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1. Introduction

Let X be a smooth, projective, unirational variety, andlfet X be an open set.
The aim of this paper is to find a smooth rational cufve X such that the fun-
damental group of N U surjects onto the fundamental grouplafFollowing the
methods of [K4] and [Co], a positive answer o&translates to a positive answer
over anyp-adic field. This gives a rather geometric proof of the theorem of [Hb]
about the existence of Galois covers of the line gwveadic fields (1.4). We also
obtain a slight generalization of the results of [Co] about the existence of certain
torsors over open subsets of the line opeadic fields (1.6).

If U = X thenmy(X) is trivial (cf. (2.3)), thus any rational cun@ will do. If
X\ U is a divisor with normal crossings anddfintersects every irreducible com-
ponent ofX \ U transversally, then theormal subgroup ofr1(U) generated by
the image ofr1(C N U) equalst1(U) by a simple argument. (See e.g. the begin-
ning of (4.2).) Itis also not hard to produce rational curgesuch that the image
of m1(C N U) has finite index inty(U) (cf. (3.3)). These results suggest that we
are very close to a complete answer, but surjectivity is not obvious. Differences
between surjectivity and finiteness of the index appear in many similar situation;
see, for instance, [K1, Part 1] or [NR].

The present proof relies on the machinery of rationally connected varieties de-
veloped in the papers [KMM1; KMM2; KMM3]. The relevant facts are recalled
in Section 2.

The main geometric result is the following theorem.

THeoreM 1.1. LetK be an algebraically closed field of characterisficand let
X be a smooth projective variety ovér that is rationally connected2.1). Let
U C X be an open subset ang € U a point. Then there is an open subfet
Vv c Al and a morphisny: V — U such thatf(0) = xo and

m1(V, 0) — m(U, xo) is surjective.

Moreover, we can assume that the following also hold

(1) HYP?, f*Tx(—2)) = 0, wheref: P! — X is the unique extension ¢f,
(2) fis an embedding iflim X > 3and an immersion ilim X = 2.
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CoroLLARY 1.2. Let K be ap-adic field, and letX be a smooth projective va-
riety over K that is rationally connected ovek. LetU C X be an open subset
andxg € U(K) a point. Then there is an open sub8et V ¢ A! and a morphism
f:V — U (all defined overK) such thatf(0) = xo and

m1(V, 0) — m1(U, xq) is surjective,

wherer; here denotes the algebraic fundamental group.

ReMARK 1.3.  More generally, (1.2) holds for any fiekd of characteristic O such
that every curve with a smootki-point contains a Zariski dense setK#points.
Characterizations of this property are given in IA]. Thefollowing are some
interesting classes of such fields:

(1) fields complete with respect to a discrete valuation;
(2) quotient fields of local Henselian domains;

(3) R and all real closed fields;

(4) pseudo-algebraically closed fields (cf. [FJ, Ch. 10]).

CoroLLARY 1.4 [Hb]. LetG be a finite group, and leX be a field of character-
istic 0 as in(1.3). Then there is a Galois cover: C — ]P}< with Galois groupG
such thatC is geometrically irreducible ang=1(0 : 1) = G.

Proof. Let G ¢ GL(n, K) be a faithful representation. SEt= GL(n)/G with
quotient maph: GL(n) — U, and letxy be the image of the identity matrix.
Then U is unirational; thus, by (1.2) there is a®V c A! and a morphism
f:V — U suchthatry(V) — m1(U) is onto. The mag: GL(n) — U is étale
and proper, and thus it corresponds to a quotigat/) — G. The fiber product
W = GL(n) xy V — V corresponds to the surjective homomorphism

w1 (V) = 7 (U) — G.

ThusW is connected an®% — V is a Galois cover with Galois grou@. Since
W has aK-point, it is also geometrically connected. The preimage af ¥ is
isomorphic toG (the disjoint union of G| copies of Spe&’). The coverW — V
can be extended to a (ramified) Galois cover of the wﬁéle O

ReEMARK 1.5. The foregoing proof works in positive characteristic if we know
that, for every subgroufd < G, the quotient Gl(n)/H has a smooth compacti-
fication.

