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1. Introduction

We introduce the notion of atest exponentfor tight closure and explore its relation-
ship with the problem of showing that tight closure commutes with localization, a
long-standing open question. Roughly speaking, test exponents exist if and only if
tight closure commutes with localization; mild conditions on the ring are needed
to prove this. We give other, independent, conditions that are necessary and suffi-
cient for tight closure to commute with localization in the general case, in terms of
behavior of certain associated primes and behavior of exponents needed to anni-
hilate local cohomology. Although certain related conditions (the ones given here
are weaker) were previously known to be sufficient, these are the first conditions
of this type that are actually equivalent.

The difficult calculation of Section 4 uses associativity of multiplicities and
many other tools to show that sufficient conditions for localization to commute
with tight closure can be given in which asymptotic statements about lengths of
modules defined using the iterates of the Frobenius endomorphism replace the
finiteness conditions on sets of primes introduced in Section 3. The result is local
and requires special conditions on the rings: one is that countable prime avoid-
ance holds. This is not a very restrictive condition, however; it suffices, for ex-
ample, for the ring to contain an uncountable field. Countable prime avoidance
also holds in any complete local ring. But we also need the existence of astrong
test ideal (see the beginning of Section 4). We expect that, in the long run, this
condition will also turn out not to be very restrictive: a strong test ideal for a re-
duced ring is known to exist if every irreducible component of SpecR has a res-
olution of singularities obtained by blowing up an ideal that defines the singular
locus, and it is expected that this is always true in the excellent case. Moreover,
by very recent results, strong test ideals always exist for complete reduced local
rings.

We note that the reader may find other results related to localization of tight
closure in [AHH; Hu3; K1; K2; LS; V1; V2].
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2. Test Exponents and Associated Primes

Discussion 2.1 (Basic Terminology and Notation). We shall assume throughout
thatR is a Noetherian ring of positive prime characteristicp, although this hy-
pothesis is usually repeated in theorems and definitions. Moreover, because tight
closure problems are unaffected by killing nilpotents, we shall assume, unless
otherwise specified, thatR is reduced. We shall usually assume that the reduced
ring R has a test elementc (see the discussion in the fourth paragraph of this
section). We recall some terminology and notation. We useR◦ to denote the com-
plement of the union of the minimal primes ofR; hence, ifR is reduced thenR◦

is simply the multiplicative system of all nonzerodivisors inR. We shall writeF e

(or F e
R if we need to specify the base ring) for thePeskine–Szpiroor Frobenius

functor fromR-modules toR-modules. This is a special case of the base change
functor fromR-modules toS-modules that is simply given byS⊗R : in the case
of F e, the ringS isR but the mapR→ R that is used for the algebra structure is
theeth iterationF e of the Frobenius endomorphism,F e(r) = rpe . Thus, ifM is
given as the cokernel of the map represented by a matrix(rij ), thenF e(M) is the
cokernel of the map represented by the matrix

(
r
pe

ij

)
. Unless otherwise indicated,

q denotespe wheree ∈N. For q = pe we haveF e(R/I ) ∼= R/I [q], whereI [q]

denotes the ideal generated by theqth powers of all elements ofI (equivalently,
of generators ofI ). Note thatF e preserves both freeness and finite generation of
modules, and it is exact precisely whenR is regular (cf. [He; Ku]). IfN ⊆ M we
write N [q] for the image ofF e(N ) in F e(M), although it depends on the inclu-
sionN → M and not just onN. If u ∈M then we writeup

e

for the image 1⊗ u
of u in F e(M). With this notation,(u + v)q = uq + vq and(ru)q = r quq for
u, v ∈M andr ∈R.

It is worth noting that, for any multiplicative systemW in R, F e
RW
(MW) ∼=

F e
R (M)W , where W indicates localization with respect toW. In fact, for any
R-algebraS, one has that

F e
S (S ⊗R M) ∼= S ⊗R F e

R(M).

Furthermore,N [q]
W ⊆ F e(M)W may be canonically identified with(NW)[q] .

An elementu ∈ M, whereM is a finitely generatedR-module, is in the tight
closureN ∗ of N ⊆ M if there existsc ∈ R◦ such thatcuq ∈ N [q] for all q =
pe � 0. By the right exactness of tensor,F e(M/N ) ∼= F e(M)/N [q], whereq =
pe. It follows easily that an element ofM is inN ∗ if and only if its image inM/N
is in 0∗ in M/N. Therefore, in considering whetheru ∈M is in N ∗, we may re-
placeM by a finitely generated free moduleGmapping ontoM, N by its inverse
image inG, andu by any element ofG that maps tou.

An elementc ∈R◦ is calleda test elementif, wheneverM is a finitely generated
R-module andN ⊆ M is a submodule,u ∈M is in the tight closure ofN if and
only if, for all q = pe, cuq ∈N [q] . Thus, if the ring has a test element, it “works”
in any tight closure test where some choice ofc ∈R◦ “works”. Test elements are
also characterized as the elements ofR◦ that annihilateN ∗/N for all submodules
N of all finitely generated modulesM.
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A test element is calledlocally stableif its image in every local ring ofR is a
test element (this implies that it is a locally stable test element in every localiza-
tion ofR at any multiplicative system). A test element is calledcompletely stable
if its image in the completion of each local ring ofR is a test element. A com-
pletely stable test element is easily seen to be locally stable. We refer the reader
to [AHH, Sec. 2; HH1, Secs. 6, 8; HH2; HH5, Sec. 6] for more information about
test elements and to [AHH, Sec. 3] for a discussion of several basic issues related
to the localization problem for tight closure.

We note that, by some rather hard theorems, test elements are known to exist.
For example, ifR is any reduced ring essentially of finite type over an excellent
local ring, thenR has a test element. In fact, ifc is any element ofR◦ such that
Rc is regular (and such elements always exist ifR is excellent and reduced), then
c has a power that is a completely stable test element. This follows from Theo-
rem 6.1a of [HH5], and we shall make use of this freely throughout.

Another important property of tight closure in characteristicp is that ifR→ S

is a ring homomorphism andu ∈N ∗ in M, then the image 1⊗ u of u in S ⊗R M
is in the tight closure, overS, of

Im(S ⊗R N → S ⊗R M)
under very mild assumptions. This phenomenon is referred to asthe persistence
of tight closure.In particular, by Theorems 6.23 (which, with the same proof, is
valid wheneverR is essentially of finite type over an excellent local ring—the re-
sult is stated only for the case of finite type) and 6.24 of [HH5], ifR is essentially
of finite type over an excellent local ring, ifS has a completely stable test element,
or if R◦ maps intoS ◦ (e.g., ifR → S is an inclusion of domains or is flat), then
one has persistence of tight closure for the ring homomorphismR→ S.

Definition 2.2. LetR be a reduced Noetherian ring of positive prime charac-
teristicp. Let c be a fixed test element forR, and letN ⊆ M be a pair of finitely
generatedR-modules. We shall say thatq = pe is a test exponentfor c,N,M if
u ∈ N ∗ whenevercuQ ∈ N [Q] andQ ≥ q. In caseN is an ideal it is usually as-
sumed thatM = R, and in that case we speak of a test exponent forc, I, with R
understood to be the ambient module forI.

It is not at all clear whether to expect test exponents to exist. In this paper we
shall prove (roughly speaking) that test exponents exist, in general, if and only if
tight closure commutes with localization. The question of whether tight closure
commutes with localization is open in general, but it is known in many important
special cases, and thus our results imply that test exponents do exist rather often.
We expect this notion to be of great importance because, whenever one can com-
pute what the test exponent is, one obtains an effective test for tight closure.

We are also hopeful that focusing attention on the problem of the existence of
test exponents may lead to a solution of the localization problem for tight clo-
sure. We want to point out that, if tight closure commutes with localization, then it
commutes with arbitrary smooth base change; for a precise statement, see [HH5,
Thm.7.18a].
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To demonstrate one connection, we prove the easier half of the result at once
(this half is implicit in [McD]).

Proposition 2.3. LetR be a reduced Noetherian ring of positive prime char-
acteristicp and letN ⊆ M be finitely generatedR-modules. Letc be a locally
stable test element forR. If there is a test exponent forc,N,M then, for every
multiplicative systemW ofR, (NW)∗ inMW overRW is (N ∗)W (i.e., tight closure
for the pairN ⊆ M commutes with localization).

Proof. The only problem is to show that ifu ∈ M andu/1 ∈ (NW)∗ thenu ∈
(N ∗)W (any element ofMW, after multiplication by a suitable unit, is in the image

of M). Let q be a test exponent forc,N,M. Then we can choosecuq/1∈N [q]
W

and we can choosef ∈W such thatfcuq ∈Nq, soc(fu)q ∈N [q] . But thenfu∈
N ∗ and sou∈ (N ∗)W .
What is much less obvious is that a converse holds.

