A REMARK ON DIFFERENTIABLE MAPPINGS

Rolf Nevanlinna

1. We consider a function y=y(x) which maps the sphere |x|< R $(R \le \infty)$ of the n-dimensional euclidean space L_n $(n \ge 2)$ onto a domain G of the same space. Let G_r be the image of the sphere $|x| \le r$ (r < R). If V(r) denotes the volume of the domain G_r and A(r) the measure of its boundary Γ_r , then we have, by the isoperimetric inequality,

$$n^n v_1 V^{n-1} \leq A^n,$$

where v_1 denotes the volume of the unit sphere (equal to $\pi^k/k!$ for n = 2k, and to $2(2\pi)^{k-1}/1 \cdot 3 \cdots (2k-1)$ for n = 2k-1).

2. We suppose that the derivative operator $y'(x) \equiv \frac{dy(x)}{dx}$ is continuous. The jacobian $\Delta(x)$ of the function y(x) is then also continuous. Let $d\sigma_x$ be the measure of an (n-1)-dimensional element of the sphere |x| = r, and $d\sigma_y$ the measure of its image. By the Hölder inequality, we have

$$A^{n} = \left(\int_{|\mathbf{x}'| = \mathbf{r}} \left(\frac{d\sigma_{\mathbf{y}}}{d\sigma_{\mathbf{x}}} \Delta^{\frac{1}{n} - 1} \right) \Delta^{1 - \frac{1}{n}} d\sigma_{\mathbf{x}} \right)^{n}$$

$$\leq \int_{|\mathbf{x}|=\mathbf{r}} \left(\frac{d\sigma_{\mathbf{y}}}{d\sigma_{\mathbf{x}}}\right)^{\mathbf{n}} \Delta^{1-\mathbf{n}} d\sigma_{\mathbf{x}} \cdot \left(\int_{|\mathbf{x}|=\mathbf{r}} \Delta d\sigma_{\mathbf{x}}\right)^{\mathbf{n}-1}.$$

It follows now from (1) that

(2)
$$n^{n}v_{1}V^{n-1} \leq \int_{|x|=r} \left(\frac{d\sigma_{y}}{d\sigma_{x}}\right)^{n} \Delta^{1-n} d\sigma_{x} \left(\int_{|x|=r} \Delta d\sigma_{x}\right)^{n-1}.$$

3. Here obviously

(3)
$$\int_{|\mathbf{x}|=\mathbf{r}} \Delta d\sigma_{\mathbf{x}} = \frac{dV}{d\mathbf{r}}.$$

The first right-hand integral in (2) has the following geometrical meaning. Let $|x-x_0| \le r$ be an infinitesimal n-dimensional sphere and E_n the corresponding ellipsoid. If E_n has the semi-axes $a_1 \le a_2 \le \cdots \le a_n$, then the jacobian takes the form

$$\Delta = \frac{a_1 \cdots a_n}{r^n}.$$

Received April 29, 1955.

Consider now an (n-1)-dimensional plane section S_{n-1} of the infinitesimal $|x-x_0| \le r$ $(x_0 \in S_{n-1})$. Under the mapping y=y(x), the corresponding set (n-1)-dimensional ellipsoid E_{n-1} with the semi-axes $b_1 \le b_2 \le \cdots \le b_{n-1}$ this notation,

$$\frac{d\sigma_y}{d\sigma_x} = \frac{b_1 \cdots b_{n-1}}{r^{n-1}},$$

and it follows that

$$\left(\frac{d\sigma_{y}}{d\sigma_{x}}\right)^{n}\Delta^{1-n} = \frac{(b_{1}\cdots b_{n-1})^{n}}{(a_{1}\cdots a_{n})^{n-1}}.$$

Now let $1 = (l_1, \dots, l_n)$ be the unit vector normal to the plane S_{n-1} . The

(4)
$$\frac{(b_1 \cdots b_{n-1})^n}{(a_1 \cdots a_n)^{n-1}} = a_1 \cdots a_n \left(\sum_{i=1}^n \frac{l_i^2}{a_i^2} \right)^{n/2} \leq \delta(x_0),$$

where

$$\delta = \frac{a_2 \cdots a_n}{a_1}$$

is the "dilatation quotient" of the map $x \rightarrow y$. This expression is the ratio I the volumes of the infinitesimal ellipsoid E_n and of the inscribed sphere.

