Michigan Math. J. 47 (2000)

Dimension of Julia Sets of
Polynomial Automorphisms of 2

CHRISTIAN WOLF

1. Introduction

Let g be a polynomial automorphism 6. In a similar way as is done for poly-
nomials inC, we denote byk * the set of points irC? with bounded forward/
backward orbit undeg. We write J* = 9K+ andJ = J™ N J~. We refer toJ *
as the positive/negative Julia set and/itas the Julia set of. The set/* is un-
bounded, closed, and connected, whilés compact (see [BS2; BS3; FM; HO]
for more details).

The purpose of the main part of this paper is to show that, under the assump-
tion thatg is a hyperbolic mapping (i.e., the Julia skets a hyperbolic set fog),
the complete information about the Hausdorff dimensions'oindJ ~ is already
contained in the Julia setitself. In particular, the results of Theorem 4.1-4.4 can
be summarized by the following result.

TueoreM 1.1. Let g be a hyperbolic polynomial automorphism 6% and let
peJ. Then

(i) dimy J= =dimy W (p)NJ +2;
(i) 2 <dimy J* < 4;
(iii) dimy J = dimy J* +dimy J~ — 4.

The main idea in the proof of Theoretri(i) is to construct locally a lamination
of C? such that the intersection of its leaves witi can be represented as the
image of W:”*(p) N J under a particular holomorphic motion. It is then possible
to verify that locally the Hausdorff dimension @f* is arbitrarily close to that of
“BpyN T+ 2.
Only partial results are known about the Hausdorff dimensionstoaind J ~
(see [FoS; Wo]). One difficulty for a direct calculation is that bdth and J ~
are unbounded sets, and every restrictiog tf a sufficiently large (in the sense
of Hausdorff dimension) compact subset leads—either under forward or under
backward iteration—out of the set. On the other hand, a result of Verjovsky and
Wu [VW] shows that the Hausdorff dimension B£*(p) N J can be calculated
in terms of Bowen’s formula. Therefore, Theordmy(i) relates the Hausdorff
dimension of/ * to Bowen's formula.
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The (un)stable set of a hyperbolic set fo€&-diffeomorphism has Lebesgue
measure zero, except in the case of an attractor or repeller (see [Bo]). Theo-
rem 1.1(ii)thus provides an even stronger result for Julia sets of polynomial auto-
morphisms ofC?2.

Part (iii) of Theorem 1.1 is the main result of this paper and represents an inter-
section formula for the Hausdorff dimension.bflt turns out that the intersection
between/* andJ~ is “nice” in the sense of Hausdorff dimension.

In the second part of this paper we study dependence on the parameters. It is
shown in [VW] that the Hausdorff dimension dfis a real-analytic function of
the parameter of the mapping. This result can be easily extended by Theorem 1.1
to the positive /negative Julia S&t.

For an analytic family of hyperbolic rational mappings on the Riemann sphere,
it is shown by Ransford [Ra] that the Hausdorff dimension of the Julia set de-
pends subharmonically on the parameter of the mapping. We show the higher-
dimensional counterpart for polynomial automorphismg éf

CoroLLARY 5.5. The Hausdorff dimensions gf and J depend plurisubhar-
monically( psh on the parameter of the mapping.

By proving this, we also obtain a new non—potential-theoretical proof for the fact
that the Lyapunov exponent of the equilibrium measure depends pluriharmoni-
cally on the parameter of the mapping.

In the last part of this paper, we apply our results to polynomial automorphisms
of C? that are (in a particular sense) close to a hyperbolic polynom@l @ur re-
sults are essentially based on the work of Fornaess and Sibony [FoS], who showed
the existence of a holomorphic motion that moves the Julia set of the polynomial
holomorphically to a slice of *. We obtain that the Hausdorff dimension.bfs
close to that of the 1-dimensional Julia set (see Corollary 6.5). In addition, each
value in(3, 4) can occur for the Hausdorff dimensionot. This result is related
to a result of Shishikura [Sh] about the Hausdorff dimension of Julia sets in hy-
perbolic components of the Mandelbrot set.