Theorem 2.4. LetR be a reduced Noetherian ring of positive prime character-
istic p, and letN ⊆ M be a pair of finitely generatedR-modules. Suppose that,
for every primeQ ∈Ass(M/N ∗), (NQ)∗ = (N ∗)Q. Then, for every test element
c ∈ R◦ such thatc is a test element in each of the ringsRQ for every associated
primeQ ofM/N, there is a test exponent forc,M,N. In particular, if (NQ)∗ =
(N ∗)Q for all associated primesQ ofM/N ∗ and if c is a locally stable test ele-
ment forR, thenc,N,M has a test exponent.

Thus, if tight closure commutes with localization for the pairN ⊆ M at associ-
ated primes ofM/N ∗ and ifR has a locally stable test element, then tight closure
commutes with localization in general for the pairN ⊆ M.
We postpone the proof until we have established some preliminary results that
make the argument transparent (it is given immediately following the proof of
Theorem 2.7).

Proposition 2.5. LetR be a reduced Noetherian ring of positive prime charac-
teristicp, and letM be a finitely generatedR-module. LetN, N ′, andNi (where
i varies in an index set) be submodules ofM. Let c ∈R◦ be a test element.

(a) q = pe is a test exponent forc,N,M if and only if it is a test exponent for
c,0,M/N.

(b) If q = pe is a test exponent forc,N,M then so is every larger power ofp.
(c) If N ⊆ N ′ ⊆ N ∗ andq is a test exponent forc,N ′,M, thenq is a test expo-

nent forc,N,M. In particular, this holds whenN ′ = N ∗.
(d) If N ⊆ N ′ ⊆ N ∗, d is a test element, andq is a test exponent forcd,N,M,

thenq is a test exponent forc,N ′,M.
(e) If N1 andN2 have the same tight closure inM and ifW is a multiplicative sys-

tem consisting of test elements, thenc1, N1,M has a test exponent for every
choice of test elementc1∈W if and only ifc2, N2,M has a test exponent for
every choice of test elementc2 ∈W.
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( f ) If q is a test exponent forc,Ni,M for every indexi (the index set may be infi-
nite), if everyNi is tightly closed, and ifN =⋂ i Ni, thenq is a test exponent
for c,N,M.

(g) If N1, . . . , Nh are submodules ofN such that there is a test exponent for each
of c,Ni,M for 1≤ i ≤ h, then there is a test exponent forc,

⋂
i Ni,M.

Proof. Part (a) is immediate from the definitions of test exponent and tight clo-
sure, while (b) is immediate from the definition of test exponent. In part (c), since
N ′ andN have the same tight closure, it follows that ifq is a test exponent for
c,N ′,M thencuQ ∈N [Q] forQ ≥ q implies thatcuQ ∈N ′ [Q]

, and sou∈N ′ ∗ =
N ∗. For part (d): ifq is a test exponent forcd,N,M, if Q ≥ q, and if cuQ ∈
N ′ [Q]

, then (sinceN ′ is in the tight closure ofN)we have thatN ′ [Q] is in the tight
closure ofN [Q] and socduQ ∈N [Q]; hence we can conclude thatu∈N ∗ = N ′ ∗.
For part (e), we might as well assume thatN2 is the tight closure ofN1; it suffices
to compare each with its tight closure. The result is immediate from the combi-
nation of parts (c) and (d). Part (f ) is immediate from the definition, for ifcuQ ∈
N [Q] thencuQ ∈ N [Q]

i for all i, and sou ∈ Ni for all i, which shows thatu ∈ N.
Part (g) follows from (b) and (f ): we may use the supremum of the finitely many
test exponents for the variousNi.

Proposition 2.6. LetR be a reduced Noetherian ring of positive prime charac-
teristicp. LetN ⊆ M be finitely generated modules such thatM/N has a unique
associated primeP, N is tightly closed inM, andNP is tightly closed inMP over
RP . Let c ∈ R◦ be any test element forR that is also a test element inRP . Then
there is a test exponent forc,N,M.

Proof. We first consider the case whereP is maximal andR = RP . LetNe denote
the set of elementsu∈M such thatcuq ∈ (N [q])F , whereq = pe and F indicates
Frobenius closure inM [q] = F e(M). Clearly,N ∗ ⊆ Ne for everye. We claim
thatNe+1⊆ Ne, for if cupq ⊆ N [pq] F thencq

′
upqq

′ ∈N [pqq ′ ],which certainly im-
plies thatcpq

′
upqq

′ ∈N [pqq ′ ], and this shows thatcuq ∈N [q] F
, as required. Thus,

this sequence of modules is eventually constant, sinceM/N has finite length in
this case. But onceNe = Ne+1 = · · · , the common value must beN ∗, for if u is
in all of these thencuQ ∈N [Q] F ⊆ N [Q]∗ for all Q ≥ pe and soc2uQ ∈N [Q] for
allQ ≥ pe, as required. Thencuq

′ ∈N [q ′ ] for q ′ ≥ pe implies thatu∈Ne = N ∗,
as required.

In the general case, note that the hypothesis is stable when we localize atP and
so, by the case already proved, there existsq ′ such thatcuq

′
/1 ∈ NP [q ′ ] implies

thatu/1∈ NP . But then, sincecuq
′ ∈ N [q ′ ] is preserved when we localize atP,

we have that this implies thatu is in the contraction ofNP toM, and sinceM/N
is P -coprimary, this implies thatu∈N.

Theorem 2.7 (Existence of Primary Decompositions That Respect Tight Clos-
ure). LetR be a reduced Noetherian ring of positive prime characteristicp, and
suppose thatR has a test element. LetN ⊆ M be finitely generated modules and
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suppose thatRP has a test element(e.g., is excellent) for every associated prime
ofM/N. Suppose thatN is tightly closed inM and thatNP is tightly closed inMP

for every associated primeP ofM/N.
ThenN has a primary decomposition inM in which, for every associated prime

P ofM/N, theP -primary component is tightly closed and remains tightly closed
(in MP , overRP ) after localization atP.

Proof. It suffices to construct such a primary decomposition forNP ⊆ MP over
RP for each associated primeP of M/N. Take all these submodules ofMP and
contract them toM, with P varying among the associated primes ofM/N. (Note
that the contraction of a tightly closed submodule ofMP toM is tightly closed in
M: this is a consequence of the persistence of tight closure, which is automatic
for the flat homomorphismR → RP .) When there are several primary compo-
nents for the same primeQ (each tightly closed, each remaining tightly closed
overRQ), intersect them all.

This gives a primary decomposition ofN with the required properties. To see
that it is, in fact, a primary decomposition, call the intersectionN ′. If N ′/N 6=
0 then it contains a nonzero element whose annihilator is an associated prime of
M/N, and this remains true after localizing at that associated prime, which gives
a contradiction.

Thus, there is no loss of generality in assuming that(R, P ) is local, thatP is
an associated prime ofM/N, and that we have solved the problem of construct-
ing suitable primary components after localizing at any of the other associated
primes (by induction on the dimension ofRP ). Thus, we may give a primary de-
composition overRQ for every associated primeQ strictly contained inP and
then intersect the contractions of all the modules occurring as before. Call the
intersection of these other primary componentsH. Thus,H has a primary decom-
position using modules that are (i) primary for the other associated primes ofM/N

and (ii) tightly closed and remain so upon localization at the respective associated
primes.

If we localize at any element ofP then only the other associated primes remain.
HenceH/N is killed by a power ofP and is a module of finite length.

Now consider the descending chain of submodules(N + P nM)∗ = Nn, which
are tightly closed submodules ofM containingN. Then(Nn ∩H )/N is contained
inH/N and so the chain(Nn∩H )/N is eventually stable, which means thatNn∩H
is eventually stable. But the intersection of theNn isN, becauseN is tightly closed
andR has a test element. (Ifu∈Nn for all n and ifc is the test element, then for all
q, cuq ∈ (N +P nM)[q] ⊆ N [q] +P nF e(M), and sinceN [q] isP -adically closed
in F e(M), we have thatcuq ∈ N [q] for all q and sou ∈ N ∗ = N, as required.)
The stable value ofNn∩H must be the same as

⋂
n(Nn∩H ) =

(⋂
n Nn

)∩H =
N ∩H = N. ThusNn ∩H = N for all n� 0, and we may useNn for any suffi-
ciently largen as the required tightly closedP -primary component.

Proof of Theorem 2.4.For the first statement: by Theorem 2.7 coupled with Prop-
osition 2.6,N is a finite intersection of submodulesNi of M such that there is a
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test exponent forc,Ni,M; the result is then immediate from parts (c) and (g) of
Proposition 2.5.

For the second statement: choose a test element ofR and, for each associated
primeQ ofM/N ∗, an element ofR◦ that maps to a test element forRQ. The prod-
uct will be a test elementc ofR that is also a test element for everyRQ, soc,N,M
must have a test exponent.

Corollary 2.8. LetR be a reduced Noetherian ring of positive prime charac-
teristicp, and suppose thatR has a locally stable test element. LetN ⊆ M be
finitely generatedR-modules and assume in addition that there is a submodule
N ′ ⊆ N ∗ such thatN ′Q = NQ at all associated primesQ ofM/N ∗ and the tight
closure ofN ′ does commute with localization. Then the tight closure ofN com-
mutes with localization.

