix

HessE)(z) = det[B(¢i(2), ¢;(2)]1=i,j<a,

whereB is the polarization of the determinant. We obtain that KE3§;) is of
the formz?” R(z). Hence mul;(Hes$E)) > 2m, proving the statement. [

4.8. DerFINITION.  We call the divisorA(E) the discriminant divisorof E and
the rational map\ : Mo — |w?| thediscriminant map.

In the sequel of this paper we will show that the bunHland its Hessian curve
HesgE) are in bijective correspondence (modulo some discrete structure, which
will be defined in Section 4.5.2). A first property is the following: GivEne

Mg, we associate to the 28 degree-2 effective divisbys(see (4.2)) on the
curveC their corresponding secant Iiné_)s, C |o|*.

4.9. ProposITION. The secant IineDij to the curveC coincides with the bitan-
gentA;; to the smooth quartic curvdessE).

Proof. Since the bitangent;; to Hes$E ) corresponds to the pencil of quadrics in
IT containing the line;x;, it will be enough to show tha®,, andQ;, belong toA;;,



Self-Duality of Coble’s Quartic Hypersurface and Applications 567

for D;; = a + b, with a, b € C. Consider the vector bundle map @ =;: E —

L; ® L;, wherer; andr; are the natural projection maps. Sircd.; = O(D;;),
the mapr; @ n; has cokerneC, @ C,, which is equivalent to saying that the two
linear formsm; ,: E, — L;, andx;,: E, — L;, are proportional (and like-
wise forb). This implies that any map € x;x; factorizes at the point through
7.« = 7j,, and hence det, = 0. This means thaf;x; C Q,; thatis,Q, € Aj;
(likewise forb). O

4.4. Moduli of PSL,-Bundles and the Discriminant Mafe

The finite groupJC[2] of 2-torsion points of/C acts by tensor product o,

and M,. Since Coble’s quartic is Heisenberg-invariant, it is easily seen that the
polar mapD: Mg — M, is JC[2]-equivariant; that iSD(E Q @) = D(E) Q «

for all @ € JC[2]. This implies that the constructions we made in Sections 4.2 and
4.3—namely, the projective spaé = PH(Hom(E, F)), the net of quadrics

I1, its Hessian curve He&B) and discriminant divisoA(E)—depend only on

the class off moduloJC[2], which we denote byE. It is therefore useful to in-
troduce the quotient/ = M,/JC[2], which can be identified with the moduli
space of semistablgSL,-vector bundles with fixed trivial determinant. We ob-
serve thatV is canonically isomorphic to the quotient,,/JC[2]. Therefore the
JC[2]-invariant polar mafD descends to a birational involution

D:N — N. (4.6)

We recall [BLS] that the generatdrof Pic(\') = Z pulls back under the quotient
mapgq: Mo — N to ¢*L = £* and that global sectiond °(\V, £¥) correspond
to JC[2]-invariant sections o (M, £4).

The Kummer varietyCy is contained in the singular locus &f: because the
composite mapC — M LN (with i(L) = [L @ L)) is JC[2]-invariant, it
factorizes/C 25 jc L5 A and the imageé(JC) = Ko C .

We also recall from [OP1] that we have a morphism

r: N — |30, =P8
E — I'(E) = {L e Pic’(C) | dim H%(C, Synf(E) ® L) > 0},
which is well-defined sincE(E ) depends only oi. The subscript denotes in-

variant (w.r.t.£ — w&™1) theta functions. When restricted iy, the morphism
I is the Kummer map; that is, we have a commutative diagram

Kum

Ko —— |20] =P’

| |+e

N — 30|, =P,

The main result of [OP1] is the following.
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4.10. ProposITION. ~ The morphisnt': N — |30, is given by the complete lin-
ear system/|. That is, there exists an isomorphiggi* = |30, .