The results of [RR] and [BS2] imply that every basin of attraction of a non-
trivial polynomial automorphism o€ ? is biholomorphically equivalent t82 and
nondense irC2. Domains with that property are called Fatou-Bieberbach do-
mains and are a subject of classical complex analysis. By the work of Stensgnes
[St], there exists a Fatou—Bieberbach domairCthwith smooth boundary. As
a counterpart to this remarkable result, we show in Corollary 6.8 that ferall
(0, 1) there exists a Fatou—Bieberbach domai€hwhose boundary has Haus-
dorff dimension 3+ s. These Fatou-Bieberbach domains are obtained as basins
of attraction of hyperbolic quadratic polynomial automorphism€éf In view
of Theoreml.1(ii), our method cannot be applied to obtain a Fatou—Bieberbach
domain inC? whose boundary has maximal Hausdorff dimension equal to 4.

This paper is organized as follows. In Section 2 we present the basic definitions
and notations. In Section 3 we show how holomorphic motions can be used to ob-
tain estimates for the Hausdorff dimension of particular subse@€ oBection 4 is
devoted to the proof of Theorem 1.1 and represents the main part of this paper. In
Section 5 we study the dependence on parameters for the Hausdorff dimensions of
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the Julia sets; the main part of Section 5 is devoted to proving the facts that imply
Corollary 5.5. The results of Section 4 and 5 are applied in Section 6 to polyno-
mial automorphisms dof? that are small perturbations of polynomialsGn

2. Notation and Preliminaries
In this paper we consider polynomial automorphismg éfof the form

g =810 08&n. (2.1)
Each mapping; is a generalized complex Hénon mapping, that is, a mapping of

the form
gi(Z, U)) = (w9 Pl(w) + a[Z), (22)

where P; is a complex polynomial of degrek > 2 anda; is a nonzero complex
number. Ford = (dy, ..., d,,) we denote byH, the space of mappings of the
form (2.1). Note that the degree gfc H, is equal to[ |-, d;. Eachg € H, de-
pends ork complex and therefore onkZeal variables for some positive integer
k. We can therefore identif§{; as a subspace &%.

Itis a result due to Friedland and Milnff¥M] that every polynomial automor-
phism of C? is conjugate either to a finite composition of elementary mappings
(with trivial dynamics) or to a finite composition of generalized Hénon mappings
(with nontrivial dynamics). Since dynamical properties are invariant under conju-
gation, each polynomial automorphism®f with nontrivial dynamics is repre-
sented ir{, for somed.

The function deDyg is constant irC2. We can thus restrict our considerations
to the volume-decreasing cageletDg| < 1) and the volume-preserving case
(|detDg| = 1), because otherwise we can consiget.

As pointed out in the introduction, a mappipg H, is calledhyperbolicif J
is a hyperbolic set of (see [BS2] for the details). We denote by Hythe sub-
space of all hyperbolic mappings#,. The mostimportant feature of hyperbolic
sets is that we can associate with each ppiits local stable/unstable manifold
Ww:"(p). We denote byWw*/*( p) the (global) stable/unstable manifold pf If
g € Hyp,, then the (local) stable/unstable manifolds are in fact complex mani-
folds (see [BS2]).

It is shown in [BS2] thatg € Hyp, is an Axiom A diffeomorphism and that
J is a basic set of. Furthermore/ has index 1; that is, digE,’* = 1 for all
p € J. Here E;'* denotes the stable/unstable subspacg isfduced by the hy-
perbolic spllttmg It follows thatDg( p) ES and Dg(p)| . can be identified as

C-linear mappings front to C. Therefore,g|j is a stable and unstable confor-
mal diffeomorphism. For the definition of stable and unstable conformality and
further details, see [P] and [Wo].

