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1. Introduction

We introduce the notion oftest exponerfor tight closure and explore its relation-
ship with the problem of showing that tight closure commutes with localization, a
long-standing open question. Roughly speaking, test exponents exist if and only if
tight closure commutes with localization; mild conditions on the ring are needed
to prove this. We give other, independent, conditions that are necessary and suffi-
cient for tight closure to commute with localization in the general case, in terms of
behavior of certain associated primes and behavior of exponents needed to anni-
hilate local cohomology. Although certain related conditions (the ones given here
are weaker) were previously known to be sufficient, these are the first conditions
of this type that are actually equivalent.

The difficult calculation of Section 4 uses associativity of multiplicities and
many other tools to show that sufficient conditions for localization to commute
with tight closure can be given in which asymptotic statements about lengths of
modules defined using the iterates of the Frobenius endomorphism replace the
finiteness conditions on sets of primes introduced in Section 3. The result is local
and requires special conditions on the rings: one is that countable prime avoid-
ance holds. This is not a very restrictive condition, however; it suffices, for ex-
ample, for the ring to contain an uncountable field. Countable prime avoidance
also holds in any complete local ring. But we also need the existencstairey
test ideal (see the beginning of Section 4). We expect that, in the long run, this
condition will also turn out not to be very restrictive: a strong test ideal for a re-
duced ring is known to exist if every irreducible component of Spém@s a res-
olution of singularities obtained by blowing up an ideal that defines the singular
locus, and it is expected that this is always true in the excellent case. Moreover,
by very recent results, strong test ideals always exist for complete reduced local
rings.

We note that the reader may find other results related to localization of tight
closure in [AHH; Hu3; K1; K2; LS; V1, V2].
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2. Test Exponents and Associated Primes

Discussion 2.1 (Basic Terminology and Notation). We shall assume throughout
that R is a Noetherian ring of positive prime characterigticalthough this hy-
pothesis is usually repeated in theorems and definitions. Moreover, because tight
closure problems are unaffected by killing nilpotents, we shall assume, unless
otherwise specified, that is reduced. We shall usually assume that the reduced
ring R has a test element (see the discussion in the fourth paragraph of this
section). We recall some terminology and notation. WeRfSt#® denote the com-
plement of the union of the minimal primes Bf hence, ifR is reduced themR®
is simply the multiplicative system of all nonzerodivisorsinWe shall writeF ¢
(or Ff if we need to specify the base ring) for tReskine—Szpiror Frobenius
functor from R-modules toR-modules. This is a special case of the base change
functor from R-modules taS-modules that is simply given by ®z _: in the case
of F¢, the ringS is R but the mapR — R that is used for the algebra structure is
theeth iteration F¢ of the Frobenius endomorphisia¢ (r) = r?°. Thus, if M is
given as the cokernel of the map represented by a matfix thenF ¢(M) is the
cokernel of the map represented by the ma(tr§<) Unless otherwise indicated,
g denotesp® wheree e N. Forg = p¢ we haveF¢(R/I) = R/I9], where 4
denotes the ideal generated by thth powers of all elements df (equivalently,
of generators of ). Note thatF¢ preserves both freeness and finite generation of
modules, and it is exact precisely whens regular (cf. [He; Ku]). IfN € M we
write N4 for the image ofF¢(N) in F¢(M), although it depends on the inclu-
sionN — M and not just onV. If u € M then we writex”* for the image 1® u
of u in F¢(M). With this notation,(u + v)? = u? + v? and (ru)? = r9u for
u,ve M andr e R.

It is worth noting that, for any multiplicative syste in R, Fg (My) =
F{(M)w, where__ y indicates localization with respect #W. In fact, for any
R-algebra$, one has that

FS(S®r M) =S ®@r Fg(M).

FurthermoreN‘[gl C F¢(M)yw may be canonically identified witfiVy )41,

An elementy € M, whereM is a finitely generate®-module, is in the tight
closureN* of N € M if there existsc € R° such thatcu? e N9 for all ¢ =
p¢ > 0. By the right exactness of tensé¢(M/N) = F¢(M)/Nll, whereq =
p¢. Itfollows easily that an element @f is in N* if and only if its image inM /N
isin 0* in M/N. Therefore, in considering whethere M is in N*, we may re-
placeM by a finitely generated free module mapping ontaV, N by its inverse
image inG, andu by any element o&; that maps ta.

An element € R° is calleda test elemerif, wheneverM is a finitely generated
R-module andV € M is a submoduley € M is in the tight closure ofV if and
only if, for all ¢ = p°, cu? e Nl4l. Thus, if the ring has a test element, it “works”
in any tight closure test where some choice &f R° “works”. Test elements are
also characterized as the element®6éfthat annihilateV*/N for all submodules
N of all finitely generated module¥ .
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A test element is callebbcally stableif its image in every local ring oR is a
test element (this implies that it is a locally stable test element in every localiza-
tion of R at any multiplicative system). A test element is calbednpletely stable
if its image in the completion of each local ring &fis a test element. A com-
pletely stable test element is easily seen to be locally stable. We refer the reader
to [AHH, Sec. 2; HH1, Secs. 6, 8; HH2; HH5, Sec. 6] for more information about
test elements and to [AHH, Sec. 3] for a discussion of several basic issues related
to the localization problem for tight closure.

We note that, by some rather hard theorems, test elements are known to exist.
For example, ifR is any reduced ring essentially of finite type over an excellent
local ring, thenR has a test element. In fact,dfis any element oR° such that
R. is regular (and such elements always exift it excellent and reduced), then
¢ has a power that is a completely stable test element. This follows from Theo-
rem 6.1a of [HH5], and we shall make use of this freely throughout.

Another important property of tight closure in characterigtis thatif R — §
is a ring homomorphism ande N* in M, then the image ® u of u in S @x M
is in the tight closure, ove$, of

under very mild assumptions. This phenomenon is referred tioeagersistence
of tight closure.In particular, by Theorems 6.23 (which, with the same proof, is
valid whenevelr is essentially of finite type over an excellent local ring—the re-
sult is stated only for the case of finite type) and 6.24 of [HH5R i essentially

of finite type over an excellent local ring,$fhas a completely stable test element,
or if R° maps intoS° (e.g., if R — S is an inclusion of domains or is flat), then
one has persistence of tight closure for the ring homomorpliism S.

DEeFINITION 2.2. LetR be a reduced Noetherian ring of positive prime charac-
teristic p. Let ¢ be a fixed test element f&, and letN C M be a pair of finitely
generatedk-modules. We shall say that= p¢ is atest exponentor ¢, N, M if

u € N* whenevercu? € N9 andQ > 4. In caseN is an ideal it is usually as-
sumed thadf = R, and in that case we speak of a test exponent fér with R
understood to be the ambient module for

It is not at all clear whether to expect test exponents to exist. In this paper we
shall prove (roughly speaking) that test exponents exist, in general, if and only if
tight closure commutes with localization. The question of whether tight closure
commutes with localization is open in general, but it is known in many important
special cases, and thus our results imply that test exponents do exist rather often.
We expect this notion to be of great importance because, whenever one can com-
pute what the test exponent is, one obtains an effective test for tight closure.

We are also hopeful that focusing attention on the problem of the existence of
test exponents may lead to a solution of the localization problem for tight clo-
sure. We want to point out that, if tight closure commutes with localization, then it
commutes with arbitrary smooth base change; for a precise statement, see [HH5,
Thm.7.18a].
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To demonstrate one connection, we prove the easier half of the result at once
(this half is implicit in [McD]).

ProrosiTION 2.3. Let R be a reduced Noetherian ring of positive prime char-
acteristicp and letN € M be finitely generate®-modules. Let be a locally
stable test element faR. If there is a test exponent fa;;, N, M then, for every
multiplicative systen of R, (Ny)* in My overRy is (N*)w (i.e., tight closure
for the pairN € M commutes with localizatign

Proof. The only problem is to show that if € M andu/1 € (Ny)* thenu €
(N*)w (any element oMy, , after multiplication by a suitable unit, is in the image
of M). Let ¢ be a test exponent far, N, M. Then we can choos&:?/1¢e Nv[{,’]
and we can choosg € W such thatfcu? € N9, soc(fu)? € Nl4l. But then fu €
N*and sau € (N*)w. O

What is much less obvious is that a converse holds.