4. We introduce now the mean value L(r), defined by

(5)
$$\mathbf{L}^{\mathbf{n}-\mathbf{1}} = \frac{1}{\mathbf{n} \mathbf{v}_{\mathbf{1}} \mathbf{r}^{\mathbf{n}-\mathbf{1}}} \int_{|\mathbf{x}|=\mathbf{r}} \left(\frac{d\sigma_{\mathbf{y}}}{d\sigma_{\mathbf{x}}} \right)^{\mathbf{n}} \Delta^{\mathbf{1}-\mathbf{n}} d\sigma_{\mathbf{x}}.$$

It follows from (4) and (4)' that

$$L^{n-1} \leq \frac{1}{n v_1 r^{n-1}} \int_{|x|=r} \delta(x) d\sigma_x \leq D^{n-1},$$

where D is the "maximal dilatation"

$$(4)" D(\mathbf{r}) = \max_{|\mathbf{x}| = \mathbf{r}} a_n/a_1$$

on the sphere |x| = r.

By the relations (3) to (5), the fundamental inequality (2) becomes

$$nV(\mathbf{r}) \leq \mathbf{r}L(\mathbf{r}) \frac{dV(\mathbf{r})}{d\mathbf{r}} \leq \mathbf{r}D(\mathbf{r}) \frac{dV(\mathbf{r})}{d\mathbf{r}}.$$

Hence, the relation

(6)
$$\log \frac{V(\mathbf{r})}{V(\mathbf{r}_0)} \ge n \int_{\mathbf{r}_0}^{\mathbf{r}} \frac{dt}{t L(t)} \ge n \int_{\mathbf{r}_0}^{\mathbf{r}} \frac{dt}{t D(t)}$$

holds for $0 < r_0 < r \le R$.

5. In order to study the behavior of the integral in (6), we first suppose that, for x = 0, the derivative $A(x) = \frac{dy(x)}{dx}$ is the identity operator. Because A is continuous at this point, we then have

(7)
$$dy = dx + |dx| < \varepsilon(|x|) >,$$

where $\epsilon(r)$ is a positive function, vanishing for r=0; the expression $<\epsilon>$ denotes a vector in the space L_n with a norm $|<\epsilon>|\leq\epsilon$. (For the notations used in the following, we refer to [2].) By the relation (7),

(7)'
$$1 - \varepsilon(|\mathbf{x}|) \leq \frac{|\mathrm{d}\mathbf{y}|}{|\mathrm{d}\mathbf{x}|} \leq 1 + \varepsilon(|\mathbf{x}|),$$

and it follows that

(8)
$$D(\mathbf{r}) \leq \frac{1}{1 - \theta(\mathbf{r})},$$

where

(8)'
$$\theta(\mathbf{r}) = \min\left(1, \frac{2\varepsilon}{1+\varepsilon}\right).$$

6. By the formula (8), the relation (6) becomes

(8)"
$$\log \frac{V(r)}{V(r_0)} \ge n \log \frac{r}{r_0} - n \int_{r_0}^{r} \frac{\theta(t)}{t} dt.$$

Now it follows from the development (7) that the difference

$$\log V(r_0) - n \log r_0$$

tends to the limit v_1 as $r_0 \rightarrow 0$. Hence, with the notation $v_r = r^n v_1$,

$$\log V(r) \ge \log v_r - n \int_0^r \frac{\theta(t)}{t} dt.$$

This relation is not trivial, provided that the last integral is convergent. This condition requires that the function $\epsilon(r)$ in (7) tends to zero so rapidly that the integral

$$\int_{0}^{\frac{\varepsilon(\mathbf{r})}{\mathbf{r}}} d\mathbf{r}$$

is finite; continuity of the derivative does not by itself imply this property (compare [1]).