Finally, we recall the definition of the Hausdorff dimension. Assyiigs) is a
metric space and C X. Fors > 0 we define the-dimensional outer Hausdorff
measureof A to be

HY(A) = suplnf{Zdlam(Uk)“ AC U Uy, diam(Uy) < g}

>0 k=1 k=1
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where “diam” denotes the diameter with respect to the métrichen
dimg A =inf{s : H(A) = 0} = sup(s : H’(A) = oo}

is called theHausdorff dimensionf A.

3. Holomorphic Motions

In this section we introduce the concept of holomorphic motions, which has be-
come a valuable tool for the analysis of dynamics of rational mappings on the Rie-
mann sphere. In particular, Julia sets of rational mappings are moved holomorphi-
cally in hyperbolic parameter space (see [MSS]). Usually holomorphic motions
are defined for subsets of the Riemann spli@rélere we restrict our considera-
tions to subsets df.

DerFiniTION 3.1, Letr > 0, X ¢ C, andT = D(0, r). A holomorphic motion
of X isamapping:: T x X — C such that
(i) (0, ) =idy;
(if) h(z,-) is one-to-one for alt € T; and
(iiit) h(-, x) is holomorphic for allx € X.

We consider as a complex time parameter. Note that no continuiti@f -) is
required in the definition.

Let X, Y be metric spaces. We call a bijective mappjfigX — Y ana-Holder
homeomorphisifiboth f and f ~*are Holder-continuous with Holder exponent

In general there exists no Fubini theorem for Hausdorff measures. It is there-
fore in general not possible to obtain an upper bound for the Hausdorff dimension
of a set from the Hausdorff dimension of its level sets (see [Ma] for further de-
tails). However, if the level sets are moved holomorphically into each other, we
obtain also an upper bound for the Hausdorff dimension of the set.

THEOREM 3.2. Letd > Oandleth: T x X — C be a holomorphic motion oX.
Assumé J, . o {1} X h(t, X) C C?is bounded. Then there exisis> 0 such
that for all 0 < r1 < ro we have

dimy | J {1} x h(t. X) e[dimy X + 2, dimy X + 2+ 5). (3.3)
teD(0,r1)

Proof. Let § > 0. The holomorphic motiork can be extended to a holomor-
phic motion ofC (see [SI]). On the other hand, thedemma [MSS] implies that
h(t, -) is aK(|t])-quasiconformal homeomorphism. Hor < % aresult of [BeR]
implies

1+ 3j¢]
1-3)¢°
By the Mori inequality (see [A]), we deduce that the mappirg -) is aK (|¢]) -

Hoélder homeomorphism. This implies that dim (z, X) is close to diny; X when
lz| is small. Therefore, we conclude by [Ma, Thm. 7.7] that

1<K(1) =

(3.4)
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dimy U {1} x h(t, X) > dimy X + 2
teD(0,r1)
forall0 <ry <r.
For 0 < r1 < r we defined,, = UteD(O,rl){t} x h(t, X) C C? and a mapping

hey: DO, 1) X X — A,y (t,x) > (1, h(t, x)).

It follows from the definition thak,, is onto. Letp denote the spherical metric on
C. By [BeR, Cor. 2], there exisf;, C2; > 0 anda(ry) < 1 with a(ry) — 1for
r1 — 0 such that

p(h(ty, x1), h(t2, x2)) < C1p(x1, x2)*"Y + Colts — 17|

for all x1, xo € X and allzy, 1, € D(0, r1). The setA, is bounded. Using that the
spherical metric restricted to a bounded set is equivalent to the Euclidean metric,
we deduce that the mappihg is Holder-continuous with Holder exponenir,).

We have diny D(0, r1) x X = 2+dimg X. Hence we can choosg > 0 such that
dimgy A,, <dimy X + 2+ 6 for all 0 < r1 < ro. This completes the proof. O

REMARK. Itis possible to show that Theorem 3.2 also holds if the4seis un-
bounded. Since we do not use this fact in the sequel, we leave the proof for the
reader.