4.11. REMARK. Using the same methods as in [NR], one can showithat” —
|30|, is an embedding. We do not use that result.

Since the open subsgt; °is JC[2]-invariant, we obtain that® = g ~H(N9).
By passing to the quotieni, the Aronhold bundles (4.4) determine 3= 288
distinct pointsA(6, x) = A(9, L, x) € N8, the exceptional bundles (2.1) de-
termine one point inV, denoted byA,, and we obtain a (rational) discriminant
map (4.8)

AN > |02
defined on the open subsgt®d\ {A(9, x)}. We also note that the 28 line bundles
L;L; for L; e Mo(E) depend only orE.

4.12. REMARK. The 288 pointsA(0, x) are in 1-to-1 correspondence with un-
ordered Aronhold sets (see [DO, p. 167])—that is, with sets of seven odd theta
characteristic; (1 < i < 7) such thaw; + 6, — 0, is even for alli, j, k. The
severy; are cut out on the Steinerian curve by the seven lingswherex, x; are

the base points off.

The main result of this section is as follows.

4.13. ProposiTION. We have a canonical isomorphigB®|g|; = |w?|, which
makes the right diagram commute

A
Ko C N ——  |0?

20] =% 301, = (306l
In other words, considering/ (viaT") as a subvariety in3@|, , the discriminant
map A identifies with the projection with centé2®| = Span(K;) or (equiva-
lently) with the restriction map of30|, to the Theta diviso® c Pic?(C).

Proof. First we show that the discriminant mapis given by a linear subsystem
of [£] (= |3@[%). Consider a line bundlé € Pict(C) and the composite map

YL P = Po(L) — Mo 5 N 25 02

Then it will be enough to show that} (H) € |Op3(4)| (sinceq*L = £%) for a
hyperplaneH in |w?|. We denote by (resp.q) the projection of?® x C ontoC
(resp.P3). There exists a universal extension buriilleverP? x C,

0— pL ' 5> E — p*L ® ¢*Ops(—1) — 0, 4.7)

such that the vector bund| .« ¢ corresponds to the extension clagsr all e
Po(L). We denote by — Ops ® H%wL?) the universal rank-3 subbundle over
P2 and we define the famil§f overU x C by the exact sequence
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0— (F® p'L)* — ¢*W =5 p*(wL?) — 0, (4.8)

whereU is the open subs@?\ C. We haveF |, = F, (see (3.1)). Note that
Pic(U) = Pic(P?). It follows immediately from (4.7) and (4.8) that dét=
g*O(=1), detF = ¢*O(1) ® p*w, and detE ® F) = p*w?. After removing (if
necessary) the poim, from U (see Remark 3.4(2)), we obtain for alle U

that dimH°(C,E ® Flieyxc) = 4; hence, by the base change theorems, the di-
rect image sheaves (E ® F) andRq.(E ® F) are locally free ovet/. Suppose
that the hyperplané consists of divisors ifw?| containing a poinp € C. Then

Y} (H) is given by the determinant of the evaluation map dver

GEQF) B EQF |y

(see (4.5)). Since d€E ® F|y«qp;) = Oy, the result will follow from the equal-
ity detq.(E ® F) = Oy (—4), which we prove by using some properties of the
determinant line bundles [KM].

Given any family of bundleg overU x C, we denote the determinant line bun-
dle associated to the famil§ by detRq.(F). First we observe that, by relative
duality [K], we have

4(E®F) = (R'q,(E® F))",
so detRg,(E ® F) = (detg,(E ® F))®2. Next we tensor (4.7) witlf to obtain
0->F®pLT>E®F—F®p'LRgO(-1) — 0.
Since detRg, is multiplicative, we have
detRg,(E ® F) = detRg,.(F ® p*L™) ® detRg.(F ® p*L ® ¢*O(=1)).

Again by relative duality we have d&y, (F ® p*L™") = detRq.(F ® p'L ®
q*O(-1)), hence (as Pid/) = Z) we can divide by 2 to obtain

detg,(E ® F) = detRq,(F ® p*L ® ¢*O(—1)) = detRq,(F @ p*L) ® O(—2).