The following result was proved by [Co] for finite groups, which is probably
the most important for applications.

CoroLLARY 1.6. LetK be afield of characteristi® as in(1.3),let G be a linear
algebraic group scheme ovér, and letA be a principal homogeneous-space.
Then there is an open sBte V C AL and a geometrically irreducibl€&-torsor
g: W — V such thatg™%(0) = A (as aG-spacs.

Proof. Assume thatG acts onA from the left and choose an embeddiGgc
GL(n) overK. A x GL(n) has a diagonal left action b§ and a right action by
GL(n) acting only on Gl(n).
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The rightG-action makes the morphism
h: G\(A x GL(n)) = G\(A x GL(n))/G =: U

into aG-torsor. Letxg € U bethe image off \ (A x G). Thefiber ofs overxgisiso-
morphic toA. Let G° be the connected component®fThenG \ (A x GL(n)) —
G\ (A x GL(n))/Gis smooth with connected fibers a6d (A x GL(n))/G° —
U is étale and proper. Let®V c A'andf: V — U be as in the proof of (1.4).
ThenW = (G\(A x GL(n))) xy V works. O

A geometric application is as follows.

CoroLLARY 1.7. For every2 < g < 13thereis anopensdle V, C C and a
smooth proper morphism with gengdibersS, — V, such that the image of the
monodromy representation is the full Teichmdiller group.

Proof. The moduli of curves is unirational fgr < 13. Apply (1.1) to theopen sub-
set of curves without automorphisrt’s C M,. O

2. Rationally Connected Varieties and
Morphisms of Rational Curves

Rationally connected varieties were introduced in [KMM2] as a higher-dimen-
sional generalization of rational and unirational varieties. A surface is rationally
connected if and only if it is rational. In higher dimensions, rationality and uni-
rationality are very hard to check. The notion of rational connectedness concen-
trates on rational curves on a variety. The following characterizations were devel-
oped in [KMM2; K2, IV.3; K3, 4.1.2].

DEerINITION-THEOREM 2.1.  LetK be an algebraically closed field of characteris-
tic 0. A smooth proper varietY overK is calledrationally connectedf it satisfies
any of the following equivalent properties.

(1) There is an open subgét: X° ¢ X such that, for everyy, x» € X°, there
is a morphismf : P! — X satisfyingxy, x» € f(P1).

(2) For everyxy,...,x, € X, there is a morphisny: P! — X satisfying
X1y ..., X, € f(]P’l).

(3) There is a morphisnf : P! — X such thatd (P!, f*Tx(—2)) = 0. (This is
equivalent tof * Tx being ample.)

(4) There is a variety? and a dominant morphisi: P! x P — X such that
F((0:1 x P) is a point. We can also assume ttt&t(P*, F;7 Tx(—2)) = 0
for everyp, whereF, := F|P1X{p}.

(5) Letzy, ..., z, € P! be distinct points and let, ..., m, be natural numbers.
Foreachi =1,...,n, let f;: SpecK[t]/(t") — X be a morphism. Then
there is a variety? and a dominant morphistfi: P* x P — X such that:

(a) the Taylor series aof}, atz; coincides withf; up to ordenn; for everyi
andp € P; and
(b) HY(PY, F}Tx(—Y_m;)) = 0for everyi andp.
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Another easy result that we need is the following.

LemMma 2.2 (cf. [K2, 11.3.5.4, 11.3.10.1, 11.3.11]). Let X and P be smooth vari-
eties, and leF : P'x P — X be a dominant morphism such th&g(0 : 1) x P) is
a point. Then there is a dense open B&tc P such thatH (P2, FiTx(-2) =
0 for everyp € P°, whereF, := F|P1X{p}.

Conversely, leff : P! — X be a morphism such thadf (P, f*Tx(—2)) = 0.
Thenthere is a pointed variepy € P and adominant morphistfi: P! x P — X
suchthatF((0 : D) x P) is apoint,F is smooth away fror(0 : D) x P, andF,, = f.