4. The Intersection Formula

In this section we present the intersection formula for the Hausdorff dimension of
Julia sets of polynomial automorphisms®#f. This result, Theorem 4.3, is the
main result of this paper. For the proof we construct locally a laminatiob®f
whose leaves intersected wiflt are images OWSM/S(p) N J under a particular
holomorphic motion. Throughout this sectieny 0 is sufficiently small that the

stable manifold theorem holds f&F./"(p).

THEOREM 4.1. Letg e Hyp, andp € J. Then
dimy J* =dimy WX(p)NJ + 2.

Proof. The result of [VW] implies that*/* = dimy W./*(p)NJ does not depend
on p ande. Let us now consider a fixed € J.

Assertion 1. For alb > O there exists a@g > 0 such that forall0 < ¢ < g9

dimg () Wi@elt"+2.1"+2+39). (4.5)

geWt(pnJ

Proof of Assertion 1Let§ > 0. If ¢ is small then there exists a domanc
C containing 0 and a biholomorphic mappipgrom a neighborhood c C?2 of
p to a neighborhood/ ¢ C? of 0 such thai(W/(p)) ¢ D x {0} ¢ C? and
¢(p) = 0. The stable manifold theorem implies that the local stable and unsta-
ble manifolds are uniformly transverse (see [KHa]). This property is invariant
under a biholomorphic change of coordinates. Hence we can conclude that the
setsp(Wi(g)) with ¢ € W)(p) N J are uniformly transverse t® x {0}. We
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defineX = (W} (p) N J); for convenience, we use also the notatl¥fi(x) =
<p(W;(<p‘1(x))) for x € X. Letr be a small positive real number afid= D(0, r).
We define a mapping

h:TxX—C, (t,x)—Pr(Wix)NCx{t}).

Here Pg denotes the projection to the first coordinate. It is well known that the
property of transverse intersection between two submanifolds remains invariant
if one of the manifolds makes a small changeCihtopology. This shows that

is well-defined ifr is small enough. Obviousl¥(0, -) = idx. For all g1, g2 €
W(p) N J with g1 # g2, we haveW:(q1) # W (g2). This follows becausgb

is an expansive mapping and/s@, -) is one-to-one for all € 7. The local stable
manifoldsW/(¢) depend continuously aopin C*°-topology, and this property is
invariant under a biholomorphic change of coordinates. Makiagdr smaller if
necessary, we may conclude th#i(x) is transverse t€ x {0} for all x € X; note

that W(x) is a complex 1-dimensional submanifold ©f. Thereforei(-, x) is
holomorphic for allx € X. Thus we have shown théatis a holomorphic motion.

We now apply Theorem 3.2 to the holomorphic motlorNote that Hausdorff di-
mension is invariant under a biholomorphic change of coordinates. This implies
assertion 1.

Assertion 2. For alls > 0, there exist a neighborhootd c J of p and an
& > Osuch that
dimy [ Wi@) el + 2.1 +2+9).
qelU

Proof of Assertion 2Let§ > 0, and assume that, is chosen as in assertion 1.
We defines = ¢p/2. The Julia set/ has a local product structure (see [BS2]);
hence there exists a neighborhddd- J of p such that the mapping

H:U— Wi(p)NJ x Wi(p)nJ,
g — (Wi(p) N Wi (q), Wi (p) N Wi(q))

is a well-defined homeomorphism. Applying the triangle inequality yields

Uwac U wi@.

qeU qus“o(p)ﬂJ

Therefore, assertion 2 follows from assertion 1.