The last equation holds becaygd, L) = 2. Finally, we apply the functor deg.
to the dual of (4.8):

detRg.(F ® p*L) = detRq,.(¢*W*) ® detRg, (p*wL?) ™t
~ (detW*)®x(©) = 0(-2);

this proves that det,(E ® F) = O(—4).
We also deduce from this construction that the exceptional locus of the rational
discriminant mapA is the union of the Kummer varie#, the exceptional bun-
dle Ag, and the 288 Aronhold bundle§®, x). The mapA is therefore given by
the composite of with a projection mapy : |£|* = |30|, — |w?|, whose cen-
ter of projection kerr contains SpafiCo) = [20|. In order to show that ker =
|20, it suffices (for dimensional reasons) to show thais dominant.
Consider a general divisér= a; + - - - + ag € |w?| and choosé/ e Pic?(C)
such thati; + - - - + a4 € |M?| (or, equivalently, thatis + - - - + ag € |w?M ~2|).
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Using Lemma 3.3, we can find a stalfles 7o such thatP(E)] = [M & oM Y.
We easily deduce from Remark 3.4(2) thetF) = 6.

Finally, we deduce from the natural exact sequence associated to the divisor
® c Pic?(0),

0 — HOPIC3(C), 20) X2 HOPICX(C), 30), =2 HY®,30|e), — O,

that the projectivized restriction map ge&lentifies with the projectiorr. O

4.14. REMARK. Geometrically the assertion on the exceptional locus gfven
in the proof means that

NN|260| = Ko U {Ag} U {A(0, x)}

(we mapA via T into |30|,) or, equivalently, that theBdivisorsT"(Ap) and
I'(A(0, x)) are reducible and of the form

[(Ag) = ©@ +T™(Ag),  T(A®9 x)) = © + T(A®, x)),

where the residual divisois™S(Aq) andI""S(A(9, x)) both lie in|2@|. This can
be checked directly as follows.

Exceptional bundlely: Since® = Syn? C, the inclusior® c I'(Ag) is equiv-
alent to dimH °(C, Syn?(Ag) ® wX(p + ¢q)) > O for all p, g € C (here we take
Ag € M,,; see (2.1)) or to dint °(C, Syn?(Ao)(—u — v)) > Oforallu,v e C.
But this follows immediately from diniZ°(C, Ag) = 3, which implies that, for
all u, there exists a nonzero sectigne H%(C, Ao(—u)). Taking the symmetric
product, we obtain, - s, € H%(C, Syn?(Ag)(—u — v)).

Aronhold bundles\(6, x): Similarly we must show that dirf °(C, Syn?(A) ®
w(—p —¢q)) > 0forall p,g € C (takeA = A, L, x) € Mg). SinceMy(A)
is invariant under the involutiod; +— 9Lj1, we haveD(A) = A ® 0 and
dmH%C,A® A®0) =dimHOC, Syn?(A) ® 6) = 4. Hence, for allp, there
exists a nonzero section < HOC,Endy(A) ® 0(—p)) (note that Eng(A) =
Syn?(A)); by taking the Eng part of the composite sectiop o s,, we obtain a
nonzero element aff °(C, Syn?(A) ® w(—p — q)).

It can also be shown by standard methods that %) and Sym(A(, x))
are stable bundles. It would be interesting to describe explicitly thdigisors
['"S(Ag) andI'"®S(A(#, x)), which (we suspect) do not lie on the Coble quattig.

4.5. The Action of the Weyl Groug(E~)

The aim of this section is to show that the Hessian map (Section 4.3), which as-
sociates to @SL,-bundle E € N9 the isomorphism class of the smooth curve
HesgE) € M3, is dominant.