Proof. By Theorem 2.4, it suffices to prove that(N ∗)Q = (NQ)
∗ for all primes

Q that are associated toN ∗. Fix such aQ. Then(NQ)∗ = (N ′Q)∗ = (N ′ ∗)Q ⊆
(N ∗)Q.

Corollary 2.9. LetR be a reduced Noetherian ring of positive prime charac-
teristicp and suppose thatR has a locally stable test element. Suppose thatI ⊆
R is generically, a complete intersection(i.e., there is an idealI ′ generated by
a regular sequence such thatIP = I ′P for every minimal primeP of I ) and that
I ∗ has no embedded primes. Then(IW )∗ = (I ∗)W for all multiplicatively closed
setsW.

Proof. This follows immediately from Corollary 2.8 and the fact that localization
commutes with tight closure for ideals generated by regular sequences (see [HH5,
Thm. 4.5]).

Remark. Corollary 2.8 can be combined with numerous other theorems on when
tight closure commutes with localization to give other results similar to Corol-
lary 2.9. For example, ifR is a domain of acceptable type in the sense of [AHH,
p. 87] (a mild condition satisfied by homomorphic images of Cohen–Macaulay
rings and by algebras essentially of finite type over an excellent local ring), then
in Corollary 2.9 we need only the idealI ′ to be of heightd and generated byd
elements (cf. [AHH, Thm. 8.3b, p. 112]). Note that ifR is not a domain then the
result is valid if one has the required hypotheses modulo every minimal prime.

Corollary 2.10. LetR be a reduced Noetherian ring of positive prime charac-
teristicp with a locally stable test element. If(JQ)∗ = (J ∗)Q for every primary
idealJ with radicalQ, then(IW )∗ = (I ∗)W for every idealI such thatI ∗ has no
embedded primes and for every multiplicatively closed setW.

Proof. First note that the hypothesis implies that(JW )∗ = (J ∗)W for every pri-
mary idealJ and for every multiplicative setW.

Fix an arbitrary idealI with I ∗ unmixed. LetQ1, . . . ,Qn be the associated
primes ofI ∗. These are the same as the minimal primes ofI ∗, and sinceI andI ∗
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have the same radical, they are precisely the minimal primes ofI. Let Ji be the
primary component ofI corresponding toQi. Since theQi are minimal overI,
this component is uniquely determined. By Theorem 2.4, it is enough to prove that
(I ∗)Qi

= (IQi
)∗ for eachQi. We have that(IQi

)∗ = (J ∗i )Qi
. It suffices to prove

thatJ ∗i ⊆ (I ∗)Qi
, for then(IQi

)∗ = (J ∗i )Qi
⊆ (I ∗)Qi

. Chooseu ∈ I : Ji such
thatu /∈Qi, and letx ∈ J ∗i . For somed ∈ R◦ and for all largeq, we havedxq ∈
(Ji)

[q] . Multiplying by uq gives thatd(ux)q ∈ I [q], proving thatux ∈ I ∗ andx ∈
(I ∗)Qi

, as required.

Discussion 2.11. LetR be a reduced Noetherian ring of positive prime charac-
teristicp. Given the results of this section, it is natural to ask how the associated
primes ofI ⊆ R and ofI ∗ are related as well as how, more generally, the asso-
ciated primes ofM/N andM/N ∗ are related whenN ⊆ M, a finitely generated
R-module. Note that although the minimal primes are the same, there is, in gen-
eral, no comparison, in either direction, for the other associated primes. The ex-
amples that follow will show this even in the case of ideals. (Note: To see that
a minimal primeQ of M/N is still in the support ofM/N ∗ we may localize at
that prime, since(NQ)∗ ⊇ (N ∗)Q, and then use the fact that(M/N )Q, if nonzero,
maps onRQ/QRQ.) Embedded primes ofI may fail to be associated primes ofI ∗,
and embedded primes ofI ∗may fail to be associated primes ofI. In Example 2.12,
I has the maximal ideal as an embedded prime butI ∗ does not; in Example 2.13,
I is unmixed butI ∗ has the maximal ideal as an embedded prime.

Example 2.12. LetR be a normal, 3-dimensional local ring of positive prime
characteristic that is not Cohen–Macaulay. (For definiteness, one may take the
Segre product of a homogeneous coordinate ring of an elliptic curve, e.g.,
K[x, y, z]/(x3+ y3+ z3), withK a field of positive characteristic different from
3, withK[u, v], a homogeneous coordinate ring forP1

K, and localize at the irrel-
evant ideal, i.e., at the unique maximal homogeneous ideal.) Letf, g be part of
a system of parameters. SinceR is not Cohen–Macaulay, the maximal ideal is an
embedded prime ofI = (f, g)R. By the colon-capturing property of tight closure
(see e.g. [HH6, Thm. 1.7.4]), a third parameter forR is not a zerodivisor onI ∗

and so the maximal ideal ofR is not an associated prime ofI ∗. There are similar
examples in all dimensions.

Example 2.13. LetK be a field of positive prime characteristicp 6= 3. Take

R = K[X, Y,U, V ]/(X3Y 3+ U3+ V 3) = K[x, y, u, v].

ThenR is geometrically normal(p 6= 3) since the partial derivatives of the defin-
ing polynomial include 3U2 and 3V 2, which form a regular sequence in the ring.
Let I = (u, v, x3)R. By the persistence of tight closure (cf. the last paragraph of
Section 2.1) and the fact thatz2 is in (u, v)∗ inK[z, u, v]/(z3+ u3+ v3) (see e.g.
the beginning of Sec. 4 in [H1]), we have thatx 2y2 is in the tight closure of(u, v)
and hence inI ∗. NowR/I is isomorphic withK[x, y]/(x3) and soI is unmixed;
I ∗ containsx 2y2, so that bothy2 andx multiply x 2 into I ∗ (as well asu andv,
of course). This will show thatR/I ∗ hasm = (x, y, u, v) as an embedded prime,
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provided thatx 2 is not inI ∗. But this is true even if we killu, v, andy, and tight
closure persists under homomorphisms for affine algebras (cf. once again the last
paragraph of Discussion 2.1).

We next observe that if tight closure commutes with localization after a faithfully
flat extension then it commutes with localization.

Proposition 2.14. LetR be a reduced Noetherian ring of positive prime charac-
teristicp such thatR has a completely stable test element. LetR→ S be faithfully
flat, and letN ⊆ M be finitely generatedR-modules. LetW be a multiplicative
system inR. If tight closure commutes with localization for the pairS ⊗R N ⊆
S ⊗R M and the multiplicative system that is the image ofW in S, then it com-
mutes with localization for the pairN ⊆ M and the multiplicative systemW.

Proof. It suffices to show that, ifu ∈M is such thatu/1 is in the tight closure of
NW inMW, thenu is in (N ∗)W . But then 1⊗ u is in the tight closure ofSW ⊗R N
in SW ⊗R M overSW , by the persistence of tight closure (this is trivial in the flat
case), and by our hypothesis this implies that 1⊗ u is in (S ⊗R N )∗ in (S ⊗R M)∗
overS. This implies thatu is inN ∗, by [H2, Cor. 8.8, p. 143].

Remark 2.15. The conclusion of Proposition 2.14 is valid under a substantial
weakening of the hypothesis on the homomorphismR → S. Instead of being
faithfully flat, it suffices if it preserves height (in the sense of condition(∗) of
[H2, Cor. 8.8]) and persistence of tight closure holds. The proof is the same.

Corollary 2.16. LetR be a reduced ring andK a field such thatR satisfies at
least one of the following conditions:

(1) R is finite type overK;
(2) R is essentially of finite type overK;
(3) R is an excellent local ring with residue fieldK;
(4) R is of finite type over an excellent local ring with residue fieldK;
(5) R is essentially of finite type over an excellent local ring with residue fieldK.

ThenR has a faithfully flat extensionS that satisfies the same condition but such
thatK is uncountable andF -finite and, in cases(3)–(5),such that the local ring
is complete.

Hence, the question of whether tight closure commutes with localization for any
of the rings in the five classes just described can be reduced to a corresponding
case where the ring contains an uncountable field and isF -finite and, in cases
(3)–(5),where the local ring is complete as well.

Proof. The last statement follows from the next-to-last statement by Proposition
2.14. We may trivially replace the local ring by its completion in (3)–(5). The
statements about rings essentially of finite type follow from the corresponding
statements for rings of finite type. In cases (3)–(5) choose a coefficient field, and
let L be a field obtained by adjoining uncountably many indeterminates to it (or
simply toK in case (1)). Replace the local ring by its complete tensor product
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with L in cases (3) and (4). One may then use the0 construction of [HH5, Sec. 6]
to make an excellent, faithfully flat extension of the local ring such that the res-
idue field isF -finite, without losing the property that its tensor product withR
over the original local ring is reduced. Finally, one may replace this local ring by
its completion. Case (1) is simply the special case where the local ring has dimen-
sion 0.

Note that there are several implications among the conditions listed in Corollary
2.16 (e.g.,(5) ⇒ (4) ⇒ (3) and(4) ⇒ (2) ⇒ (1)). We have stated the result as
we did because it contains the information that, whichever one of these conditions
holds,that particular conditioncan be preserved as one modifiesR to contain an
uncountable field.