Proof of the TheoremLet § > 0. Assertion 2 implies that there exigt, ...,
pn €J andey, ..., g, > 0 with the property (4.5) such that for

e = mind & En
= 5

and for allp € J the local stable manifoltV/( p) is contained in¥; (¢) for some
€ Wi (pr) NJ and somé € (1, ..., n}. This implies

dimy | Wi(p) e[t + 2.1 + 2+ 6).

peJ
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It is a result of Bedford and Smillie [BS2] tha¥*(J/) = J*. We may thus con-
clude by [Bo, Prop. 3.10] that

Uwp =77
pelJ
On the other hand, we have

U g"( U W;(p)> =Jww.

neN peJ peJ
Hence
dimy Jt e[2 4+ 1", 241" +6).
Sinces was arbitrary, the proof is complete. O

We obtain the analogous result for the Hausdorff dimensiosioby applying
Theorem 4.1 to the mapping™

THEOREM 4.2. Letg e Hyp, andp € J. Then

Let f be an Axiom A diffeomorphism of a real surface andAelbe a basic set for

f. Itis aresult of [T] that the Hausdorff dimension and the upper box dimension
of W:"(x) N A coincide. This result is generalized in [Ba] even to asymptotically
conformal Axiom A homeomorphisms, so it holds in particularfar Hyp,. On

the other hand, it follows by a result of [Ha] (see also [KHa]) that the holonomy
mapping ofg € Hyp, is Lipschitz-continuous. Combining these results yields

dimy J = dimg W'p) N J +dimg Wi(p)NJ ="+ (4.6)

see [P] and [WO0]. Note that (4.6) was already applied in [VW] and [FO].
The nexttheoremis the intersection formula for the Julia sgt iturns out that
the intersection betweeh™ andJ ~ is “nice” in the sense of Hausdorff dimension.

THEOREM 4.3 (Intersection Formula).Letg € Hyp,. Then
dimg J = C“I'T‘IHJJr +dimgJ~ —4.

Proof. The result is a direct consequence of Theorem 4.1, Theorem 4.2, and
(4.6). O

It is even for basic sets of Axiom A diffeomorphisms of real surfaces not known
if an analogous intersection formula holds.

Theorem 4.11 of [Bo] implies that the stable/unstable sef tias Lebesgue
measure zero (see Section 1). The next theorem provides an even stronger result:
the Hausdorff dimension of* is strictly less than 4.

THEOREM 4.4. Letg e Hyp, andp € J. Then
(i) 0 <dimy W“(p)nJ <2

(i) 2 <dimy J* < 4;

(i) 0 <dimgJ < 4.
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Proof. It is sufficient to show (i), because (ii) and (iii) follow immediately from
(i) and Theorem 4.1, Theorem 4.2, and (4.6).

Proof of (i). Without loss of generality, we consider only the unstable mani-
fold. That dimy W) (p) N J > 0 is well-known; see [VW] and [Wo]. Lep € J
ande > 0 small. We writer* = dimy W2(p) N J. Let us assume’ = 2. The
mappingg is a stable and unstable conformal diffeomorphism. By [P, Thm. 22.1]
we thus obtaind2(W(p) N J) > 0. Note thatH? denotes the 2-dimensional
Hausdorff measure defined in Section 2. Analogously to the proof of Theorem 4.1,
there exist a sek C C and a holomorphic motioh: T x X — C such that
U, er{t} x h(z, X) is mapped diffeomorphically tQquwgu(p)m W:(g). We have
H?(X) > 0. Observe that the mappirig, -) is a quasi-conformal homeomor-
phism. Therefore, [As, Thnil.1] implies that there exists & > 0 such that
H?(h(t, X)) > Cif |t| is small enough. Thus, by Fubini’s theorem, we conclude
thatH *(\U,c, {1} x h(t, X)) > O. Inthat case the Lebesgue measuré dvould
be positive, which is a contradiction to Theorem 4.11 of [Bo]. O

REMARK. The statementdigJ* > 2 holds true even without the assumption of
hyperbolicity. This was derived in [FoS] by showing that the Green funafién

is Holder-continuous. In the volume-decreasing case we also hayetim< 4
without the assumption of hyperbolicity (see [WO0]).