THEOREM 2.4. LetR be a reduced Noetherian ring of positive prime character-
istic p, and letN € M be a pair of finitely generate&-modules. Suppose that,
for every primeQ € ASSM/N*), (Ng)* = (N*)go. Then, for every test element
¢ € R° such thatc is a test element in each of the ringg for every associated
prime Q of M/N, there is a test exponent for M, N. In particular, if (Ng)* =
(N*)o for all associated primeg) of M/N* and ifc is a locally stable test ele-
ment forR, thenc, N, M has a test exponent.

Thus, if tight closure commutes with localization for the géic M at associ-
ated primes of/N* and if R has a locally stable test element, then tight closure
commutes with localization in general for the pairc M.

We postpone the proof until we have established some preliminary results that
make the argument transparent (it is given immediately following the proof of
Theorem 2.7).

ProrosiTioN 2.5. Let R be a reduced Noetherian ring of positive prime charac-
teristic p, and letM be a finitely generate®-module. LetV, N’, and N; (where
i varies in an index s¢te submodules d¥. Letc € R° be a test element.

(@) ¢ = p° is a test exponent far, N, M if and only if it is a test exponent for
¢, 0, M/N.

(b) If ¢ = p¢is atest exponent far, N, M then so is every larger power of

(c) If N € N’ C N*andgq is a test exponent far, N', M, theng is a test expo-
nent forc, N, M. In particular, this holds wheW’ = N*.

(d) If N € N' C N* dis atest element, anglis a test exponent fard, N, M,
theng is a test exponent far, N', M.

(e) If Ny and N, have the same tight closure i and if W is a multiplicative sys-
tem consisting of test elements, thenN;, M has a test exponent for every
choice of test element € W if and only ifc,, N2, M has a test exponent for
every choice of test elemante W.
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(f) If g is atest exponent far, N;, M for every index (the index set may be infi-
nite), if everyn; is tightly closed, and iV = [, N;, theng is a test exponent
forc, N, M.

(9) If Ny, ..., N, are submodules a¥ such that there is a test exponent for each
ofec, N;, M for 1 <i < h, then there is a test exponent far(); N;, M.

Proof. Part (a) is immediate from the definitions of test exponent and tight clo-
sure, while (b) is immediate from the definition of test exponent. In part (c), since
N’ and N have the same tight closure, it follows thayifis a test exponent for

¢, N', M thencu? e N9 for Q > g implies thatcu? € N'19, and sau e N'* =

N*. For part (d): ifg is a test exponent fard, N, M, if Q > ¢, and if cu? e
N9 then (sinceV’ is in the tight closure oV ) we have thatv /(< is in the tight
closure ofN!9l and socdu? e N19l; hence we can conclude thae N* = N'*,

For part (e), we might as well assume thatis the tight closure oiV1; it suffices

to compare each with its tight closure. The result is immediate from the combi-
nation of parts (c) and (d). Part (f) is immediate from the definition, for#

N9 thencu? e N9 for all i, and sou € N; for all i, which shows that € N.

Part (g) follows from (b) and (f): we may use the supremum of the finitely many
test exponents for the variol§. O

ProrosiTiON 2.6. Let R be a reduced Noetherian ring of positive prime charac-
teristic p. Let N € M be finitely generated modules such thatN has a unique
associated primeé, N is tightly closed inM, and Np is tightly closed inMp over
Rp. Letc € R° be any test element fat that is also a test element iRp. Then
there is a test exponent for N, M.

Proof. We first consider the case wheaPas maximal and®R = Rp. Let N, denote
the set of elements e M such thatu? e (N14)F, whereq = p¢ andF indicates
Frobenius closure i[9l = F¢(M). Clearly, N* < N, for everye. We claim
thatN, 1 C N,, forif cu?® < NP4 thenc? uPaa’ e N1Paa'l which certainly im-
plies thatc??' uP24' € N1Pa4'] and this shows that? € N4, as required. Thus,
this sequence of modules is eventually constant, ski¢® has finite length in
this case. But onc®&, = N,,; = ---, the common value must b*, for if u is
in all of these theru? € N197 < N1 forall 0 > p¢ and sac?u? e N9 for
all 0 > p¢, asrequired. Theew? e N4 for g’ > p¢ implies thatu € N, = N*,
as required.

In the general case, note that the hypothesis is stable when we locatizndt
so0, by the case already proved, there exjstsuch thatcu?/1 € Npl?'l implies
thatu/1 € Np. But then, sinceu?’ e N4’ is preserved when we localize Bt
we have that this implies thatis in the contraction oiVy to M, and sinceM /N
is P-coprimary, this implies that € N. O

THEOREM 2.7 (Existence of Primary Decompositions That Respect Tight Clos-
ure). LetR be areduced Noetherian ring of positive prime characterigtiand
suppose thak has a test element. Lat € M be finitely generated modules and
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suppose thaRp has a test elemerge.g., is excellentfor every associated prime
of M/N. Suppose thaV is tightly closed inM and thatNp is tightly closed inVp
for every associated prime of M/N.

ThenN has a primary decomposition i1 in which, for every associated prime
P of M/N, the P-primary component is tightly closed and remains tightly closed
(in Mp, over Rp) after localization atP.

Proof. It suffices to construct such a primary decompositionNerC Mp over
Rp for each associated print of M/N. Take all these submodules df and
contract them tav, with P varying among the associated primes\WfN. (Note
that the contraction of a tightly closed submoduléfyf to M is tightly closed in
M: this is a consequence of the persistence of tight closure, which is automatic
for the flat homomorphisnR — Rp.) When there are several primary compo-
nents for the same prim@ (each tightly closed, each remaining tightly closed
over Ry), intersect them all.

This gives a primary decomposition of with the required properties. To see
that it is, in fact, a primary decomposition, call the intersectén If N'/N #
0 then it contains a nonzero element whose annihilator is an associated prime of
M/N, and this remains true after localizing at that associated prime, which gives
a contradiction.

Thus, there is no loss of generality in assuming tatP) is local, thatP is
an associated prime @ff/N, and that we have solved the problem of construct-
ing suitable primary components after localizing at any of the other associated
primes (by induction on the dimension 8f). Thus, we may give a primary de-
composition overR,, for every associated prim@ strictly contained inP and
then intersect the contractions of all the modules occurring as before. Call the
intersection of these other primary componefkitsThus,H has a primary decom-
position using modules that are (i) primary for the other associated prind¢6f
and (ii) tightly closed and remain so upon localization at the respective associated
primes.

If we localize at any element @t then only the other associated primes remain.
HenceH/N is killed by a power ofP and is a module of finite length.

Now consider the descending chain of submodués- P"M)* = N,,, which
are tightly closed submodules &f containingN. Then(N, N H)/N is contained
in H/N and so the chaitw,NH)/N is eventually stable, which means thgtn H
is eventually stable. Butthe intersection of ftfigis N, becauséV is tightly closed
andR has atest element. (fe N, forall n and ifc is the test element, then for all
g, cud e (N + P'M)ldl c Nl 4 prFe(p), and sinceV14l is P-adically closed
in F¢(M), we have thatu? e Nl for all ¢ and sou € N* = N, as required.)
The stable value a¥, N H must be the same #3,(N, N H) = ([, N.) N H =
NNH=N. ThusN, N H = N forall n > 0, and we may us#/, for any suffi-
ciently largen as the required tightly close#i-primary component. O

Proof of Theorem 2.4For the first statement: by Theorem 2.7 coupled with Prop-
osition 2.6,N is a finite intersection of submodul@g of M such that there is a
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test exponent foe, N;, M; the result is then immediate from parts (c) and (g) of
Proposition 2.5.

For the second statement: choose a test elemeRtasfd, for each associated
prime Q of M/N*, an element oR° that maps to a test element i®p. The prod-
uct will be a test elementof R that is also a test element for eveRy, soc, N, M
must have a test exponent. O

CoroLLARY 2.8. LetR be areduced Noetherian ring of positive prime charac-
teristic p, and suppose thak has a locally stable test element. LétC M be
finitely generatedRr-modules and assume in addition that there is a submodule
N’ € N*such thatNé = Ny at all associated primeg® of M/N* and the tight
closure of N’ does commute with localization. Then the tight closur&y afom-
mutes with localization.