Remark 2.17. LetR be any ring containing an uncountable fieldK, and letI be
a finitely generated ideal ofR. Let {In : n∈N} be a countable family of ideals of
R whose union containsI. ThenI is contained in one ofIn. To see this, letV be
the finite-dimensionalK-vector space spanned overK by a finite set of genera-
tors forI. ThenV is covered by the vector spacesIn asn varies, and it suffices to
show that one of these isV, for if V ⊆ In thenI ⊆ In. Thus, we have reduced to
a question purely about vector spaces. But the result for vector spaces is clear if
the dimension ofV is at most 1, and it follows at once by induction from the fact
thatV has uncountably many mutually distinct subspaces of codimension 1, each
of which (by the induction hypothesis) will be contained in at least one of theIn.

It follows that at least two of these are contained in the sameIn, and this forces
V ⊆ In.

Thus, if a Noetherian ringR contains an uncountable field and if the idealI is
not contained in any of the countably many idealsIn, thenI has an element that
is not in any of theIn. If this property holds when theIn are prime, we say thatR
hascountable prime avoidance.

When coupled with Corollary 2.16, this discussion shows that, in the main cases,
the question of whether tight closure commutes with localization reduces to the
case where the ring has countable prime avoidance. We assume countable prime
avoidance in the main result of Section 4.

Remark 2.18. We also want to remark that every Noetherian ringR of positive
prime characteristicp has a faithfully flat Noetherian extension containing an un-
countable fieldK. For any ringR, if T is a set of indeterminates then letR(T )
denote the localization of the polynomial ringR [T ] in these indeterminates at the
multiplicative system of all polynomials whose coefficients generate the unit ideal;
R(T ) is easily seen to be faithfully flat overR. Evidently, ifR contains any field
K (e.g.Z/pZ) thenR(T ) containsK(T ), and so ifR has characteristicp andT
is uncountable thenR(T ) contains the uncountable fieldK(T ). But, for any Noe-
therian ringR, S = R(T ) is Noetherian.

(It is easy to see that expansion and contraction gives a bijection between maxi-
mal ideals ofR and those ofS. It suffices if every primeP of S is finitely generated.
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LetW run through the finite subsets ofT and letPW denote the contraction ofP
toR(W ) ⊆ R(T ). It is clear thatR(W ) is Noetherian and so eachPW is a finitely
generated prime ideal ofR(W ). NowPWS is prime inS, sinceS is obtained from
R(W ) by adjoining indeterminates and localizing, andPWS ⊆ PW ′S if W ⊆ W ′.
The primeP is the union of thePWS asW varies. We claim thatPWS = P for
any sufficiently large choice ofW. The point is thatP is contained in a maximal
ideal ofS, saymS,wherem is a maximal ideal ofR with, say,n generators. Then,
for all W, mS lies overmR(W ), which has height at mostn. From this it follows
that if one has a chain of the formPW0S ⊂ · · · ⊂ PWhS in which the inclusions
are strict, thenh ≤ n, since the inclusions will also be strict inPW0R(W ) ⊂ · · · ⊂
PWhR(W ) for some sufficiently largeW ⊇ Wh, and this contradicts the fact that
mR(W ) has height at mostn.)

Remark 2.19. We note that, by [B, Lemma 3], countable prime avoidance holds
in any complete local ring.

3. Necessary and Sufficient Conditions for Localization

In this section we give another necessary and sufficient condition for the tight clo-
sure of an ideal to commute with localization. Severalsufficientconditions have
been given in previous papers. Most notable among these were that tight closure
commutes with localization provided that the following two conditions hold (cf.
[K1; K2]):

(1) for every idealI, the union, overq, of the sets of maximal associated primes
of (I [q])∗ is a finite set;

(2) for every prime idealP, there exists a positive integerk such that, for all
q = pe,

P kqH 0
P(R/((I

[q])∗)P ) = 0.

However, these conditions are not known to be necessary. In Theorem 3.5 we
give a pair of conditions that characterize precisely when tight closure commutes
with localization for an idealI. Conditions like our(C2∗) discussed in the sequel
are clearly weaker than condition (2) above. Our condition(C1) is reminiscent of
condition (1) above in that it asserts the finiteness of certain sets of primes, but it
is not immediately apparent how to compare it to (1) directly.

Several preliminaries are needed before stating our main result, Theorem 3.5.
In particular, we need to identify certain sets of primes inR; these are character-
ized by several equivalent conditions in the next result.

Proposition 3.1. LetR be a reduced Noetherian ring of positive prime charac-
teristicp with at least one locally stable test element. LetI ⊆ R andx ∈ R be
fixed. Then the following conditions are equivalent for a prime idealQ.

(1) For some(equivalently, every) locally stable test elementc ∈ R◦, Q is mini-
mal over infinitely many of the idealsI [q] : cxq.

(2) For some(equivalently, every) locally stable test elementc ∈ R◦, Q is mini-
mal overI [q] : cxq for all q � 0.
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(3) For some(equivalently, every) locally stable test elementc ∈ R◦, Q is mini-
mal over infinitely many ideals(I [q])∗ : cxq.

(4) For some(equivalently, every) locally stable test elementc ∈ R◦, Q is mini-
mal over(I [q])∗ : cxq for all q � 0.

(5) x /∈ (IQ)∗ andx ∈ (IP )∗ for all P ( Q.

Proof. Fix a single locally stable test elementc. It will suffice to show that the
conditions in (1)–(4) are equivalent to the condition in (5) for that one choice ofc,

since (5) does not refer toc. Thus, throughout the rest of the proof,c is a fixed lo-
cally stable test element and, when we refer to conditions (1)–(4), we are referring
to them for that single fixed test elementc.

Clearly(2)⇒ (1) and(4)⇒ (3).
We next prove that:

(∗) If Q is minimal overI [qi ] : cxqi for all i ≥ 1 then it is minimal over(I [qi ])∗ :
cxqi for all i � 0.

Once we have shown this, it follows at once that(2)⇒ (4) and(1)⇒ (3). Hence,
once we establish(∗), we need only show that(5)⇒ (2) and(3)⇒ (5) to com-
plete the argument.

Suppose that(∗) is false. SinceI [qi ] : cxqi ⊆ (I [qi ])∗ : cxqi , Q will be min-
imal over every(I [qi ])∗ : cxqi that it contains. Suppose thatQ does not contain
(I [qi ])∗ : cxqi for infinitely many i. After localizing atQ, we have thatcxqi ∈
((I [qi ])∗)Q, which implies thatc2xqi ∈ (I [qi ])Q for infinitely manyi. This shows
thatx ∈ (IQ)∗ (cf. [HH2, Lemma 8.16, p. 79]). But thencxq ∈ I [q]

Q for all largeq,
provingI [q] : cxq * Q for all largeq. This contradiction finishes the proof of(∗).

Next we prove that(3)⇒ (5). SinceQ is minimal over infinitely many of the
ideals(I [q])∗ : cxq, it follows thatQ contains infinitely many of the idealsI [q] :
cxq and hencex /∈ (IQ)∗. LetP ( Q. After localizing atP, the assumption guar-
antees thatcxq ∈ ((I [q])∗)P for infinitely many values ofq, forcingc2xq ∈ (I [q])P
for the same values ofq. As before (cf. [HH2, Lemma 8.16, p. 79]), this implies
thatx ∈ (IP )∗.

Finally, assume (5). First observe thatQmust containI [q] : cxq for all q � 0.
If not, then (after localizing atQ)we obtain thatx ∈ (IQ)∗, a contradiction. Next,
suppose thatP ( Q. By assumption,x ∈ (IP )∗; this means that, for allq, there
exist elementswq /∈ P such thatwqcxq ∈ I [q] . ThenI [q] : cxq * P for all q. It
follows thatQ is minimal overI [q] : cxq whenever it containsI [q] : cxq.

Definition 3.2. LetR be a reduced Noetherian ring of positive prime character-
istic p having at least one locally stable test element. LetI ⊆ R be an ideal, and
let x ∈R. The primes satisfying the equivalent conditions of (3.1) we call thesta-
bleprimes associated toI andx, and we denote byTI (x) the set of stable primes
associated toI andx. Let TI =

⋃
x∈R TI (x).

For a fixed idealI we consider the following two conditions:

(C1) for everyx ∈R, the setTI (x) is finite;
(C1∗) the setTI is finite.
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For a fixed idealI and locally stable test elementc,we also consider the following
two conditions:

(C2) for everyx ∈ R, if Q ∈ TI (x) then there exists an integerN, possibly de-
pending onQ, such thatQNq ⊆ (I [q] : cxq)Q for all q � 0;

(C2∗) for everyx ∈ R, if Q ∈ TI (x) then there exists an integerN, possibly de-
pending onQ, such thatQNq ⊆ ((I [q])∗ : cxq)Q for all q � 0.

We shall soon use these conditions, in Theorem 3.5, to characterize precisely when
tight closure commutes with localization forI ⊆ R. However, we need some pre-
liminary results, as well as some new notation and terminology.