The following result was proved by [S] for unirational varieties and by [C; KMM3]
for the general case.

ProrosiTION 2.3. A smooth, proper, rationally connected variety is simply con-
nected.

In the course of the proof we repeatedly encounter the following situation. We
have morphismg’: P* — X each passing through the same paige X. We
would like to have a family of morphismg : P! — X such that the union of the
mapsf’ can be considered as the limit of the mapsst — 0. The following
lemma is a technical formulation of this idea. Its statement is a bit complicated,
since we also want to keep track of the field over which thare defined.

LemmA 2.4 (cf. [K4, 3.2]). Let K be a field and letxy € X be a smooth,
proper, pointedK-scheme. LeS be aO0-dimensional reduce&-scheme, and
let fo: P — X be a morphism such that

(1) HYPL, f§Tx(—=2)) =0and
(2) fo(S x {(0:D}) = {xo}.
Then there exist

(3) a smooth pointed curv@e D overKk,
(4) a smooth surfac& with a proper morphisna: Y — D and a sectiorB C Y
of h, and
(5) amorphismF: Y — X
such that
(6) h~%(0) is the union ofP} with a copyB, of P¢ such thatBo N P} =
S x {(0: D} andBo N B is a single point
(7) F restricted to]P’§ coincides withfy and F(Bo U B) = {x¢};
(8) YD = Pi x D° whereD? := D\ {0}; and
(9) HY(PL, FfTx(—2)) = O for everyd € D°, whereF, := F|h,1(d).
Proof. Let us start with any curve @ D’ andY’ := P1x D’. LetS’ ¢ P! x {0} be
a subscheme isomorphic §o and letY” be the blow-up o5’ ¢ D’ with projec-
tionh’: Y” — D’. We can define a morphisifi : (h')™1(0) — X by settingf’
to be fy on the exceptional divisor &f” — Y’ and the constant morphism{teg}
on the birational transform d@#* x {0}. Fix any sectionB’ C Y’ that does not pass
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throughsS’. We are done iff’ can be extended t6': Y” — X as required. In
general this is not possible, but such an extension exists after a suitable étale base
change0e D) — (0e D’). This is proved in [KMM2, 1.2] and [K4, 2.2]. O

3. Fundamental Groups of Fibers of Morphisms

We need some easy results about the variation of fundamental groups for fibers of
nonproper morphisms.

Lemma 3.1. LetK be an algebraically closed field of characterislidet Z and D

be irreduciblek -varieties, and letf : Z — D be a smooth and proper morphism
with connected fibers. Léf c Z be an open subset such thgt \ Z) — D is
smooth. Leto € Z(K) be aK-point, withdg = f(z0) andZythe fiberofZ — D
throughzo. Then there is an exact sequence

m1(Zo, z0) = m(Z, z0) = wi(D,dg) — L (%)

Proof. OverC, the fibrationZ(C) — D(C) is a topological fiber bundle; thus we
have the exact sequen¢®. To settle the algebraic case, ¥t— Z be any con-
nected finite degree étale cover and extend it to a finite morpHism Z, where

Y is normal. SinceZ \ Z is smooth oveD, the same holds fof — D. (This

is a special case of Abhyankar’s lemma; cf. [@]1X6.2].) The generic fiber of
Y — D is irreducible. Sinc& — D is smooth and proper, every fiber is irre-
ducible. This is equivalent to the exactnesg-0f O

The following technical lemma is an upper semicontinuity statement for the fun-
damental groups of fibers of nonproper morphisms.

LeEMMA 3.2. LetK be an algebraically closed field of characterisficlet W be

a normal surface ovek, and letf: W — D be a(not necessarily propg@mor-
phism to a curve with connected fibers. Bett W be a connected subset, one of
whose irreducible components is a sectioryofetdy € D be aK-point andCy

an irreducible component of ~%(dg) with a K-pointbhy € Co N B. Letxg e U be

a pointedK-scheme, and let: W — U be a morphism such that(B) = {xo}.
Then there is an open subsef c D such that, for every € D° and for every
K-pointb,; € C; N B,

im[1(Cy, bg) — m1(U, x0)] D im[m1(Co, bo) — m1(U, x0)].