Proof. By Theorem 2.4, it suffices to prove th@/*), = (Np)* for all primes
Q that are associated tg*. Fix such aQ. Then(Ng)* = (N,)* = (N"")g C
(N*)g. O

CoroLLARY 2.9. LetR be areduced Noetherian ring of positive prime charac-
teristic p and suppose thak has a locally stable test element. Suppose that

R is generically, a complete intersectigne., there is an ideal’ generated by

a regular sequence such that = I, for every minimal primeP of I') and that

I* has no embedded primes. Th@iy)* = (I*)y for all multiplicatively closed
setsw.

Proof. This follows immediately from Corollary 2.8 and the fact that localization
commutes with tight closure for ideals generated by regular sequences (see [HH5,
Thm. 4.5]). O

RemARrk. Corollary 2.8 can be combined with numerous other theorems on when
tight closure commutes with localization to give other results similar to Corol-
lary 2.9. For example, iR is a domain of acceptable type in the sense of [AHH,
p. 87] (a mild condition satisfied by homomorphic images of Cohen—Macaulay
rings and by algebras essentially of finite type over an excellent local ring), then
in Corollary 2.9 we need only the ide&l to be of heightd and generated by
elements (cf. [AHH, Thm. 8.3b, p. 112]). Note thatifis not a domain then the
result is valid if one has the required hypotheses modulo every minimal prime.

CoroLLARY 2.10. LetR be areduced Noetherian ring of positive prime charac-
teristic p with a locally stable test element. {fiy)* = (J*)o for every primary
ideal J with radical Q, then(Iy)* = (I*)yw for every ideall such that/* has no
embedded primes and for every multiplicatively closediset

Proof. First note that the hypothesis implies thdty)* = (J*)y for every pri-
mary idealJ and for every multiplicative sew.

Fix an arbitrary ideall with 7* unmixed. LetQs, ..., Q, be the associated
primes of/*. These are the same as the minimal primespand since and/*
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have the same radical, they are precisely the minimal primds bét J; be the
primary component of corresponding t@;. Since theQ; are minimal overl,

this component is uniquely determined. By Theorem 2.4, itis enough to prove that
(I*)g, = (Ip,)* for eachQ;. We have thatly,)* = (J)e,. It suffices to prove
that J* € (I*)p,, for then(Ip,)* = (J¥)o, € (I*)p,. Choosex € I : J; such
thatu ¢ Q;, and letx € J*. For somed € R° and for all largey, we havedx? e
(J)lal. Multiplying by u¢ gives thatd (ux)? € 19, proving thatux € I* andx €
(I*),, as required. O

Discussion 2.11. LetR be a reduced Noetherian ring of positive prime charac-
teristic p. Given the results of this section, it is natural to ask how the associated
primes of/ € R and of/* are related as well as how, more generally, the asso-
ciated primes oM /N andM/N* are related whetV C M, a finitely generated
R-module. Note that although the minimal primes are the same, there is, in gen-
eral, no comparison, in either direction, for the other associated primes. The ex-
amples that follow will show this even in the case of ideals. (Note: To see that
a minimal primeQ of M/N is still in the support of¥//N* we may localize at

that prime, sinc€Ny)* O (N*),, and then use the fact th@? /N ), if nonzero,
maps onRy/QRy.) Embedded primes df may fail to be associated primesif

and embedded primes 6f may fail to be associated primesiofin Example 2.12,

I has the maximal ideal as an embedded prime/butoes not; in Example 2.13,

I is unmixed butZ* has the maximal ideal as an embedded prime.

ExampLE 2.12. LetR be a normal, 3-dimensional local ring of positive prime
characteristic that is not Cohen—Macaulay. (For definiteness, one may take the
Segre product of a homogeneous coordinate ring of an elliptic curve, e.g.,
K[x,y,z]/(x3+ y3 +z%), with K afield of positive characteristic different from

3, with K[u, v], a homogeneous coordinate ring 1@ and localize at the irrel-
evant ideal, i.e., at the unique maximal homogeneous ideal.)fLetbe part of

a system of parameters. SinBas not Cohen—Macaulay, the maximal ideal is an
embedded prime df = (f, g) R. By the colon-capturing property of tight closure
(see e.g. [HH6, Thm. 1.7.4]), a third parameter fors not a zerodivisor od*

and so the maximal ideal @ is not an associated prime bf. There are similar
examples in all dimensions.

ExampLE 2.13. LetK be afield of positive prime characterisgic£ 3. Take
R=K[X,Y, U V]/(X334+ U+ V3 =K][x,y,u,v].

ThenR is geometrically normalp # 3) since the partial derivatives of the defin-
ing polynomial include 82 and 3/2, which form a regular sequence in the ring.
Let I = (u, v, x°)R. By the persistence of tight closure (cf. the last paragraph of
Section 2.1) and the fact that is in (u, v)* in K[z, u, v]/(z% + u® + v°®) (see e.g.

the beginning of Sec. 4 in [H1]), we have thaty? is in the tight closure ofu, v)

and hence if*. Now R/I is isomorphic withK [x, y]/(x2) and sol is unmixed;

I* containsx?y?, so that bothy? andx multiply x2 into 7* (as well as« andv,

of course). This will show thak /I* hasm = (x, y, u, v) as an embedded prime,
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provided thatc? is not in 7*. But this is true even if we kill, v, andy, and tight
closure persists under homomorphisms for affine algebras (cf. once again the last
paragraph of Discussion 2.1).

We next observe that if tight closure commutes with localization after a faithfully
flat extension then it commutes with localization.

ProrosiTiON 2.14. Let R be a reduced Noetherian ring of positive prime charac-
teristic p such thatR has a completely stable test element. Ret- S be faithfully
flat, and letN € M be finitely generate®-modules. LeW be a multiplicative
system inR. If tight closure commutes with localization for the pdiR;z N C

S ®r M and the multiplicative system that is the imagé&ioin S, then it com-
mutes with localization for the pai¥ € M and the multiplicative systef.

Proof. It suffices to show that, i € M is such that:/1 is in the tight closure of
Nw in My, thenu isin (N*)y. Butthen I® u is in the tight closure ofy @z N

in Sy ®r M over Sy, by the persistence of tight closure (this is trivial in the flat
case), and by our hypothesis this implies thatilis in (S @ N)* in (S @r M )*
overS. This implies that is in N*, by [H2, Cor. 8.8, p. 143]. O

REMARK 2.15. The conclusion of Proposition 2.14 is valid under a substantial
weakening of the hypothesis on the homomorph8m> S. Instead of being
faithfully flat, it suffices if it preserves height (in the sense of conditignof

[H2, Cor. 8.8]) and persistence of tight closure holds. The proof is the same.

CoroLLARY 2.16. Let R be areduced ring and& a field such thaR satisfies at
least one of the following conditions

(1) R isfinite type oveK;

(2) R is essentially of finite type ovés;

(3) R is an excellent local ring with residue fiek;

(4) R is of finite type over an excellent local ring with residue figld

(5) R is essentially of finite type over an excellent local ring with residue feld

ThenR has a faithfully flat extensiofi that satisfies the same condition but such
that K is uncountable and-finite and, in case§3)—(5),such that the local ring
is complete.

Hence, the question of whether tight closure commutes with localization for any
of the rings in the five classes just described can be reduced to a corresponding
case where the ring contains an uncountable field ané-finite and, in cases
(3)—(5),where the local ring is complete as well.

Proof. The last statement follows from the next-to-last statement by Proposition
2.14. We may trivially replace the local ring by its completion in (3)—(5). The
statements about rings essentially of finite type follow from the corresponding
statements for rings of finite type. In cases (3)—(5) choose a coefficient field, and
let L be a field obtained by adjoining uncountably many indeterminates to it (or
simply to K in case (1)). Replace the local ring by its complete tensor product
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with L in cases (3) and (4). One may then uselttenstruction of [HH5, Sec. 6]

to make an excellent, faithfully flat extension of the local ring such that the res-
idue field is F-finite, without losing the property that its tensor product with

over the original local ring is reduced. Finally, one may replace this local ring by
its completion. Case (1) is simply the special case where the local ring has dimen-
sion 0. O

Note that there are several implications among the conditions listed in Corollary
216 (e.9.(5 = 4 = (3 and(d) = (2) = (1). We have stated the result as
we did because it contains the information that, whichever one of these conditions
holds,that particular conditioncan be preserved as one modifie$o contain an
uncountable field.