7. If the derivative A = y'(0) is not zero and is different from the ident operator, we consider the lower bound

(9)
$$m_0 = \inf_{|h|=1} |y^1(0)h|.$$

The differential of the function $z(x) = A^{-1}y(x)$ is $dz = A^{-1}dy(x)$, and we confrom this that $|dz| \le m_0^{-1} |dy|$ at each point x. Let now f_y be a set of point and denote by f_z the set (z) corresponding to f_y under the linear transform A^{-1} . It follows that the n-dimensional measure of f_y is at least equal to the ure of f_z , multiplied by the constant m_0^n .

Now the function z(x) satisfies all the assumptions of the preceding sec Hence, by the relation (8)", we finally get the inequality

(10)
$$V(r) \ge m_0^n \ v_r \exp\left(-n \int_0^r \frac{\theta(t)}{t} dt\right).$$

This relation is valid for every value r in the interval $0 \le r \le R$. Her the volume of the sphere $|x| \le r$, V(r) denotes the volume of its image unc transformation y = y(x), and the constant m_0 is defined by (9), while θ has lowing significance:

The differential dy = y'(x)dx admits an expansion of the form

$$dy = y'(0) \left(dx + |dx| < \varepsilon(|x|) > \right),$$

where, in view of the hypothesis concerning the continuity of y', $\epsilon(r) \rightarrow 0$: The expression θ is defined by (8).

If the derivative y' is continuous at x = 0, in the stronger sense that n $\varepsilon \to 0$ as $r \to 0$, but also

$$\int_{0}^{\infty} \frac{\varepsilon(t)}{t} dt < \infty,$$

then the integral in (10) is finite for all values r (0 $\leq r < R$).

In the particular case of a conformal mapping, the expression θ vanish

$$m_0 = \left(\frac{|dy|}{|dx|}\right)_{x=0}.$$

For n = 2, this result reduces to a well-known inequality due to Bieberbac

8. The condition (11) of "strong continuity" at the point x=0 is fulfilly second derivative y" of y exists or, more generally, if the first derivative fies a Lipschitz condition

(12)
$$\left|\left(y'(x)-y'(0)\right)dx\right|\leq M_{o}\left|x\right|\left|dx\right|.$$

In this case it can be shown (see [1]) that the image of the sphere |x| < r = 1 is a domain G_r which contains the sphere $|y - y(0)| < m_0^2/2M_0$ and has the

$$V(r) > v_1 (m_0^2/2M_0)^n$$
.

Let us compare this result (which cannot be sharpened) with the assertion contained in the general inequality (10). The function $\epsilon(\mathbf{r})$ now becomes $\epsilon = M_0 \, \mathbf{r}/m_0$, whence

$$\theta = \frac{2 M_0 r}{m_0 + M_0 r}$$

and

$$\int_{0}^{r} \frac{\theta dt}{t} = 2 \log (1 + M_{0} r/m_{0}) = \log 4.$$

It follows thus from (10) that

$$V(r) \ge v_1 \left(\frac{{m_0}^2}{4\,M_0}\right)^n \; . \label{eq:volume}$$

REFERENCES

- 1. Y. Juve, Über gewisse Verzerrungseigenschaften konformer und quasikonformer Abbildungen, Ann. Acad. Sci. Fennicae, Ser. A. I. Math.-Phys. no. 174 (1954).
- 2. R. Nevanlinna, Über die Umkehrung differenzierbarer Abbildungen, Ann. Acad. Sci. Fennicae, Ser. A. I. Math.-Phys. no. 185 (1955).

Academy of Finland