By asquarelocally stable test elementc we mean one such thatc = d2, where
d is a locally stable test element. For technical reasons that stem from Proposition
3.3(d), it is often advantageous to work with a square locally stable test element.
We denote by

√
J the radical of the idealJ and by Min(J ) the set of minimal

primes ofJ.

Proposition 3.3. LetR be a reduced Noetherian ring of positive prime charac-
teristicp with a locally stable test element. LetI be an ideal ofR, and letx be
an element ofR.

(a) A prime idealQ of R has the property thatx /∈ (IRQ)∗ (in RQ) if and only
if Q contains an ideal inTI (x). Hence, if localization commutes with tight
closure forI ⊆ R, thenTI (x) is the set of minimal primes ofI ∗ : Rx and
consequently, in this case,TI is the set of associated primes ofI ∗. In partic-
ular, if I ⊆ R is such that localization commutes with tight closure, then all
of the setsTI (x) and evenTI itself are finite.

(b) TI (x) = TI∗(x) andTI = TI∗ .
(c) If W is a multiplicative system inR, then the elements ofTIW (x/1) (resp.,

TIW ), working overRW, are the expansions of those primes inTI (x) (resp.,
TI ) that do not meetW.

(d) If c is a square locally stable test element then the sequence
√
I [q] : cxq is

nonincreasing asq increases. Hence, ifQ ∈ Min(I [q ′ ] : cxq
′
) and I [q] :

cxq ⊆ Q for someq ≤ q ′, thenQ∈Min(I [q] : cxq).
(e) If c is a square locally stable test element andP is a minimal prime ofI [q] :

cxq, thenP contains an element ofTI (x).
( f ) If c is a square locally stable test element,TI (x) is finite, andq is so large

that all elements ofTI (x) are minimal overI [q] : cxq (which is true for all
q � 0), then the minimal primes ofI [q] : cxq are precisely the elements of
TI (x) and

√
I [q] : cxq =⋂P∈TI (x) P .

(g) TI (x) = ∅ if and only ifx ∈ I ∗. Moreover, ifc is a test element then the con-
dition thatI [q] : cxq = R for all q � 0 (resp., for allq) is also equivalent.

Proof. (a) Given any primeP such thatx /∈ (IRP )∗, every larger primeQ has the
same property, since there is a flat homomorphismRQ→ RP and tight closure is
persistent. SinceR has DCC on prime ideals, every such prime contains a mini-
mal such prime. But the minimal primes with this property constituteTI (x), by
part (5) of Proposition 3.1. The other statements in (a) are immediate.
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Parts (b) and (c) follow at once from the characterization ofTI (x) in part (5) of
Proposition 3.1.

For part (d), letc = d2 whered is a locally stable test element. It suffices
to prove that

√
I [pq] : cxpq ⊆ √I [q] : cxq. Let I [q] : cxq ⊆ P and assume that

I [pq] : cxpq * P. Thend2xpq ∈ I [q ′ ]
P . Hence(dxq)p ∈ (I [q])

[p]
P and it follows

thatdxq ∈ ((I [q])P )
∗. In particular,d2xq ∈ (I [q])P ,which means thatI [q] : cxq *

P—a contradiction. This proves the first assertion.
The second statement is immediate from the first. Suppose thatQ∈Min(I [q ′ ] :

cxq
′
) andI [q] : cxq ⊆ Q for someq ≤ q ′. If Q is not minimal overI [q] : cxq,

then there is a primeP such thatI [q] : cxq ⊆ P ⊆ Q with P 6= Q. Then, from
the first part,P must also containI [q ′ ] : cxq

′
and soQ cannot be minimal over

I [q ′ ] : cxq
′
, either.

To prove (e), fix a minimal primeP = P0 of Jq = I [q] : cxq. SinceP ⊇ √Jpq,
it contains a minimal primeP1 of Jpq. Continuing in this way yields a sequence

P0 ⊇ P1⊇ · · · ⊇ Pi ⊇ · · ·
such thatPi is a minimal prime ofJqpi for every i. Since the prime ideals of a
Noetherian ring have DCC, we can choosen such thatPi = Pn for all i ≥ n, and
it follows thatPn is in TI (x) and is contained inP.

Part (f ) is immediate because, once all of the finitely many primes inTI (x) are
minimal primes ofI [q] : cxq, part (e) shows that there cannot be any others.

To prove (g), note that we have by part (f ) that ifTI (x) = ∅ and if one con-
sidersJq = I [q] : cxq using a square locally stable test elementc, then the set of
minimal primes ofJq is empty for allq. This means that everyJq = R, which
says thatcxq ∈ I [q] for all q, and this implies thatx ∈ I ∗. The other direction is
clear. The last two conditions quite generally characterize whenx ∈ I ∗ for c a test
element.

LetR be a reduced Noetherian ring of positive prime characteristicp, let I be an
ideal ofR, and letx, y ∈R. Let P be a prime ideal inTI (x). We shall say thaty
clearsP fromTI (x) if P is not inTI (xy). We shall say that the idealJ ⊆ R clears
P from TI (x) if every element ofJ clearsP from TI (x).

The following result gives some basic facts about clearing. Part (g) is a bit dif-
ferent (though analogous) and will be needed in Section 4.

Lemma 3.4 (Clearing Lemma). LetR be a reduced Noetherian ring of positive
prime characteristicp, let I be an ideal ofR, and letx, y ∈R. Letc be a square
locally stable test element forR.

(a) y clearsP ∈ TI (x) if and only ify q/1∈ (I [q] : cxq)P for all q � 0. Hence,
the set of all elements ofR that clearP fromTI (x) is an ideal contained inP.

(b) Condition(C2) or (C2∗) for I andc implies that every primeP of TI (x) has
a power that clearsP fromTI (x).

(c) Suppose thatP1, . . . , Pn are finitely many primes ofTI (x) such that eachPi
has a power that clearsPi fromTI (x). LetQ be a family of primesQj none
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of which contains any of thePi. If the familyQ is finite then there is an ele-
menty of

⋂
N P

N
i for largeN not in any of theQj that clears all of thePi

fromTI (x).

(d) With hypotheses as in(c) except that the familyQ is countable, the same con-
clusion holds provided thatR has countable prime avoidance.

(e) Suppose thatTI (x) andTI (xy) are finite. Then
⋂
P∈TI (x) P ⊆

⋂
P∈TI (xy) P

and, ify clears at least one element ofTI (x), the inclusion is strict.
( f ) Every prime inTI (xy) contains a prime inTI (x).
(g) Let (R,m) be local and letz∈R be such thatz is not in an associated prime

of I [q] except possiblym andzqH 0
m(R/I

[q]) = 0 for all q. Then, for allu∈R
and allq, m is not an associated prime ofI [q] : uzq.

Proof. (a) The condition thatP not be inTI (xy) is simply thatP not be a mini-
mal prime ofI [q] : c(xy)q for q � 0; sinceP is minimal overI [q] : cxq (which
is smaller), this is equivalent to saying thatP does not containI [q] : c(xy)q for
q � 0 (i.e., that(I [q] : cxqy q)P = RP for q � 0), which holds if and only if
y q/1∈ (I [q] : cxq)P for q � 0. The second statement is then obvious.

Part (b) for condition(C2) is immediate from the definition. We may use(C2∗)
instead, becauseTI∗(x) = TI (x) andTI∗(xy) = TI (xy). Parts (c) and (d) are
obvious.

The first statement in (e) follows from the fact that ifTI (z) is finite then⋂
P∈TI (z) P =

√
I [q] : czq for all sufficiently largeq by Proposition 3.3(f ), taken

with the obvious inclusionI [q] : cxq ⊆ I [q] : cxqy q. The final statement is then
obvious.

For part (f ), note that any primeP in TI (xy) contains the radical ofI [q] : c(xy)q

for someq and that this contains the radical ofI [q] : cxq. HenceP contains at
least one minimal prime ofI [q] : cxq, and each of these contains an element of
TI (x) by Proposition 3.3(e).

For part (g) suppose thatm is associated toI [q] : uzq, and choosey /∈ I [q] : uzq

such thatmy ⊆ I [q] : uzq, that is,mzqyu ⊆ I [q] . Sincezq is not in any associated
prime ofI [q] exceptm, it follows that if we take a primary decomposition ofI [q]

thenmyu is in the intersectionI ′ of the primary components for primes other than
m. SinceI ′/I [q] is supported only atm, it follows thatmyu is killed by a power of
m. This shows thatyu represents an element inH 0

m(R/I
[q]) and sozqyu ⊆ I [q],

that is,y ∈ I [q] : uzq, a contradiction.

With these preliminary results, our characterization becomes straightforward.

Theorem 3.5. LetR be a reduced Noetherian ring of positive prime character-
isticp with a square locally stable test elementc ∈R◦, and letI ⊆ R be an ideal.
Then the following statements are equivalent.

(1) (IW )∗ = (I ∗)W for all multiplicatively closed setsW in R.
(2) Condition(C1) (or (C1∗)) holds forI and condition(C2) (or (C2∗)) holds

for I andc.
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Proof. We have already observed that (1) implies(C1∗), which obviously implies
(C1): see Proposition 3.3(a). Thus, we may ignore the parenthetical comment
about(C1∗) in the proof.