REMARK 2.17. LetR be any ring containing an uncountable fiédldand let/ be
a finitely generated ideal @t. Let {/, : n € N} be a countable family of ideals of
R whose union contains Then/ is contained in one of,,. To see this, leV be
the finite-dimensionak -vector space spanned ovErby a finite set of genera-
tors forl. ThenV is covered by the vector spacksasn varies, and it suffices to
show that one of these Ig for if V C I, thenI C I,,. Thus, we have reduced to
a question purely about vector spaces. But the result for vector spaces is clear if
the dimension oV is at most 1, and it follows at once by induction from the fact
thatV has uncountably many mutually distinct subspaces of codimension 1, each
of which (by the induction hypothesis) will be contained in at least one of the
It follows that at least two of these are contained in the samand this forces
VCcli,.

Thus, if a Noetherian rin® contains an uncountable field and if the idéa$
not contained in any of the countably many ideBlsthen’ has an element that
is notin any of the,,. If this property holds when thg, are prime, we say that
hascountable prime avoidance.

When coupled with Corollary 2.16, this discussion shows that, in the main cases,
the question of whether tight closure commutes with localization reduces to the
case where the ring has countable prime avoidance. We assume countable prime
avoidance in the main result of Section 4.

REMARK 2.18. We also want to remark that every Noetherian #ngf positive
prime characteristip has a faithfully flat Noetherian extension containing an un-
countable fieldk. For any ringR, if T is a set of indeterminates then IRtT)
denote the localization of the polynomial ri®i 7] in these indeterminates at the
multiplicative system of all polynomials whose coefficients generate the unitideal;
R(T) is easily seen to be faithfully flat ove&®. Evidently, if R contains any field
K (e.9.Z/pZ) thenR(T) containskK(T), and so ifR has characteristip andT
is uncountable theR(T') contains the uncountable fiekl(T). But, for any Noe-
therian ringR, S = R(T) is Noetherian.

(Itis easy to see that expansion and contraction gives a bijection between maxi-
mal ideals ofR and those of. It suffices if every primeP of S is finitely generated.
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Let W run through the finite subsets Bfand letPy, denote the contraction df
to R(W) C R(T). ltis clear thatR(W) is Noetherian and so eachy is a finitely
generated prime ideal &(W). Now Py S is prime inS, sinceS is obtained from
R(W) by adjoining indeterminates and localizing, akglS € Py Sif W C W’'.
The primeP is the union of thePy S asW varies. We claim thaPy S = P for
any sufficiently large choice dV. The point is thatP is contained in a maximal
ideal of S, saym S, wherem is a maximal ideal oR with, say,n generators. Then,
for all W, mS lies overm R(W), which has height at moat From this it follows
that if one has a chain of the fory,S C --- C Pw, S in which the inclusions
are strict, ther < n, since the inclusions will also be strict fy,,R(W) C --- C
Py, R(W) for some sufficiently largéV > W,,, and this contradicts the fact that
mR(W) has height at most.)

REMARK 2.19. We note that, by [B, Lemma 3], countable prime avoidance holds
in any complete local ring.

3. Necessary and Sufficient Conditions for Localization

In this section we give another necessary and sufficient condition for the tight clo-
sure of an ideal to commute with localization. Seveuaficientconditions have
been given in previous papers. Most notable among these were that tight closure
commutes with localization provided that the following two conditions hold (cf.
[K1; K2]):
(1) for every ideall, the union, ovey, of the sets of maximal associated primes

of (7l4h)* is a finite set;
(2) for every prime idealP, there exists a positive integérsuch that, for all

q=p°

PYHRR/((I)")p) = 0.

However, these conditions are not known to be necessary. In Theorem 3.5 we
give a pair of conditions that characterize precisely when tight closure commutes
with localization for an ideal. Conditions like ourC2*) discussed in the sequel
are clearly weaker than condition (2) above. Our conditiof is reminiscent of
condition (1) above in that it asserts the finiteness of certain sets of primes, but it
is not immediately apparent how to compare it to (1) directly.

Several preliminaries are needed before stating our main result, Theorem 3.5.
In particular, we need to identify certain sets of prime®inthese are character-
ized by several equivalent conditions in the next result.

ProrosiTION 3.1. Let R be a reduced Noetherian ring of positive prime charac-

teristic p with at least one locally stable test element. Lef R andx € R be

fixed. Then the following conditions are equivalent for a prime idgal

(1) For some(equivalently, eveiylocally stable test elemente R°, Q is mini-
mal over infinitely many of the ideal$? : cx?.

(2) For some(equivalently, eveiylocally stable test elemente R°, Q is mini-
mal over/l9]l : cx for all g > 0.
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(3) For some(equivalently, eveiylocally stable test elemente R°, Q is mini-
mal over infinitely many ideald [9)* : cx9.

(4) For some(equivalently, evefylocally stable test elemente R°, Q is mini-
mal over(Il9))* : ¢x4 forall ¢ > 0.

(5) x ¢ (Ip)* andx € (Ip)*forall P C Q.

Proof. Fix a single locally stable test elementIt will suffice to show that the
conditions in (1)—(4) are equivalent to the condition in (5) for that one choieg of
since (5) does not refer to Thus, throughout the rest of the proofis a fixed lo-
cally stable test element and, when we refer to conditions (1)—(4), we are referring
to them for that single fixed test element

Clearly (2) = (1) and(4) = (3).

We next prove that:

(%) If Qis minimal overI[4! : ¢x4 foralli > 1 then itis minimal ove(/l)* :
cx? foralli > 0.

Once we have shown this, it follows at once ttt= (4) and(1) = (3). Hence,

once we establishk), we need only show thab) = (2) and(3) = (5) to com-

plete the argument.

Suppose thatx) is false. Since 4] : cx% < (rlady* : cx% Q will be min-
imal over every(Il41)* : ¢x4 that it contains. Suppose thé does not contain
(Italy* : cx4 for infinitely manyi. After localizing atQ, we have thatx% e
((I'91y%) 5, which implies that2x% e (1141), for infinitely manyi. This shows
thatx € (Ip)* (cf. [HH2, Lemma 8.16, p. 79]). But thenx? ¢ Ig’] for all largegq,
provingZ! : cx? ¢ Q forall largeq. This contradiction finishes the proof 6f).

Next we prove that3) = (5). SinceQ is minimal over infinitely many of the
ideals(719))* : cx4, it follows that Q contains infinitely many of the ideald4 :
cx? and hence ¢ (Ip)*. Let P C Q. After localizing atP, the assumption guar-
antees thatx? e ((1141)*), for infinitely many values of, forcingc2x4 € (114]),
for the same values @f. As before (cf. [HH2, Lemma 8.16, p. 79]), this implies
thatx € (Ip)*.

Finally, assume (5). First observe th@imust contain/[9] : cx? for all ¢ > 0.

If not, then (after localizing af) we obtain thak € (Iy)*, a contradiction. Next,
suppose thaP C Q. By assumptiony € (Ip)*; this means that, for alf, there
exist elementsv, ¢ P such thatw,cx? € 119, Then7ll : cx? ¢ P forall g. It
follows thatQ is minimal over/ 4] : ¢x? whenever it containgle! : ¢x4. O

DEeFINITION 3.2. LetR be areduced Noetherian ring of positive prime character-
istic p having at least one locally stable test element. Let R be an ideal, and
let x € R. The primes satisfying the equivalent conditions of (3.1) we calkthe

ble primes associated tbandx, and we denote b¥; (x) the set of stable primes
associated téd andx. Let7; = ., T;(x).