4.5.1. Some Group Theory Related to Genus-3 Curves
We recall here (see e.g. [A; DO; Ma]) the main results on root lattices and Weyl
groups. Letl' ¢ P? be a smooth plane quartic aid its associated degree-2
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Del Pezzo surface, that is, the degree-2 coveV — P2 branched along the
curvel’. We choose an isomorphism (called a geometric markirig)odf the Pi-
card group Pi¢V),

7
¢: Pic(V) => Hy = (P Ze:. (4.9)
i=0

with the hyperbolic latticeg{7, such thaty is orthogonal for the intersection form
on PigV) and for the quadratic form oH- defined bye? = 1, ¢? = —1(i # 0),
ande; - ¢; = 0 (i # j). The anticanonical classk of V equals 3¢ — Zlee,«.
We puteg = Zzzle[ — 2eg = eg + k. Then the 63 positive roots di; are of
two types:

D aj=e—-¢ 1<i<j=< 8)7' ‘ (4.10)
Q) ajr=eo—e—e¢j—e AI<i<j<k=T.
The 28 roots of type (1) correspond to the 28 positive roots of the Lie algébra
viewed as a subalgebra of the exceptional Lie algepr&imilarly, the 56 excep-
tional lines of H; are of two types: fork i < j < 8,

D lij =e +e —es,

4.11
2 li’j:eo—ei—ej. (4.11)

The Weyl groupW (SLg) equals the symmetric groupg and is generated by the

reflectionss;; associated to the roads; of type (1). The action of the reflectioy)

on the exceptional line, and/,, is given by applying the transpositidgy) to

the indicespg. The Weyl groupW (E?>) is generated by the reflections ands;;x

(associated ta;j;), and the reflection;;; acts on the exceptional lines as follows:

(I) if |{l’ j’ kv 8} N {P, q}l = :L thensi]'k(lpq) = lpq;

(i) it i, j,k, 8 N{p,q}l = 0 or 2, thens;(l,,) = I}, such that{p, g, s, t}
equals(i, j, k, 8} or its complement i1, ..., 8}.

Let us consider the restriction map Pit) s Pic(T") to the ramification divi-
sor” C V. Then we have the beautiful fact (see [DO, Lemma 8, p. 190]) that res
maps bijectively the 63 positive roofs;;, o;jx} (4.10) to the 63 nonzero 2-torsion
points/I"[2]\{0}, thus endowing the Jacobidi" with a level-2 structure—thatis,

a symplectic isomorphisnt : JT[2] = F3 x F3 (for details, see [DO, Chap. 9]).
We also observe that the partition 6F'[2] into the two setgred(«;;)} (28 points)
and{resu;;), 0} (36 points) corresponds to the partition into odd and even points
(w.r.t. the level-2 structurg). Moreover, the images of the 56 exceptional lines
(4.11) are the 28 odd theta characteristicsTomvhich we denote by rég;) =
regl;;) = 6. Further,z(l;;) = n(l;) = Ay, whereA;; is the bitangent ta’
corresponding te;;.

Two geometric markingg, ¢’ (4.9) differ by an elemerg € O(H7) = W(E7),
and their induced level-2 structurgs ' differ by g € Sp(6, F»). The restric-
tion mapW(E7;) — Sp(6, F2), ¢ — g, is surjective with kernell/2 = (wq) =
CentefW(E7)). The elementvg € W(E7) acts as—1 on the root lattice, leavds
invariant(wo(k) = k), and exchanges the exceptional lifes(/;;) = l;j).
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We also note thaivg ¢ Xg C W(E7) and that the injective composite map
g — W(E7) — Sp(6, Fy) identifies X g with the stabilizer of an even theta
characteristic.

4.5.2. Two Moduli Spaces withW(E7)-Action

We introduce theCg-Galois covetM — M ° parametrizing stable bundlése
Mg® with an order on the eight line subbundléky(E) = {Ly, ..., Lg}. The
group JC[2] acts onM, and we denote the quotientio/JC[2] by N, which is
a X g-Galois covet\' — A9, The polar mag>: N — N (4.6) lifts to a Xg-
equivariant birational involutio®: V' — .