Assume (1) and suppose thatQ ∈ TI (x). ThenQ is a minimal prime ofI ∗ : x
and so we can chosen� 0 such thatQn ⊆ (I ∗ : x)Q, that is,Qn(x/1) ⊆ (I ∗)Q.
Then, for allq, c(Qn)[q]xq ⊆ I [q]

Q , that is,(Qn)[q] ⊆ (I [q] : cxq)Q. If t exceeds
the number of generators ofQn, then(Qn)tq ⊆ (Qn)[q] and so(C2) holds with
N = nt. Hence,(1)⇒ (C1) and(C2). Now (C2∗) is obviously weaker than(C2)
and so to complete the proof it suffices to show that(C1) and(C2∗) together im-
ply (1).

We assume otherwise and derive a contradiction. We may assume thatW =
R −Q for some prime idealQ by the results of Section 2 (or using the result of
[AHH, Lemma 3.5, p. 79]). Suppose thatx ∈ (IQ)∗ but x /∈ (I ∗)Q. We may as-
sume thatx ∈R. By Noetherian induction, among allx giving a counterexample
there is one such that

⋂
P∈TI (x) P is maximal. By Proposition 3.3(g), sincex /∈

I ∗ this is not the unit ideal; that is,TI (x) is not empty. LetP ∈ TI (x) be any ele-
ment. ThenP is not contained inQ, by Proposition 3.3(a), sincex ∈ (IQ)∗; using
(C2∗), we know from Lemma 3.4(b) thatPN clearsP from TI (x) for largeN.
Thus, we may choosey ∈PN −Q such thaty clearsP from TI (x). Sincey is in-
vertible inRQ, we still have thatxy /∈ I ∗RQ while xy ∈ (IRQ)∗ is clear. But the
intersection of the primes inTI (xy) is strictly larger than the intersection of those
in TI (x), by Lemma 3.4(f ), and this contradicts the hypothesis for the Noetherian
induction.

Remark 3.6. LetR be as in Theorem 3.5, and suppose that condition(C2) holds
inR but that localization fails to commute with tight closure forI ⊆ R. The proof
of Theorem 3.5 evidently shows that condition(C1) fails for I andx such thatx ∈
(IQ)

∗ − (I ∗)Q for some primeQ of R.

4. Growth of Frobenius Images and Localization

In this section we focus our attention on the behavior of certain functions related to
the Hilbert–Kunz function that we believe control the localization of tight closure
in the local case. We shall informally say that “localization holds forR” means
that tight closure commutes with localization for all ideals ofR.

As observed at the end of Section 2, to settle the localization problem for, say,
excellent reduced local rings, it suffices to handle the complete case; we may even
assume that the ring is complete with an uncountable residue field. Because lo-
calization holds if it holds modulo every minimal prime, it is sufficient to prove it
for the case of a complete local domain.

A complete local domainR is module-finite over a complete regular local ring
A with the same residue field. For sufficiently largeq, the extension of fraction
fields corresponding to the inclusionA1/q ⊆ A1/q [R] will be separable. If we
know that localization holds forA1/q [R] then it holds forR, by Proposition 2.14
as extended in Remark 2.15.
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Therefore, it is reasonable to study the problem of localization of tight closure
for a local domainR module-finite over an excellent regular local ringA and such
that the extension of fraction fields is separable; we shall call such extensions
generically étale.Since the case where the ring is complete implies all of the most
important local cases, little is lost by assuming that countable prime avoidance
holds. Likewise, as we shall see in Section 4.2, we may as well assume that there
is a strong test ideal.

We shall attack the problem of localization in this situation in the main result,
Theorem 4.5, of this section. Our goal is to show that, in a “minimal example”
of the possible failure of tight closure to commute with localization and in the
presence of a certain boundedness condition on behavior of local cohomology, lo-
calization becomes equivalent to an assertion about the asymptotic behavior of
lengths of certain sequences of modules defined in terms of iterates of the Frobe-
nius endomorphism. The length conditions, surprisingly, replace the finiteness
conditions on the setsTI (x) discussed earlier.

We need several preliminaries.

Definition 4.1. LetR be a reduced Noetherian ring of positive prime character-
isticp. If (R,m) is local then we shall say that condition (LC) holds forR if, for
every idealJ, there is an integerN such thatmNqH 0

m(R/J
[q]) = 0 for all q (ev-

idently, if one knows this for allq � 0, it follows for all q after enlargingN if
necessary).

If I, x and a locally stable test elementc are fixed, then for eachQ∈ TI (x) we
define

λq(Q) = λ(RQ/(I
[q] : cxq)Q)

qdim(RQ)
,

whereλ denotes length (in this case, over the local ringRQ).

Definition and Discussion 4.2. LetR be a reduced Noetherian ring of posi-
tive prime characteristicp, and letJ be an ideal ofR; J is calleda strong test
ideal for R if J meetsR◦, andJI ∗ = JI for every idealI of R. The main result
of [Hu2] shows that there is such an idealJ, which is also a defining ideal for the
singular locus in SpecR, provided that for every minimal primeP of R, the sin-
gularities ofR/P can be resolved by blowing up an ideal that defines the singular
locus. If blowing up such aJ0 resolves the singularities, then any high power of
J0 will be a strong test ideal. Such ideals are not unique, although there is a largest
one.

By a very recent result [V1], ifR is a reduced local ring of positive prime char-
acteristicp such thatR has a completely stable test element, then if(R,m) is
complete or if the test idealτ ism-primary (and in many other cases),τ is a strong
test ideal!

Suppose that one has a strong test idealJ with generatorsj1, . . . , jk. Then,
for every idealI, if u ∈ I ∗ thenuJ ⊆ IJ and we obtain the equationsujs =∑k

t=1 is,t jt . The usual determinantal trick for proving integral dependence on an
ideal shows thatu is integrally dependent onI using an equation of degreek, since
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u is an eigenvalue of thek × k matrix (is,t ). This gives an extremely useful uni-
form bound on the degrees needed for equations displaying that elements in tight
closures of ideals are in the integral closure of the ideal.

We refine the determinantal trick slightly. Suppose thatv andu are elements of
a domainR and thatJ 6= 0 andI ′ are ideals such thatJu∈ J(Rv+I ′) = Jv+JI ′.
Then we obtain thatu is an eigenvalue of ak× k matrix of the form(rs,t v+ i ′s,t ),
where thers,t ∈ R and thei ′s,t ∈ I ′. Let V be a new variable. The characteristic
polynomial of(UI − (rs,tV + i ′s,t ))may be expanded as a polynomial of total de-
greek in the variablesU andV that is monic inU ; the terms of degree smaller
thank have coefficients inI ′, which can be readily seen by thinking moduloI ′.
Thus, the characteristic polynomial yields a degree-k homogeneous polynomial
P(U, V ) with coefficients inR, monic inU, such thatP(u, v)∈ I ′.
Before proving our main theorem, two preliminary lemmas are needed.

Lemma 4.3. Let R be a reduced ring of prime characteristicp, module-finite
and torsion-free over a regular domainA. Let F be the fraction field ofA and
suppose thatF ⊗A R is étale(i.e. separable) overF; that is, supposeR is gener-
ically étale(or smooth) overA.

(a) For all q, A1/q [R] ∼= A1/q ⊗A R is flat overR. Moreover, there exist elements
d ∈ A◦ such thatdR ⊆ A[Rp] (equivalently, takingpth roots, d1/pR1/p ⊆
A1/p[R]).

(b) If d ∈A◦ is chosen so thatdR ⊆ A[Rp], then

d(q−1)/qR1/q ⊆ A1/q [R] for all q � 0.

(c) If c ∈A◦ is chosen so thatcR ⊆ A[Rp] (see(a)) then, for every idealI ofR
and allq, q ′, we have that

(I [qq ′ ] :R cx
qq ′) ∩ A ⊆ (I [q ′ ] :R cx

q ′)[q] .

(d) If d ∈ A is such thatdR1/q ⊆ A1/q [R] then, for allq ′, d q(I [qq ′ ] : xqq
′
) ⊆

(I [q ′ ] : xq
′
)[q] .

(e) Suppose, moreover, thatR has a strong test idealJ with k generators. Sup-
pose thatd ∈ A◦ is such thatdR ⊆ A[Rp]. Let c = dk, and letc ′ ∈ R◦.
Assume that there is an integerN > 0 such thatc ′mNq ⊆ (y q)+ (I [q] :R xq)
for all q � 0. Then there exists an integerL > 0 such that, for all largeq,
mNLq ⊆ (y q)+ (I [q] :R cxq).

Proof. Both statements in part (a) follow from Lemma 6.4 of [HH2, p. 50] and
the discussion that immediately precedes it, where it is shown that ifc ∈ A◦ is
such thatRc is étale overAc thenc has a powerc1 such thatc1R

1/p ⊆ A1/p[R].
We may then taked = cp1 .