XeR

For a fixed ideal we consider the following two conditions:

(CD for everyx € R, the setT;(x) is finite;
(CI*) the setT; is finite.
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For a fixed ideal and locally stable test elementwe also consider the following
two conditions:

(C2) foreveryx € R, if Q € T;(x) then there exists an integaf, possibly de-
pending onQ, such thatp ¢ c (1191 : cx ), for all ¢ > 0;
(C2) for everyx € R, if Q € T;(x) then there exists an integat, possibly de-
pending onQ, such thatQ ™7 c ((1l41)* : cx9), for all g > 0.
We shall soon use these conditions, in Theorem 3.5, to characterize precisely when
tight closure commutes with localization fbrC R. However, we need some pre-
liminary results, as well as some new notation and terminology.
By asquarelocally stable test elementwe mean one such that= d?, where
d is alocally stable test element. For technical reasons that stem from Proposition
3.3(d), it is often advantageous to work with a square locally stable test element.
We denote by/J the radical of the ideal and by Min(J) the set of minimal
primes ofJ.

ProrosiTiON 3.3. Let R be a reduced Noetherian ring of positive prime charac-
teristic p with a locally stable test element. LEte an ideal ofR, and letx be
an element oR.

(a) A prime idealQ of R has the property that ¢ (IRp)* (in Ryp) if and only
if Q contains an ideal irfil; (x). Hence, if localization commutes with tight
closure forl C R, thenT;(x) is the set of minimal primes df : Rx and
consequently, in this cas#; is the set of associated primesidt In partic-
ular, if I € R is such that localization commutes with tight closure, then all
of the setd; (x) and ever; itself are finite.

(b) Tr(x) = T+ (x) andT, = T}«

(c) It W is a multiplicative system iR, then the elements df}, (x/1) (resp.,
T;,,), working overRy, are the expansions of those primesTir{x) (resp.,
T;) that do not meeWw.

(d) If ¢ is a square locally stable test element then the sequefidd : cx¢ is
nonincreasing ag increases. Hence, i € Min(714'1 : cx4) and 114! :
cx? C Q for someg < ¢, thenQ e Min (114] : ¢x ).

(e) If ¢ is a square locally stable test element aRds a minimal prime of 4] :
cx?, then P contains an element df; (x).

(f) If ¢ is a square locally stable test elemefi(x) is finite, andg is so large
that all elements off; (x) are minimal over/!4] : ¢x4 (which is true for all
g > 0), then the minimal primes afl?! : cx? are precisely the elements of
Tr(x) and V14 2 cxd = (N pep ) P-

(9) T;(x) = @ifand only ifx € I'*. Moreover, ifc is a test element then the con-
dition that7[9] : cx9 = R for all ¢ > 0 (resp., for allg) is also equivalent.

Proof. (a) Given any primeP such thatx ¢ (IRp)*, every larger prime&) has the
same property, since there is a flat homomorphign— Rp and tight closure is
persistent. Sinc& has DCC on prime ideals, every such prime contains a mini-
mal such prime. But the minimal primes with this property constifiie), by
part (5) of Proposition 3.1. The other statements in (a) are immediate.
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Parts (b) and (c) follow at once from the characterizatiol;¢k) in part (5) of
Proposition 3.1.

For part (d), letc = d? whered is a locally stable test element. It suffices
to prove that/I[rdl : cxpa € A/Ildl : cxa. Let 119 : cx? € P and assume that
[lpdl : cxPd ¢ P. Thend?xP? e If[,q’]. Hence(dx4)? e (I[q])},"] and it follows
thatdx? € (I'9)p)*. In particulard2x? € (11¢))p, which means thatle! : cx¢ ¢
P—a contradiction. This proves the first assertion.

The second statement is immediate from the first. Suppos@thatlin (71 :
cx?)yand1ll ; ex4 C Q for someg < ¢'. If Q is not minimal over/[4! : x4,
then there is a prim@ such that/[4 : cx? € P € Q with P # Q. Then, from
the first part,P must also contaiil?’! : ¢x¢" and soQ cannot be minimal over
1191 : x| either.

To prove (e), fix a minimal prim@ = Py of J, = 119 : cx4. SinceP 2 \/J,,,
it contains a minimal prime?; of J,,. Continuing in this way yields a sequence

Py2 P12---2 P2

such thatP; is a minimal prime of/,,: for everyi. Since the prime ideals of a
Noetherian ring have DCC, we can choassuch that?; = P, for alli > n, and
it follows that P, is in T; (x) and is contained iP.

Part (f) is immediate because, once all of the finitely many prim&%(in) are
minimal primes off 4] : cx?, part (e) shows that there cannot be any others.

To prove (g), note that we have by part (f) thaZjf(x) = ¢ and if one con-
sidersJ, = 14 : cx4 using a square locally stable test elemerthen the set of
minimal primes ofJ, is empty for allg. This means that every, = R, which
says thatx? e 114 for all ¢, and this implies that € I*. The other direction is
clear. The last two conditions quite generally characterize whe* for c a test
element. O

Let R be a reduced Noetherian ring of positive prime characteristlet I be an
ideal of R, and letx, y € R. Let P be a prime ideal iff; (x). We shall say thap
clearsP fromT; (x) if P isnotinT;(xy). We shall say that the idedl C R clears
P from T; (x) if every element of/ clearsP from T;(x).

The following result gives some basic facts about clearing. Part (g) is a bit dif-
ferent (though analogous) and will be needed in Section 4.

LemmMma 3.4 (Clearing Lemma). Let R be a reduced Noetherian ring of positive
prime characteristig, let I be an ideal ofR, and letx, y € R. Letc be a square
locally stable test element fat.

(@) y clearsP e T;(x) if and only ify9/1 e (119 : cx9)p for all ¢ > 0. Hence,
the set of all elements &fthat clear P from T; (x) is an ideal contained irP.

(b) Condition(C2) or (C2*) for I andc implies that every prime of T;(x) has
a power that clears? from 7; (x).

(c) Suppose thaPs, ..., P, are finitely many primes of; (x) such that eactp;
has a power that clear®; from 7; (x). Let Q be a family of primeg); none
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of which contains any of the;. If the family Q is finite then there is an ele-
menty of (), P/ for large N not in any of theQ; that clears all of theP;
from T; (x).

(d) With hypotheses as (&) except that the famil@ is countable, the same con-
clusion holds provided thak has countable prime avoidance.

(e) Suppose thal;(x) and 7; (xy) are finite. Therp.z, ) P S Nperyoy) P
and, ify clears at least one element @f (x), the inclusion is strict.

(f) Every prime inT; (xy) contains a prime irf; (x).

(g) Let(R, m) be local and let € R be such that is not in an associated prime
of 119 except possibly: andzH (R /1191y = 0 for all g. Then, for allu € R
and allg, m is not an associated prime & : uz4.

Proof. (a) The condition thaP not be inT; (xy) is simply thatP not be a mini-
mal prime of 74l : ¢(xy)? for g > 0; sinceP is minimal over/[9] : cx? (which

is smaller), this is equivalent to saying thatdoes not contaiill : c(xy)? for

g > 0 (i.e., that(Z1] : cx7y?)p = Rp for ¢ > 0), which holds if and only if
y9/1e (19 : cx?)p for g > 0. The second statement is then obvious.

Part (b) for conditionC2) is immediate from the definition. We may ugez*)
instead, becausE«(x) = T;(x) and T;«(xy) = T;(xy). Parts (c) and (d) are
obvious.

The first statement in (e) follows from the fact that7if(z) is finite then
Nper, P = VI cz for all sufficiently largeg by Proposition 3.3(f), taken
with the obvious inclusior 4] : ¢x? c 114l : cx9y4. The final statement is then
obvious.

For part (f), note that any prim in 7; (xy) contains the radical afl) : ¢(xy)¢
for someg and that this contains the radical B! : cx?. HenceP contains at
least one minimal prime ofl) : cx?, and each of these contains an element of
T;(x) by Proposition 3.3(e).

For part (g) suppose thatis associated t6l4! : uz%, and choose ¢ 114 : uz¢
such thainy € 19 : uz9, thatis,mz%yu C I'9. Sincez? is not in any associated
prime of 119! exceptm, it follows that if we take a primary decomposition B!
thenmyu is in the intersectior’ of the primary components for primes other than
m. Sincel’/1'9) is supported only at, it follows thatmyu is killed by a power of
m. This shows thayu represents an element i°(R /119 and soz%yu C 1191,
thatis,y e 119! : uz?, a contradiction. O

With these preliminary results, our characterization becomes straightforward.