In [VW] the authors claim that ding W:’“(p) N J < 1. Using the local product
structure ofJ, this would imply that/ is a Cantor set. Counterexamples to this
statement are mappings in Hypith a connected Julia set (considered in [BS5])
and mappings in Hypwith an attracting periodic orbit (see [W0]). In the proof of
[VW] there is a confusion related to the difference between real and complex Ja-
cobian determinants. However, if the proof in [VW] is corrected, it also provides
dimy W/ (p)nJ < 2.

5. Dependence on Parameters

Let A denote an open subset©f. We identify g = g, for a € A and denote by
J* andJ, its Julia sets respectively. The cases of interest are that eitisetlyp,
or a disk inC. Note that we have also used as a specific parameter, the Jaco-
bian determinant of;, but there should be no confusion when we alsodias a
general parameter.

As mentioned earlier"’s = dimy W*/*(p) N J is independent op € J and
e > 0forg e Hyp,. Moreover, itis shown in [VW] that"/* is given by the unique
solution of

P(gl|,. Ft¢"") = 0. (5.7)

HereP(g e ) denotes the topological pressuregd)j (see [Wa] for the definition)
and¢"” € C(J,R) is defined byp"/*(p) = log| Dg(p)| ,us|. Equation (5.7) is
usually calledBowen’s formula.The mapping: 1 is real-analytic in Hyp

(see [VW]). Hence Theorem 4.1 and 4.2 immediately imply the following.

CoroLLARY 5.1.  The mapping: — dimg J* is real-analytic inHyp,.
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For g € Hyp, we denote byl/I(J, g|J) the space of alg-invariant Borel ergodic
probability measures supported #nand for eactu € M(J, g| ]) the correspond-
ing positive Lyapunov exponemt(u) is defined by

.1
A(p) = lim - / logl Dg" |l djs. (5.8)

The multiplicative ergodic theorem of Oseledets [O] and the submultiplicativity
of the operator norm guarantee the existence of the limit definiing . Note that
A(w) is in fact positive, sincg is a hyperbolic set fog of index 1. This implies
that everyw € M(J, g ,) is a hyperbolic measure.

The next result provides information about the dependendé (of, ¢| ,) and
A(u) on the parameter of the mapping.

ProposITION 5.2. Let (g.)qep be a holomorphic family itHyp,, whereD is
a disk in C with center0. Then there exist > 0 and a family of mappings
(T.)aen(.r), Where eachl, is a bijection fromM (Jo, go|JO) to M(J,, ga|Ja),
such that

(1) (g0|] , o) and (ga|J , T,(io)) are measure-theoretically isomorphic for all

o € M(Jo g0|J ) and alla € D(O, r); and
(2) forall uoe M(JO, go|j ), the mapping: — A(7,(110)) is harmonic.

Proof. The result of Jonsson [J] implies that there exist 0 and a holomorphic

motion’: D(0, r) x Jo — C? that preserves the dynamicsgbﬂ L More pre-

cisely, we have the following statements:

(i) for all @ € D(O, r), the mapping:(a, -) is a homeomorphism fron, to J,,
such tha;ga|J oh(a,) = h(a,-)o go| ,;

(i) A, p)is hoIomorph|c for allp € Jo.

Note that heré: denotes a holomorphic motion in complex dimension 2 (unlike

our previous considerations). For ale D(0, r) we defineT, by

Ta(MO) = h(aa ')*H’Ov (59)

whereh(a, -),.juo(A) = po(h(a, -)~X(A)) for all Borel setsA c J,. It is easy
to see that, is a bijection between (Jo, go|j) and M(Ja,ga|1) It fol-
lows directly from the definition of, that (go|j /1,0) and (ga|J T, (Mo)) are
measure-theoretically isomorphic (property (1)).