(b) Writeq = pn. Let hq = (1+ p + · · · + pn−1)/pn. We use induction onn
to prove thatd hqR1/q ⊆ A1/q [R]. The casen = 1 is immediate. Assume the re-
sult for n and takepth roots; this yieldsdhn/pR1/qp ⊆ A1/qp[R1/p]. Multiplying
by d1/p gives that
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d(l+hn)/pR1/qp ⊆ A1/qp[A1/p[R]]

(using then = 1 case). Since(l + hq)/p = hpq, we have completed the inductive
step. Finally, 1+ p + · · · + pn−1= (q −1)/(p −1) ≤ q −1, whereq = pn.

(c) Let a ∈ I [qq ′ ] : cxqq
′
be inA as well, so thatacxqq

′ ∈ I [qq ′ ], and takeqth
roots to obtain

c1/qa1/qx q
′ ∈ I [q ′ ]R1/q .

It follows from part (b) thatc(q−1)/qR1/q ⊆ A1/q [R] and soa1/qcxq
′ ∈ I [q ′ ]A1/q [R].

From the flatness ofA1/q [R] overR we then obtain thata1/q ∈ I [q ′ ] :R cxq
′
(since

a ∈A, a1/q ∈A1/q ⊆ A1/q [R]), and now we may takeqth powers to get the stated
result.

(d) If uxqq
′ ∈ I [qq ′ ] then takingqth roots yields thatu1/qx q

′ ∈ I [q ′ ]R1/q .

Multiplying by d then shows thatdu1/qx q
′ ∈ I [q ′ ]A1/q [R] and so, withB =

A1/q [R], we havedu1/q ∈ I [q ′ ]B :B xq
′
B; this is (I [q ′ ] :R xq

′
)B becauseB is

flat overR, sodu1/q ∈ (I [q ′ ] :R xq
′
)A1/qR. Takingqth powers yields the desired

result.
(e) Consider an arbitrary elementz∈m. Forq � 0 and anyq ′,we may replace

q by qq ′ and thusc ′zNqq
′ ∈ (y qq ′)+ (I [qq ′ ] :R xqq

′
). Multiply by dq to obtain

dqc ′zNqq
′ ⊆ (d qy qq ′)+ dq((I [qq ′ ] : xqq

′
) ⊆ (d qy qq ′)+ (I [q ′ ] : xq

′
)[q],

where we are using (b) to show that, by (d),

dq(I [qq ′ ] : xqq
′
) ⊆ (I [q ′ ] : xq

′
)[q] .

Sincec ′(dzNq
′
)q ⊆ (dy q ′)q + (I [q ′ ] : xq

′
)[q] for all q ′ and all sufficiently largeq,

we have thatdzNq
′ ∈ ((dy q ′)+ (I [q ′ ] : xq

′
))∗ for all q ′.

BecauseJ is a strong test ideal,

JdzNq
′ ∈ J(dy q ′)+ J(I [q ′ ] : xq

′
).

As in the final paragraph of Section 4.2, this yields thatP(dzNq
′
, dy q

′
) ∈ (I [q ′ ] :

xq
′
), whereP(U, V ) = Uk + r1U

k−1V + · · · + rnV k is a homogeneous polyno-
mial of degreek in two variables overR monic inU. Factoring outdk = c, we
obtain thatcP(zNq

′
, y q

′
)∈ (I [q ′ ] : xq

′
) and hence thatP(zNq

′
, y q

′
)∈ I [q ′ ] : cxq

′

for all q ′. It follows thatzNkq
′ ∈ (y q ′) + I [q ′ ] : cxq

′
for all q ′. SetL equal tok

times the minimal number of generators ofmNk. ThenmNLq
′ ⊆ (mNk)[q ′ ], and so

mNLq
′ ⊆ (y q ′)+ I [q ′ ] : cxq

′
for all q ′.

Lemma 4.4 (Push-up Lemma).Let (R, m) be an excellent local domain of pos-
itive prime characteristicp, let I ⊆ R, and letx ∈ I. Let y be an element of
R that is not in any associated prime, with the possible exception ofm, of either
(I + xR)[q] or I [q] for anyq. LetP be a prime ideal inTI (x) of least heighth,
and letJ = I + yR. If h ≤ dimR − 2, then every minimal primeQ of P + yR
is in TJ(x).

Proof. Let c be a square locally stable test element. It suffices to prove thatQ

containsJ [q] : cxq for all largeq because, if so, then sinceQ is minimal over
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P +Ry it will have to be minimal overJ [q] : cxq as well. To see this, note that if
Q′ ⊂ Q strictly is a prime containingJ [q] : cxq thenQ′ will contain some mini-
mal prime overI [q] : cxq, and thenQ′ will contain some primeQ′′ in TI (x). But
the height ofQ′′ is at leasth and the height ofQ′ is at mosth, soQ′ = Q′′ is
forced. Buty ∈Q′ then gives a contradiction, asy is not contained in any associ-
ated prime ofI [q] except possiblym. Assume thatQ does not contain((I, y)[q] :
cxq). Thencxq ∈ J [q]

Q in RQ, and we can writecxq − rqy q ∈ I [q]
Q for somerq ∈

RQ. Once we have localized atQ, which is properly contained inm, y is not a
zero divisor on(I +xR)[q], since it is outside the associated primes of(I +xR)[q]

other thanm. We therefore obtain thatrq ∈ (I [q] + xq)Q. Thus, for somesq ∈RQ
there is an equation

xq(c − sqy q)∈ I [q]
Q .

This implies thatx ∈ (IQ)∗. (It suffices to work modulo a minimal prime of the
completion to check this, and we may apply [HH3, Thm. 3.1]; the point is that the
qth root of the image ofc − sqy q will have order approaching 0.) But thenx ∈
(IP )

∗. SinceP ∈ TI (x) this is a contradiction, which proves thatQ∈ TJ(x).
We are now ready for the main result of this section.

Theorem 4.5. Let (R,m) be a local domain, with countable prime avoidance,
that is module-finite and generically étale over an excellent regular local ringA.

Suppose thatR has a strong test idealJ 6= 0 with k generators. Suppose also
that, for allP 6= m, RP has the property that the tight closure of ideals commutes
with localization. Furthermore, assume thatR satisfies(LC) (see Definition 4.1).
Fix a square locally stable test elementc that is thekth power of an element ofA◦

multiplyingR intoA[Rp], as in Lemma 4.3(e). Then the following are equivalent:

(1) tight closure of ideals inR commutes with localization;
(2) for all ideals I and all x ∈ R, there exists anε > 0 such that, for allQ ∈

TI (x),

`(q, I, x,Q) = λ((RQ/(I [q] : cxq)Q)) > εqdim(RQ)

for all q � 0.

Proof. We first prove(1) ⇒ (2). Assuming (1), Theorem 3.5 gives us that
TI (x) is a finite set. Hence it suffices to prove that, for a fixedQ ∈ TI (x),
lim inf q λq(Q) > 0.

Letµ denote the number of generators ofR as anA-module. SetP = Q ∩A,
and letW = A−P. Let s be the degree of the residue field extension [RQ/QRQ :
AP/PAP ];note that, forRQ-modules, length overAP iss times the length overRQ.

Sincex /∈ (IQ)∗, we can chooseq ′ such thatcxq
′
/∈ I [q ′ ]

Q . Then:

sµ · `(q, I, x,Q)
≥ µ · λAP (AP/((I [q] : cxq)Q ∩ AP ) ≥ λAP (RW/((I [q] : cxq)Q ∩ AP )RW)
≥ λRQ(RQ/((I [q] : cxq)Q ∩ AP )RQ) ≥ λRQ(RQ/((I [q ′ ] : cxq

′
)Q)

[q/q ′ ]),
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by Lemma 4.3(c). But theǹ(q, I, x,Q) ≥ Cqdim(RQ) for someC > 0 for large
q, sinceλRQ(RQ/((I

[q ′ ] : cxq
′
)Q)

[q/q ′ ]) is asymptotic to a positive constant times
(q/q ′)dim(RQ) by the standard theory of Hilbert–Kunz functions; see [M]. This
completes the “⇒” direction.

We now consider the much more difficult converse direction. Assume the con-
ditions in (2). Notice that, because we have assumed that localization holds for
any proper localization ofR, we know that condition(C2) holds for allI, x, c
(if Q = m then we know the condition (LC), which is stronger). Suppose that
the result is false, and chooseI maximal such that the tight closure ofI does not
commute with localization. By Theorem 3.5 and Remark 3.6, there exists an ele-
mentx (and we may assume thatx ∈ (IQ)∗ − (I ∗)Q for some primeQ) such that
either(C1) or (C2) fails. Since we know the latter, there must be such anx with
TI (x) infinite. Notice that, if we replacex by zx for any choice ofz /∈ Q, then
the elementzx is still in (IQ)∗ − (I ∗)Q and soTI (zx) is still infinite. We shall
make several such replacements that will force increasingly controlled behavior
on TI (zx). Each time, we change notation and writex for what is reallyzx. We
shall eventually obtain a contradiction.

First apply condition (LC) to chooseN such thatmNq kills H 0
m(R/I

[q]) for all
q. Next, choosez∈mN not inQ and not in any associated prime, exceptm, of any
of the countably many idealsI [q] . Then our previous remark shows thatT(zx) is
still infinite. Moreover,m is not associated toI [q] : uzq for all q and any choice
of u in R, by Lemma 3.4(g).