THEOREM 3.5. Let R be a reduced Noetherian ring of positive prime character-
istic p with a square locally stable test elemer# R°, and let/ € R be anideal.
Then the following statements are equivalent.

(1) (Iw)* = (I'*)w for all multiplicatively closed set¥ in R.
(2) Condition(C1) (or (CI*)) holds forI and condition(C2) (or (C2*)) holds
for I andc.
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Proof. We have already observed that (1) impli€s*), which obviously implies
(CD: see Proposition 3.3(a). Thus, we may ignore the parenthetical comment
about(C1*) in the proof.

Assume (1) and suppose thate 7;(x). ThenQ is a minimal prime of/* : x
and so we can chose>>> 0 such thatD” C (I* : x)g, thatis,Q"(x/1) € (I*)e.
Then, for allg, c(Q™)¥lx4 Ig]], thatis, (@™ C (119 : cx9),. If t exceeds
the number of generators ¢f”, then(Q")"“ < (0™ and so(C2) holds with
N = nt. Hence (1) = (C1 and(C2). Now (C2*) is obviously weaker tha(C2)
and so to complete the proof it suffices to show @) and(C2*) together im-
ply (2).

We assume otherwise and derive a contradiction. We may assum#@ that
R — Q for some prime idea® by the results of Section 2 (or using the result of
[AHH, Lemma 3.5, p. 79]). Suppose thate (Ip)* butx ¢ (I*)o. We may as-
sume thatr € R. By Noetherian induction, among allgiving a counterexample
there is one such th@l) .., ,, P is maximal. By Proposition 3.3(g), sinae¢
I** this is not the unit ideal; that iy (x) is not empty. LetP € T;(x) be any ele-
ment. ThenP is not contained irQ, by Proposition 3.3(a), sincee (Iy)*; using
(C2*), we know from Lemma 3.4(b) tha®" clearsP from T;(x) for large N.
Thus, we may choosge PV — Q such thaty clearsP from T;(x). Sincey is in-
vertible in Ry, we still have thatcy ¢ I*Ro while xy € (IRp)* is clear. But the
intersection of the primes ifi; (xy) is strictly larger than the intersection of those
in T; (x), by Lemma 3.4(f), and this contradicts the hypothesis for the Noetherian
induction. O

REMARK 3.6. LetR be asin Theorem 3.5, and suppose that condit) holds
in R but that localization fails to commute with tight closure fo€ R. The proof
of Theorem 3.5 evidently shows that conditi®1) fails for 7 andx such thatx €

(Ip)* — (I*)o for some primeQ of R.

4. Growth of Frobenius Images and Localization

In this section we focus our attention on the behavior of certain functions related to
the Hilbert—Kunz function that we believe control the localization of tight closure
in the local case. We shall informally say that “localization holdsR8means
that tight closure commutes with localization for all idealsRof

As observed at the end of Section 2, to settle the localization problem for, say,
excellent reduced local rings, it suffices to handle the complete case; we may even
assume that the ring is complete with an uncountable residue field. Because lo-
calization holds if it holds modulo every minimal prime, it is sufficient to prove it
for the case of a complete local domain.

A complete local domai® is module-finite over a complete regular local ring
A with the same residue field. For sufficiently largethe extension of fraction
fields corresponding to the inclusiof’¢ < AY4[R] will be separable. If we
know that localization holds foAY/[R] then it holds forR, by Proposition 2.14
as extended in Remark 2.15.
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Therefore, it is reasonable to study the problem of localization of tight closure
for a local domaink module-finite over an excellent regular local riagand such
that the extension of fraction fields is separable; we shall call such extensions
generically étale Since the case where the ring is complete implies all of the most
important local cases, little is lost by assuming that countable prime avoidance
holds. Likewise, as we shall see in Section 4.2, we may as well assume that there
is a strong test ideal.

We shall attack the problem of localization in this situation in the main result,
Theorem 4.5, of this section. Our goal is to show that, in a “minimal example”
of the possible failure of tight closure to commute with localization and in the
presence of a certain boundedness condition on behavior of local cohomology, lo-
calization becomes equivalent to an assertion about the asymptotic behavior of
lengths of certain sequences of modules defined in terms of iterates of the Frobe-
nius endomorphism. The length conditions, surprisingly, replace the finiteness
conditions on the setg (x) discussed earlier.

We need several preliminaries.

DEeFINITION 4.1.  LetR be areduced Noetherian ring of positive prime character-
istic p. If (R, m) is local then we shall say that condition (LC) holds foif, for
every idealJ, there is an integeN such thatnV*HO(R/J1) = 0 for all g (ev-
idently, if one knows this for aly > 0, it follows for all g after enlargingV if
necessary).

If 1, x and a locally stable test elemenare fixed, then for eact € 7; (x) we
define

MR (I[q]; 7))
rg(Q) = Q/qdim(RQfx g,

wherex denotes length (in this case, over the local rRyg).

DEFINITION AND DiscussioN 4.2.  LetR be a reduced Noetherian ring of posi-
tive prime characteristip, and letJ be an ideal ofR; J is calleda strong test

ideal for R if J meetsR®, andJI* = JI for every ideall of R. The main result

of [Hu2] shows that there is such an idgalwhich is also a defining ideal for the
singular locus in Speg, provided that for every minimal prim& of R, the sin-
gularities ofR /P can be resolved by blowing up an ideal that defines the singular
locus. If blowing up such dj resolves the singularities, then any high power of

Jo will be a strong testideal. Such ideals are not unique, although there is a largest
one.

By a very recent result [V1], iR is a reduced local ring of positive prime char-
acteristicp such thatR has a completely stable test element, the@Rifm) is
complete or if the test idealis m-primary (and in many other cases)is a strong
test ideal!

Suppose that one has a strong test idealith generatorsjy, ..., jr. Then,
for every ideall, if u € I* thenuJ C IJ and we obtain the equationg, =
Zf:lix,,j,. The usual determinantal trick for proving integral dependence on an
ideal shows that is integrally dependent ohusing an equation of degréesince
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u is an eigenvalue of the x k matrix (i ;). This gives an extremely useful uni-
form bound on the degrees needed for equations displaying that elements in tight
closures of ideals are in the integral closure of the ideal.

We refine the determinantal trick slightly. Suppose thahdu are elements of
adomainR and that/ # 0 and!l’ are ideals suchthdic € J(Rv+1') = Jv+JI'.
Then we obtain that is an eigenvalue of & x k matrix of the form(r; ;v +i; ),
where ther; ; € R and thei; , € I'. Let V be a new variable. The characteristic
polynomial of(UI — (r, ;V +ij ;)) may be expanded as a polynomial of total de-
greek in the variabled/ andV that is monic inU; the terms of degree smaller
thank have coefficients id’, which can be readily seen by thinking modulo
Thus, the characteristic polynomial yields a degke@smogeneous polynomial
P(U, V) with coefficients inR, monic inU, such thatP(u, v) € I'.

Before proving our main theorem, two preliminary lemmas are needed.

LeEMMA 4.3. Let R be a reduced ring of prime characteristi module-finite
and torsion-free over a regular domaifi. Let F be the fraction field oA and
suppose thaf ®4 R is étale(i.e. separablgover F; that is, suppose is gener-
ically étale(or smooth overA.

(a) Forall g, AY[R] = AY? ®, R is flat overR. Moreover, there exist elements
d € A° such thatiR € A[R”] (equivalently, takingth roots, d¥?RY?P C
AYP[R]).

(b) If d € A° is chosen so thatR € A[R?], then

da~YaRYa c AY4[R] forall g > 0.

(c) If c € A°is chosen so thatR € A[R”] (see(a))then, for every ideal of R
and allg, ¢’, we have that

(][qq’] ‘R cxlitl’) NAC (][fJ'] ‘R qu/)[q].

(d) If d € A is such that/RY4 < AY4[R] then, for allg’, d4(1'94'1 ; x99y C
([[q’] ;xq’)[q].

(e) Suppose, moreover, th& has a strong test ideal with k£ generators. Sup-
pose thatd € A° is such thatdR € A[R”]. Letc = d*, and letc’ € R°.
Assume that there is an integhr> 0 such that’'m™4 C (y9) + (114! ;g x9)
for all g > 0. Then there exists an integér > 0 such that, for all largey,
mNa < (y4) + (119 g ex9).