We also consider the moduli spae parametrizing pairsT, ¢), with ' C
lw|* = P? a smooth plane quartic curve that satisfie® C = 2A andA € |w?]
and withg a geometric marking (4.9) for the Del Pezzo surf&cassociated to
I'. Then the forgetful magr, ¢) — I realizesPc as aW(E7)-Galois cover of
the spaceR of smooth quartic curveE satisfying the intersection property just
described. Since the general fiber(A) of the projection maR — |w?| cor-
responds to the pencil of curves spanned by the cGraad the double coni@?
defined byQ N C = A, we see thaR is an open subset of&-bundle ovelw?|
and hence is rational.

4.15. ProprosITION. The Hessian map of Section 4.3 induces a birational map
ﬁé_S/S Z./\~/' — Pc,

whicrl endows\ with a W(E~)-action. The action ofv corresponds to the polar
mapD.

Proof. Let E € N be represented b§ € My ? and by an ordered sl o(E) =
{Li, ..., Lg}. Inorder to construct the da(@ @), we consider the Del Pezzo sur-
faceV L P2 associated to the Hessian culve= HesgE) C |w|* = P?. Since

' N C = 2A(E), the preimager —X(C) c V splits into two irreducible com-
ponentsC; U Cp, with C; = C, = C. More generally, it can be shown that the
preimager ~X(C x R) C V has two irreducible components, whete> R is the
family of Del Pezzo’s parametrized b5y. This allows us to choose uniformly a
component;. Then, by Proposition 4.9, the secant Iiﬁg coincides with a bi-
tangent ta". Hence the preimage —(D;;) splits into two exceptional lines, and
we denote by;; the line that cuts out the divisd@;; on the curveC; = C. Then the
other Ilnel/ cuts out the d|V|soD’ onCy with D;; + D’ € |w|. Now itis imme-
diate to check that the classgs= llg forl<i <7and thateo =e+e —1lj;—k
determine a geometric marking as in (4.9).

Conversely, giverV and a geometric marking, we choose a line bundleg €
Picl(C) such thawl3 = eo|c=c,. Next we definel; forl<i <7byL;Lg =
¢;lc=c,. Then one verifies thdt;|c=c, = L;L; and hence (by Remark 4.3) there
exists a bundl& € Mg suchthaM o(E) = {Ly, ..., Lg}. SinceLg is defined up
to JC[2], this construction gives an element/of

Because the elemeite A is determined by the 28 line bundlgsL;, it will
be enough to describe the action®fandwo € W(E7) on theL;L;. Suppose
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D(E) = F with Mo(F) = {My, ..., Mg}; then it follows from the equality
M, (F) = Mo(E) (assumingF’ = D(E)) that M;M; = wL;'L;". On the other
hand, we havevo(/;;) = li’j and/;; + l;j = —k. Restricting toC = C; (—k|¢c =
), we obtain thaiwy = D. O

4.16. CoroLLARY. The morphisnHess:N'™ — R, E +— HessE), is finite
of degreer2. If C is general, the map

N Ms,  E > isoclasgHessE)),
is dominant.

Proof. The first assertion follows frofW(E7)/ Zg| = 72; for the second, it suf-
fices to show that the forgetful map — M3 is dominant. Let{] € |Op2(4)| =

P14 denote the quartic equation@f Projection with center] maps|Op2(4)| —
lw?|. We immediately see th@ equals the cone with verteg] over the Veronese
variety Veltw?| < |w?|. If C is general then one can show (e.g., by computing
the differential of the natural mapGL3; x R — |Op2(4)]) that thePGL3-orbit

of the coneR (note that dinR = 6) in |Op2(4)| = P is dense, and sinckls =
|Op2(4)|/PGL3 we obtain the result. O

4.17. REMARK. The action of the reflection; € W(E7) on/ is easily deduced
from its action on the exceptional lingg and/, (see Section 4.5.1). Represent-
ing an elemeni e V' by e € |oL3]*, it is easily checked that the restriction of
sijx t0 |wL3|* is given by the linear system of quadrics jerL3|* passing through
the six pointsD;;x = D;g + Djs + Dys. In this way we can construct the 722
2(1+ (1)) bundles in the fiber of HessV™®9 — R.
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