We replacex by zx and can assume from now on thatm is not associated to
I [q] : cxq for all q. Furthermore, this remains true if we again replacex by z ′x for
somez ′.

We next replacex by zx for z /∈ Q so as to maximize the least heighth of a
prime inTI (xz). Thus, without loss of generality we may assume that, for allz∈
R − Q, replacingx by zx does not clear all the primes of heighth. Notice by
Lemma 3.4(f ) that, as we make such replacements, the least height occurring can
only increase. Since(C2) holds it is immediate from the clearing lemma and our
previous remark that there must be infinitely many primes of heighth.

We shall next show thath = d −1. Assumeh ≤ d − 2. We can choose an ele-
menty of m not in any associated prime (except possiblym) of any of the ideals
I [q] and(I + Rx)[q]; then the push-up lemma shows that, for every primeP of
heighth in TI (x), every minimal primeP ′ of P + yR is in T(I+Ry)(x). But lo-
calization holds inRP ′ , so that only finitely many primes inTI (x) can lie inside
P ′ (note thatTI (x) ∩ Spec(RP ′) = TIP ′ (x); see Proposition 3.3(c)). On the other
hand, the maximality ofI forcesT(I,y)(x) to be finite also. Since we have shown
that every one of the infinitely many primes inTI (x) of heighth lies inside some
P ∈ T(I,y)(x), this contradiction proves thath = d −1.

Henceforth, we may assume thath = d − 1. We choosey sufficiently general
as before. Recall thatc satisfies the hypothesis of Lemma 4.3(e); we shall need
this below. We writeJ sat for the inverse image ofH 0

m(R/J ) in R, that is, for the
union of all the idealsJ : mN asN varies.
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By Noetherian induction, the ideal(I, y) satisfies conditions(C2∗) and(C1).
We know that the ideals(I, y)[q] : cxq are either the whole ring or arem-primary
(sincey is not in any of the primes ofTI (x)), and there exists an integerN such
that, for allq, mNq ⊆ (I, y)[q] : cxq. Choose a general elementz∈mNq and write
czxq−rqy q ∈ I [q] for somerq ∈R. Thenrq ∈ (I [q]+(xq)) : y q ⊆ (I [q]+(xq))sat

by the choice ofy. Hence the quotient((I [q] + (xq)) : y q)/(I [q] + (xq)) is con-
tained inH 0

m(R/(I
[q] + (xq))), and there exists an integerB such thatmBq anni-

hilates this quotient. In particular,mBqrq ∈ (I [q]+ (xq)), and for generalu∈mBq
we can write

czuxq − sqx qy q ∈ I [q]

for somesq ∈R. Thenxq(czu− sqy q)∈ I [q] and it follows that

cm(N+B)q ⊆ (I [q] : xq)+ (y q)
for all q.

We now apply Lemma 4.3(e) to conclude that there is a constantD such that,
for all q,

mDq ⊆ (y q)+ I [q] : cxq.

In particular,λ(R/((y q)+ (I [q] : cxq))) ≤ λ(R/mDq), and for largeq it follows
that there is a constantC > 0 such that

λ(R/((y q)+ (I [q] : cxq)) ≤ Cqd.
Fix ε > 0 as in the statement of the theorem. LetNq be the number of minimal

primes aboveI [q] : cxq. We claim that

Nq ≤ C/ε,
whereC is as in the previous paragraph. Since every minimal prime aboveI [q] :
cxq is also minimal aboveI [q ′ ] : cxq

′
for q ′ ≥ q in our case, this means that the

minimal primes aboveI [q] : cxq stabilize for largeq and hence implies thatTI (x)
is a finite set.

Recall thatm is not associated toI [q] : cxq. The associativity formula for mul-
tiplicities gives that

λ(R/((y q)+ I [q] : cxq) = e(y q; R/(I [q] : cxq)) = qe(y; R/(I [q] : cxq))

and

qe(y; R/(I [q] : cxq)) = q
( ∑
P∈Min(I [q] :cxq )

e(y; R/P )λ(RP/(I [q] : cxq)P )

)
and hence

Cqd−1 ≥
∑

P∈Min(I [q] :cxq )

λ(RP/(I
[q] : cxq)P ) =

∑
P∈Min(I [q] :cxq )

l(q, I, x, P ).

ThusCqd−1 ≥ Nq · εq d−1 and henceNq ≤ C/ε, as claimed.
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5. Further Remarks and Questions

Discussion 5.1 (Finding Specific Test Exponents). Tight closure is known to
commute with localization in many specific cases: under mild conditions on the
ring, this is true for ideals generated by monomials in parameters and idealsI

such thatR/I has finite phantom projective dimension. We refer the reader to
[AHH, Sec. 8] for a detailed discussion of various results. The known results on
when tight closure commutes with localization therefore imply the existence of
test exponents for many ideals. However, little is known about how to determine
a specific test exponent for a given idealI. We want to raise this as a problem.
If one has a specific test exponent forc, I, then to test whetheru ∈ I ∗ one need
only test whethercuq ∈ I [q] for that one value ofq. We believe that the best hope
for giving a useful algorithm for testing when an element is in the tight closure
of an ideal lies in this direction. It would be of considerable interest to solve the
problem of determining test exponents effectively even for parameter ideals.

Discussion 5.2 (Algorithmic Testing for Tight Closure). We want to point out
that in certain instances there is an algorithm, in a technical sense, for testing
whether specific elements are in a tight closure. We do not believe that this par-
ticular method will ever be implemented. In any given instance where it may be
applied, it does eventually terminate, showing that the specific elementx either is
or is not in the tight closure ofI. However, we do not have a way of estimating
a priori how long testing may need to go on before the algorithm terminates.

The method may be applied to idealsI such that the tight closure ofI is the
same as the plus closure ofI. We review the latter notion. Suppose thatR is a
domain. IfI ⊆ J ⊆ R and there is an integral extension (equivalently, a mod-
ule-finite extension)S of R with J ⊆ IS, thenJ ⊆ I ∗. If R+++ denotes the integral
closure ofR in an algebraic closure of its fraction field (theabsolute integral clo-
sure; see [HH4] and [S] for further discussion), we can letI+ = IR+++ ∩ R and
thenI ⊆ I+ ⊆ I ∗. Is I ∗ = I+? Except in trivial cases whereI = I ∗ for all I,
we do not know whether this is always true in any normal domain. By a hard the-
orem (cf. [S]) it is true for parameter ideals, and a result of Aberbach [A] permits
one to extend this to idealsI such thatR/I hasfinite phantom projective dimen-
sion. The point we want to make is that for ideals such thatI ∗ = I+, which may
well be all ideals, there is an algorithm of sorts.

LetR be a countable Noetherian domain of prime characteristicp > 0 in which
basic operations can be performed algorithmically, with a known test elementc,

and such that one can test algorithmically for membership in an ideal in polynomial
rings overR, for example, a finitely generated domain over a finitely generated
field.

Fact. If R is as just described andI ⊆ R satisfiesI ∗ = I+, then one can test
algorithmically whethery ∈ R is in I ∗. In particular, one has such a test ifR is
an affine domain over a finitely generated field and ifI is generated by monomials
in elementsz1, . . . , zd generating an ideal of heightd.
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Here is the idea of the algorithm: one can effectively enumerate all the algebras
S1, . . . , Sn, . . . that are module-finite overR. Alternately, test whethery ∈ ISn and
whethercyp

n ∈ I [pn] . If y ∈ I ∗ = I+ then the former test eventually succeeds; if
y /∈ I ∗, the latter test eventually fails.

Of course, this method is awful: this algorithm only gives emphasis to the problem
of effective determination of test exponents.

Discussion 5.3 (Uniform Test Exponents). LetR be reduced and finitely gener-
ated over an excellent local ring. So far as we know, it is possible that for a given
locally stable test elementc there exists a test exponent valid for all idealsI si-
multaneously. It would suffice to give such an exponent for allm-primary tightly
closed ideals asm varies, and even for those that are maximal with respect to the
property of being tightly closed and not containing a given element of the ring,
since every tightly closed ideal is an intersection of such ideals.

A more modest question that seems more approachable is whether, givenc,

there exists a single test exponent for all ideals containing a givenm-primary ideal
J, because then one can construct a moduli space for the set of ideals.

Discussion 5.4. It is reasonable to ask whether localization can be proved for
suitable local domains (e.g., those that are excellent, have countable prime avoid-
ance, and are generically étale over a regular local ring) if, for all idealsI ⊆ R and
all x ∈R, there exist constantsε andδ greater than zero such that, for allq and for
all Q ∈ TI (x), δqdim(RQ) ≥ `(q, I, x,Q) ≥ εqdim(RQ). If localization holds then
the first inequality can be deduced from(C2); the second was shown in the proof
of Theorem 4.5 to follow from(C1). Thus, these conditions are necessary. It also
seems reasonable to ask whether`(q, I, x,Q)/qdim(RQ) approaches a (necessarily
positive) limit asq →∞.
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