Proof. Choose a normal compactificatigh W — D. Let D° c D be any open
subset such that (g) is smooth with irreducible fibers ovér® and (D)W \ W —
D is unramified oveD®. SetW? := f~4(D%). Thenm(Co, bo) — m1(U, x0)
factors throughr1(W, bg) — m1(U, xo), and it has the same imageagW, b) —
m1(U, xo) for anyb € B(K). By (3.3), my(W°, b) — m1(W, b) is surjective. By
(3.1), there is an exact sequence

71(Cy, by) — m1(Wo, by) — m(D°% d) — 1.
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Let B ¢ BN W0 be a section off. Thenwy(B°, b;) maps ontary(D°, d), and
the image ofr1(B°, by) in w1(U, xo) is trivial. Hence
im[71(Ca, ba) — m1(U, x0)] = im[7y(W°, by) — m1(U, x0)]

and we are done. OJ

Lemma 3.3 (cf. [G, IX.5.6; C, 1.3]). Let X, Y be normal varietiesxp € X a
closed point, andf: X — Y a dominant morphism. Them[n1(X, xo) —
m1(Y, f(xp))] has finite index int1(Y, f(xp)). If f is an open immersion then
m1(X, xo) — m(Y, f(x0)) is surjective.

4. Proof of the Main Results

The theory of free morphisms of curves (cf. [K2, 11.3]) suggests that morphisms
f: P! - X such thatH' (P, f*Tx(—2)) = 0 behave rather predictably; we
therefore concentrate on such morphisms. First we establish that there is a unique
maximal subgroup aof1(U) obtainable from such a morphism.

LemMma 4.1. Let X be a smooth, proper, rationally connected variety over an
algebraically closed field of characteristic LetU C X be an open set and, €

U a point. Then there is a unique finite-index subgraiip< w1(U, xo) with the
following properties.

(1) There is a morphisnf : P* — X such thatd(PY, f*Tx(—2)) =0,
f(0:1) =xo, andH = im[71(f~XU), (0: D) — (U, x0)].
(2) Letg be any morphisrg: P — X such that

g0:D) =xo and HYPY g*Tx(—2)) =0.
ThenH > im[m(g~XU), (0 : 1)) — m1(U, x0)].

Proof. First we find one morphism as in (2) such that
im[71(g~4(U), (0: D) — m(U. x0)]

has finite index int1(U, xo).

Let F: P! x P — X be asin (2.1(4)). LeP® c P be an open subset such that
F~X(X \U) — P is étale overP°. Pick any pointp € P°. By (3.1) there is an
exact sequence

m(F,HU), (0:D) x {ph) — m((P* x PO)NFXU), (0: 1) x {p})
— 7'[1(PO, p) — 1
The section0 : 1) x P°is mapped to a point by, so
m(F,7HU), (0: D) x {ph) and (P x PO)NFU), (0:1) x {p})

have the same image in (U, xo). The latter image has finite index by (3.3); thus
g := F,: P! > X is as desired.
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In order to finish, it is sufficient to prove that gf, g»: P* — X are as in (2)
then there is a third morphisgt P! — X such that

im[1(g~X(U), (0: 1) — m(U, x0)] D im[m1(g; (U), (0: D) — m1(U, x0)]

fori =1, 2. To do this, letS = {1, 2} be a 2-point scheme and taltg: ]P’% - X
to beg; on{i} x PL Constructi: ¥ — D andF:Y — X asin (2.4). SeW :=
F~Y(U) and apply (3.2) twice for = 1, 2 with Cg := f,.‘l(U). Then, for any
d e D°, g := F, has the required property. O

4.2. Proor oF THEOREM 1.1. LetH < mi(U, xp) be the subgroup obtained in
(4.1). We are done i = m1(U, xo). Otherwise, there is a corresponding irre-
ducible étale covefx;, e U’) — (xg€ U). Letw: X’ — X be the normalization
of X in the function field ofU’; X is simply connected by (2.3) and so, by the
purity of branch loci (cf. [G, X.3.1]), there is a divis@’ C X’ such thatw rami-
fies alongD’. Let D C X be the image oD’. By constructionD C X \ U. We
derive a contradiction as follows.