Proof. Both statements in part (a) follow from Lemma 6.4 of [HH2, p. 50] and
the discussion that immediately precedes it, where it is shown tleat ifA° is
such thatr, is étale overA,. thenc has a power; such that;RY? < AYP[R].
We may then take = c?.

(b) Writeg = p". Leth, = 1+ p + --- + p"~1)/p". We use induction on
to prove that?"«RY4 < AY4[R]. The case: = 1is immediate. Assume the re-
sult for n and takepth roots; this yieldsi"»/?RY» < AYar[RYP]. Multiplying
by d¥/? gives that
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dFmpRYar . AYar[ AVPIR]]

(using then = 1 case). Sinc€ + h,)/p = h,,, we have completed the inductive
step. Finally, - p+--- 4+ p" 1= (¢ - 1/(p —1) < g — 1, whereqg = p".
(c) Leta € 1194’1 : ¢x494" be in A as well, so thaticx?4’ € 1199']| and takegth

roots to obtain
MagYayd ¢ [la'1RYa

It follows from part (b) that@—2/4RY4e c AY4[R] and sau¥9cx? € 1141 AV4[R].
From the flatness of¥¢[ R] over R we then obtain that'/ € 114’1 : cx4' (since
acA,a"1 e AY1 C AY4[R]), and now we may taketh powers to get the stated
result.

(d) If ux9" e 1149'l then takinggth roots yields thau'4x? e 1l¢'1RY4,
Multiplying by d then shows thatlu¥?x4" e 114'1AY4[R] and so, withB =
AY4[R], we havedu'4 e 119'1B :5 x9'B; thisis (1141 :x x9")B becauseB is
flat overR, sodu e (114'1 :x x7")AY4R. Takingqth powers yields the desired
result.

(e) Consider an arbitrary element m. Forg > 0 and any;’, we may replace
g by gq’ and thus:'z V44" e (y44'y 4+ (11941 :, x94"). Multiply by d¢ to obtain

dic'zNe1 C (q@9y9y + d((11997  x19"y < (@9y99"y + (1191 ; x 9l
where we are using (b) to show that, by (d),
aq(qlaa’l : xaa'y c (pla’l : yaylal,

Sincec'(dzV4')? C (dy?')? + (114'] : x7")ld] for all ¢’ and all sufficiently large,
we have thatiz V' € ((dy?') 4+ (1141 : x4"))* for all ¢'.
Because/ is a strong test ideal,

JdzN e J(dy?y + J(al  x 7,

As in the final paragraph of Section 4.2, this yields th&iz"V', dy?") e (1147 :
x4, whereP(U, V) = U* + riU*'V + ... 4+ r,V¥ is a homogeneous polyno-
mial of degreek in two variables oveR monic inU. Factoring outd* = ¢, we
obtain that P(zV', y7')y e (1141 : x4") and hence thaP(z"?', y4') e 1141 : cx?'
for all ¢'. It follows thatz V%" € (y?') 4 114’1 : cx? for all ¢’. SetL equal tok
times the minimal number of generatorsof*. Thenm™-4" € (m"%)l4'l and so
mNLa' c (ya"y + 114']: cxd forall ¢’ O

LeEMMA 4.4 (Push-up Lemma).Let (R, m) be an excellent local domain of pos-
itive prime characteristicp, let I € R, and letx € I. Lety be an element of
R that is not in any associated prime, with the possible exceptian aff either
(I + xRl or 19 for anygq. Let P be a prime ideal irf; (x) of least height,
andletJ = I + yR. If h <dimR — 2, then every minimal prim@ of P + yR
isin T;(x).

Proof. Let ¢ be a square locally stable test element. It suffices to prove@hat
containsJl9! : cx? for all largeq because, if so, then sing@ is minimal over
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P + Ry it will have to be minimal over[9! : cx as well. To see this, note that if
Q' C Q strictly is a prime containing!! : ¢x¢ then Q' will contain some mini-
mal prime over/ 14! : ¢x4, and thenQ’ will contain some prime&2” in 7; (x). But
the height ofQ” is at least: and the height ofD’ is at mosth, soQ’ = Q" is
forced. Buty € Q’ then gives a contradiction, ass not contained in any associ-
ated prime off [ except possibly:. Assume that) does not contain(/, y)l! :
cx?). Thenex? € Jg” in Ry, and we can writex? — r,y? € Ig” for somer, €
Ro. Once we have localized @, which is properly contained im, y is not a
zero divisor on(/ +xR)!, since itis outside the associated primeslof xR)]
other thann. We therefore obtain that € (114 + x%),. Thus, for some, € Ry
there is an equation

xUc—s4y) € I([?q].

This implies thatx € (Ip)*. (It suffices to work modulo a minimal prime of the
completion to check this, and we may apply [HH3, Thm. 3.1]; the point is that the
gth root of the image of — s,y will have order approaching 0.) But thene
(Ip)*. SinceP € T;(x) this is a contradiction, which proves th@te 7;(x). O

We are now ready for the main result of this section.

THEOREM 4.5. Let (R, m) be a local domain, with countable prime avoidance,
that is module-finite and generically étale over an excellent regular local Aing
Suppose thaR has a strong test ideal # 0 with k generators. Suppose also
that, forall P # m, Rp has the property that the tight closure of ideals commutes
with localization. Furthermore, assume thRitsatisfieqLC) (see Definition 41
Fix a square locally stable test elemerthat is thekth power of an element of°
multiplying R into A[R?], as in Lemma 4.3(e). Then the following are equivalent
(1) tight closure of ideals irR commutes with localizatign
(2) for all ideals 7 and all x € R, there exists am > 0 such that, for allQ €

Ti(x), ,

g, 1, x, Q) = M(Ro /(' : cx)g)) > g™ *O)

forall ¢ > 0.

Proof. We first prove(l) = (2). Assuming (1), Theorem 3.5 gives us that
T;(x) is a finite set. Hence it suffices to prove that, for a fix@de 7;(x),
liminf, 1,(Q) > 0.

Let u denote the number of generatorsiofis anA-module. SetP = QN A,
and letW = A — P. Lets be the degree of the residue field extensiBp [OR, :
Ap/PAp]; note that, folRp-modules, length ovet » is s times the length oveR,.

Sincex ¢ (Ip)*, we can choosg’ such thatx? ¢ Ig’/]. Then:
sp-Lg,1,x,0)
> - hap (Ap/(T¥) 2 cx®)g N Ap) = ha, (Rw /(T 2 cx®)g N Ap)Ryy)
> drg(Ro /(I ex9)g N Ap)Rg) = Apy(Ro/((I101 : ex ) )la/]y,
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by Lemma 4.3(c). But thef(q, I, x, Q) > Cq9™*Ee) for someC > 0 for large

q. sinceig, (Ro /(119 : cx1"))l/4'T) is asymptotic to a positive constant times
(g/q")dm&o) by the standard theory of Hilbert—Kunz functions; see [M]. This
completes the=" direction.

We now consider the much more difficult converse direction. Assume the con-
ditions in (2). Notice that, because we have assumed that localization holds for
any proper localization ok, we know that condition(C2) holds for all 7, x, ¢
(if 0 = m then we know the condition (LC), which is stronger). Suppose that
the result is false, and chooganaximal such that the tight closure bdoes not
commute with localization. By Theorem 3.5 and Remark 3.6, there exists an ele-
mentx (and we may assume thak (Ip)* — (I*)¢ for some primeQ) such that
either(C1) or (C2) fails. Since we know the latter, there must be such avith
T;(x) infinite. Notice that, if we replace by zx for any choice ot ¢ Q, then
the elementx is still in (Ip)* — (I*)o and soT;(zx) is still infinite. We shall
make several such replacements that will force increasingly controlled behavior
on T;(zx). Each time, we change notation and writéor what is reallyzx. We
shall eventually obtain a contradiction.

First apply condition (LC) to choos¥ such thatn™? kills H2(R/1!9)) for all
g. Next, choose € m" notin Q and not in any associated prime, excapbf any
of the countably many ideal§4. Then our previous remark shows tHat x) is
still infinite. Moreover,m is not associated tdl] : uz4 for all ¢ and any choice
of u in R, by Lemma 3.4(Q).