Let f: P! — X be a morphism such that(0 : 1) = xg and f(P?) intersects
D transversally at a point; ;= f(1:1). This implies that the local fundamental
group of P\ {(1: 1)} at(1 : 1) surjects onto the local fundamental groupxof D
atx;. (For the local fundamental group of a divisor in a variety see [GM], where it
is called the fundamental group of the formal neighborhood of a divisor.) There-
fore, if f liftsto f/: P! — X' thenX’ — X isétaleatf'(L: 1. If X' — X is
a Galois extension then we already have a contradiction, since X ramifies
everywhere abové®. In the non-Galois casgy may be unramified along some
of the irreducible components of1(D) and we have a contradiction only if the
image of f’ intersectsD’.

If X’ — X is not Galois, we need to proceed in a somewhat roundabout way.
First | give the outlines; a precise version is given afterwards.

It is clear from the definition that there are many m@gs— X', so X’ (or
rather any desingularization of’) should be rationally connected. This indeed
follows from (4.3) applied to any: P! x P — X asin (2.1(4)). Thus by (2.1(5))
there is a morphisny’: P! — X’ that passes througty, and intersectd’ at a
smooth pointr;. We obtain a contradiction i o f” is the limit of a sequence of
mapsf; : P! — X such that:

(1) fliftsto f/ : P — X’ andf’ is the limit of the maps//; and
(2) the image off; intersectsD transversally.

First we prove a general lifting property for families of morphisms and then we
proceed to construct the morphisfh

LemMA 4.3. LetV be a normal variety and lef : P x V — X be a morphism
such thatG((0 : 1) x V) = {xo}. Assume that/ (P, G Tx(—2)) = 0 for some
ve V. ThenG can be lifted toaG": P x V — X',

Proof. First we show that such a lifting exists over an open subsé@t'of V.
ChooseV? c V such thatHX(PY, G Tx(—2)) = O for everyv € VO (this is
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possible by the upper semicontinuity of cohomology groups) and such that we
have an exact sequence

1(G;HU), (0:D x v) — m((GO)™HU), (0:D x v) = 7(VO,v) - 1
for everyv € V0, whereG® := G|, (this is possible by (3.1)). Then
im[7((G%) XU, (0: 1) x v) — 71 (U, x0)] C H

and s0G°| 0, 1., can be lifted toG’: (G°)~(U) — U’. This extends to a ra-
tional mapG’: Pt x VO --» X'

Next letl’ c (P! x V) x X be the graph ot with T'* c (P! x V) x X' its
preimage. The rational lifting;’ corresponds to an irreducible compon&htc
I'* such that the projectioi’ — (P! x V) is birational. SinceX’ — X is finite,
soisI'* — I'. ThusI'” — I' — P! x V is both finite and birational and hence is
an isomorphism. O

Let¢: X” — X' be any desingularization, and lef € D’ be a point such that
(@) D’ and X’ are smooth at; and (b)¢ 1 is a local isomorphism neat,. By
(2.1(5)), there is a dominant morphisft P! x P — X’ such that:

(1) F((0:D x P) = {xp};
(2) F(1:1) x P) = {x}}; and
(3) the image ofF,: P! — X’ is transversal td’ atx; for everyp € P.

Let us now consider the dominant morphistm F: P! x P — X. By the
first part of (2.2), there is @o € P such thatd(PL, (w o F,,)*Tx(—2)) = 0.
Thus, by the second part of (2.2), there is a pointed vagigty O and a morphism
G: P'x Q — XsuchthaG,, = woF,, andG is smooth away front0 : 1) x Q.

In particular,G ~X(D) c P! x Q is a generically smooth divisor; hence there is a
dense opens&@° c Q such that the projectio@ (D) — Q is smooth ove®.
This means that the image 6f,: P! — X intersectsD transversally for every

g € Q°. (Note thatG ~%(D) denotes the inverse image scheme.)

By (4.3),G can be lifted toG'": P x Q — X’. OnP! x {go} the lifting agrees
with F,, henceG'(P! x {go}) intersectsD’ at the pointx;. This implies that
(G")7Y(D’) is a divisor and so, by shrinking@, we may assume that the image of
G, intersectsD’ for everyg € Q. ThusG, = w o G, is never transversal tD, a
contradiction.

Condition (1.1(1)) holds by construction, and a general choicefo$atisfies
(1.1(2)) by [K2, 11.3.14]. O

4.4. Proof of CoroLLARY 1.2. Pickfi: Vi — Ui defined overK such that
m1(Va, 0) — m(Ug, xo) is surjective andd *(PL, f* Tx(—2)) = 0. Then; is de-
fined over a finite Galois extensidh D K; let f;: V; — Ui be its conjugates.
Each of these extends to a morphigm P* — X;. Let S = Speg L. We can
view the morphismsf; as one morphisnfo: P; — X defined ovelX. By (2.4)
we obtaink: Y — D andF: Y — X, all defined oveX. Letd € D°%(K) be any
point. Then, by (3.2) we see that
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im[y(Yy, 0) % my(Ug. x0)] D im[my(Va, 0) L5 my(Ug. x0)].

and the latter image i1(Ug, xo) by assumption. NowD? is a Zariski open set
in a curveD with a smoothK-point 0. By (1.3), this implies thab(K) is dense
in D, henceD%(K) # ¢. By choosingd € D°(K) we obtain an open subset0
vV c At and a morphisnf: V — U (all defined overk ) such thatf(0) = xo and

m1(Vg, 0) — m1(Ug, xo) is surjective.

The fundamental group of E-schemeW is related to the fundamental group of
Wi by the exact sequence (cf. [G, 1X.6.1])

1— m1(Wg, 0) — m(W,0) — Gal(K/K) — 1.
This implies that
m1(V, 0) — m(U, xo) is also surjective. O

ExampLE 4.5. Here, for every > 4, | give an example of a rational threefold
X, a normal crossing divisoF C X, and a smooth rational curv® C X such
that B intersectsF everywhere transversally intersects every irreducible com-
ponent ofF, and the image ot1(B \ F) — m1(X \ F) hasindex: in m1(X \ F).

Let us start with a similar surface example. Igt P! — P! be a degree-
n morphism with critical pointsty, ..., x2,_» € P! and different critical val-
uesys, ..., ya,—2. Choose three other poinis,_1, x2,, X2,41 in P! such that
(a) g1(x2,-1) andgi(x2,) are different critical values of; and (b)g1(x2,+1) is
not a critical value ofg;. Let go: P* — P! be a morphism, withg,(x;) = x;
for i < 2n + 1 Consider the morphist : (g2, g1): P! — P! x PL SetD =
PLx {y1, ..., yan_2} andU = P x P\ D. Thenimh intersects every irreducible
component ofD transversally at — 2 points, and the image ofy(h(U)) —
m1(U) has index: in 71(U).

Here im# is also tangent to every irreducible componenDofThe tangencies
can be resolved byr2blow-ups, but then the birational transform of indoes not
intersect every boundary component. To remedy this situation, take another mor-
phismgs: P — P with ga(x;) = x; fori < 2n+1 Sety :=P!xP'xPL F =
D x PY andH := (g3, g2, g1): P* — Y. Again the only problem is that irf is
tangent to every irreducible component/of These can be resolved by blowing
up two suitable smooth curves. First we take a smooth curve that passes through
every point of tangency and also through the pdifitc,,_1). After blow up, the
birational transform of inf{ intersects every boundary component transversally,
but above each point there is a point common to two boundary components and to
the birational transform of inf/. Next take a smooth curve that passes through all
these points with a general tangent direction there and also th#ggh) ). We can
also assume that neither of the two curves passes thradg}),.1). Doing two
such blow-ups creates two new boundary components, and the birational trans-
form of im H intersects both of them. The fundamental group computation is
unchanged.

Varying g, and gz we obtain many morphisms, all of which pass through the
poINt H (x2,41)-
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