We replacex by zx and can assume from now on thatis not associated to
114 : cx for all g. Furthermore, this remains true if we again repladsy z'x for
somez’.

We next replacer by zx for z ¢ Q so as to maximize the least heighof a
prime inT; (xz). Thus, without loss of generality we may assume that, for all
R — Q, replacingx by zx does not clear all the primes of height Notice by
Lemma 3.4(f) that, as we make such replacements, the least height occurring can
only increase. SincéC2) holds it is immediate from the clearing lemma and our
previous remark that there must be infinitely many primes of hdight

We shall next show that = d — 1. Assumeh < d — 2. We can choose an ele-
menty of m not in any associated prime (except possiblyof any of the ideals
191 and (I 4 Rx)l9); then the push-up lemma shows that, for every priPnef
heighth in T;(x), every minimal primeP’ of P + yR is in T(;4ry)(x). But lo-
calization holds inRp/, so that only finitely many primes ifi; (x) can lie inside
P’ (note thatl; (x) N SpeqRp) = Ty, (x); see Proposition 3.3(c)). On the other
hand, the maximality of forcesTy; ,,(x) to be finite also. Since we have shown
that every one of the infinitely many primesTip(x) of height# lies inside some
P € T,y (x), this contradiction proves that=d — 1

Henceforth, we may assume that= d — 1. We choosey sufficiently general
as before. Recall that satisfies the hypothesis of Lemma 4.3(e); we shall need
this below. We write/Sa for the inverse image OH,S(R/J) in R, that is, for the
union of all the ideals/ : m" asN varies.
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By Noetherian induction, the ide&l, y) satisfies condition§C2*) and (C1).
We know that the idealdl, y)!4] : cx¢ are either the whole ring or are-primary
(sincey is not in any of the primes df; (x)), and there exists an integar such
that, for allg, m™? € (I, y)l4! : cx?. Choose a general element m™4 and write
czx9—r,y? € I'4 for somer, € R. Thenr, € (I +(x%)) 1 y4 C (1194 (x7))s
by the choice ofy. Hence the quotient(/[9! + (x9)) : y?)/(Il4l + (x?)) is con-
tained inH,,?(R/(I[q] + (x%))), and there exists an integBrsuch thain?¢ anni-
hilates this quotient. In particulan57r, € (1191 + (x 7)), and for generak € m?54
we can write

czux? —s,xy? e 11

for somes, € R. Thenx%(czu — s,y9) € 14! and it follows that

emN+Ba c (I[fi] x4+ (y9)

for all ¢.
We now apply Lemma 4.3(e) to conclude that there is a con®aguch that,
forall g,
mPe C (y?) + 119 : x4,

In particular (R /((y?) + (119 : cx9))) < A(R/mP?), and for largey it follows
that there is a constadt > 0 such that
AR/((y)) + (119 : ex9)) < Cq?.

Fix ¢ > 0 as in the statement of the theorem. Dgtbe the number of minimal
primes abovd ] : cx?. We claim that
N, < CJe,

where( is as in the previous paragraph. Since every minimal prime abéVe
cx? is also minimal abovél?'! : ¢x4' for ¢’ > ¢ in our case, this means that the
minimal primes abové!?! : ¢x4 stabilize for largey and hence implies thaj (x)
is a finite set.

Recall thatn is not associated thl] : cx4. The associativity formula for mul-
tiplicities gives that

ARy + 11 ext) = e(y?; R/ 1 cx?)) = ge(y; R/(IM) : ex?))
and
ge(y; R/ : ex?)) = q( > ey R/P)MRp/(IY :cx‘f)p))

PeMin(Ildl:cxq)
and hence

Co'tz Y ARy ey = Y 1@ Lx,P),

PeMin(Ildl:cxq) PeMin(1ldl:cxa)

ThusCgq?~1> N, - eq?"1and henceV, < C/e, as claimed. O
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5. Further Remarks and Questions

Discussion 5.1 (Finding Specific Test Exponents). Tight closure is known to
commute with localization in many specific cases: under mild conditions on the
ring, this is true for ideals generated by monomials in parameters and iteals
such thatR /I has finite phantom projective dimension. We refer the reader to
[AHH, Sec. 8] for a detailed discussion of various results. The known results on
when tight closure commutes with localization therefore imply the existence of
test exponents for many ideals. However, little is known about how to determine
a specific test exponent for a given iddalWe want to raise this as a problem.

If one has a specific test exponent for7, then to test whether € I* one need
only test whetheeu? e 119! for that one value of. We believe that the best hope
for giving a useful algorithm for testing when an element is in the tight closure
of an ideal lies in this direction. It would be of considerable interest to solve the
problem of determining test exponents effectively even for parameter ideals.

Discussion 5.2 (Algorithmic Testing for Tight Closure). We want to point out
that in certain instances there is an algorithm, in a technical sense, for testing
whether specific elements are in a tight closure. We do not believe that this par-
ticular method will ever be implemented. In any given instance where it may be
applied, it does eventually terminate, showing that the specific elerrgititer is

or is not in the tight closure of. However, we do not have a way of estimating

a priori how long testing may need to go on before the algorithm terminates.

The method may be applied to idedisuch that the tight closure dfis the
same as the plus closure bf We review the latter notion. Suppose thais a
domain. IfI € J C R and there is an integral extension (equivalently, a mod-
ule-finite extensiony of R with J C IS, thenJ C I*. If Rt denotes the integral
closure ofR in an algebraic closure of its fraction field (thbsolute integral clo-
sure see [HH4] and [S] for further discussion), we caniét= /IR* N R and
thenl C It C I*. IsI* = IT? Except in trivial cases whete= I* for all I,
we do not know whether this is always true in any normal domain. By a hard the-
orem (cf. [S]) it is true for parameter ideals, and a result of Aberbach [A] permits
one to extend this to idealssuch thatk /I hasfinite phantom projective dimen-
sion. The point we want to make is that for ideals such thiat= 1™, which may
well be all ideals, there is an algorithm of sorts.

Let R be a countable Noetherian domain of prime charactenisticO in which
basic operations can be performed algorithmically, with a known test elament
and such that one can test algorithmically for membership in an ideal in polynomial
rings overr, for example, a finitely generated domain over a finitely generated
field.

Fact. If R is as just described anfl C R satisfies/* = I't, then one can test
algorithmically whethery € R is in I*. In particular, one has such a test# is
an affine domain over a finitely generated field antlig generated by monomials
in elementg;y, ..., z; generating an ideal of heiglat.
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Here is the idea of the algorithm: one can effectively enumerate all the algebras
S1, ..., Sy, ... that are module-finite ovaR. Alternately, test whether € IS, and
whethercy?" € I1P"]If y € I* = I't then the former test eventually succeeds; if

y ¢ I*, the latter test eventually fails. O

Of course, this method is awful: this algorithm only gives emphasis to the problem
of effective determination of test exponents.

Discussion 5.3 (Uniform Test Exponents). L& be reduced and finitely gener-
ated over an excellent local ring. So far as we know, it is possible that for a given
locally stable test elememtthere exists a test exponent valid for all idealsi-
multaneously. It would suffice to give such an exponent fomagirimary tightly
closed ideals am varies, and even for those that are maximal with respect to the
property of being tightly closed and not containing a given element of the ring,
since every tightly closed ideal is an intersection of such ideals.

A more modest question that seems more approachable is whether,cgiven
there exists a single test exponent for all ideals containing a givprimary ideal
J, because then one can construct a moduli space for the set of ideals.

DiscussioN 5.4. It is reasonable to ask whether localization can be proved for
suitable local domains (e.g., those that are excellent, have countable prime avoid-
ance, and are generically étale over a regular local ring) if, for all idealsk and

all x € R, there exist constantsands$ greater than zero such that, for @alhnd for

all Q € Ty(x), 8q9MRe) > (g, 1, x, Q) > eq¥MRe)_[f localization holds then

the first inequality can be deduced fra@2); the second was shown in the proof

of Theorem 4.5 to follow from{C1). Thus, these conditions are necessary. It also
seems reasonable to ask whether, I, x, Q)/¢%™*e) approaches a (necessarily
positive) limit asg — oo.
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