It remains to show property (2). Consider a fixegl e M(Jo, g0|10). Fora e
D(0, r), we have

AT o)) = fim - [ logDg < hta. ) g (5.10)
(see e.g. [Ma, ThmlL.19]). Fora € D(0, r) andn € N, we define

1
M@ = = [ 1og1 DgZ < . o (5.11)
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Property (iii) of the holomorphic motioh implies that, for a fixedp € Jp, the
mappinga — Dg!(h(a, p)) is holomorphic. Therefore — A,(a) is harmonic
for all n € N. The operator norm is submultiplicative. Thus

(n+m)Apim(@) <nhy(a) +mhy(a) (5.12)

foralln, m e Nand alla € D(0, r). This implies tha{ A2: (a)),en IS a decreasing
sequence of harmonic mappings; hence the mappirg A(T, (o)) is also har-
monic. This completes the proof. O

For g € Hyp, we denote by (g) the equilibrium measure gf (see [BS2] and

[BS4] for the definition) and byA(g) the positive Lyapunov exponent of(g).

It is shown in [BS4] via potential-theoretical arguments that) is the unique

measure of maximal entropy f@rand thatA(g) depends pluriharmonically on
the parameter of. We obtain a new proof for the latter result.

CoroLLARY 5.3. The mapping — A(g,) is pluriharmonic inHyp,.

Proof. We use the notation of Proposition 5.2. Consider a fixed mapging
Hypy, and assume thdt is a complex line in parameter space contairgggBy
Proposition 5.2, the mapping— A(T,(u1(go))) is harmonic in a neighborhood
of 0 in L. The equilibrium measure is the unique measure of maximal entropy,
which implies thatl, (1 (go)) = 1(g.). This completes the proof. O
We now present the main result of this section.

u/s

THEOREM 5.4. The mapping — ¢, is plurisubharmonic irHyp,.

Proof. Without loss of generality, we show only the result fér First we con-
sider the situation for a single mappigge Hyp,. The variational principle (see
[Wa]) implies

P(g

7’ _t¢u) = sup <hu,(g) —1 / d)u dﬂ)v (513)

neMJ,glr)

whereh,(g) denotes the measure-theoretic entropy wiith respect tqu. Since
g is hyperbolic on/, there exists &7 > 0 such that

C1 < /45” du (5.14)
forall w e M(J, g|,). Hence (5.7), (5.13), and (5.14) imply that
"= sup <¢> (5.15)
wem g\ [ log| Dg| .|| du

SinceE} is of complex dimension 1, we obtain

n—1
IDg" (P pull = [T P2 (P | (5.16)
P k=0 g (p)
foralln eNandallp € J. Thus
1
/ 109] Dg . s = / log| Dg” | .| i (517)
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foralln e Nandallu € M(J, g|,). Sinceg is hyperbolic onJ, there exists a
C, > 0 such that

C2|Dg"(p)ll < | Dg"(p) el = 1Dg"(p) (5.18)
for all p € J and alln € N. Hence (5.8), (5.17), and (5.18) imply

du (5.19)

Eu

A(p) = / log| Dg
forall we M(J, g|,). By (5.15), we conclude that

s (M> (5.20)
weM, g1\ A(w)

Let go € Hyp, and letL be a complex line in parameter space contaigingrhen
there exists a holomorphic family,).cp C Hypq, whereD is a disk with cen-
ter 0 inC such that{g, : a € D} is a neighborhood 0§ in L. We now apply
Proposition 5.2 to the familyg,).c p. Equation (5.20) implies

th = sup (—hT“(“O)(g“)> = sup (—h’“’(gO) ) (5.21)
10eM (Jo.gol19) \ ATa(10)) 10eMJo. g0l 1) \ ATa(10))

The mappingz — A(T, (1)) is harmonic by Proposition 5.2. Note that—
x~Lis a convex function oR*. This implies that the function — A(T, (o))t
is subharmonic (see [Kli, Thm. 2.6.6]). Thereforg,is given by the supremum
over a family of subharmonic functions @f The mapping: — ¢! is real-analytic
and thus, in particular, continuous. We conclude that the mappirgr” is sub-
harmonic. This completes the proof. O

t =

ReMark. Ransford [Ra] showed that the Hausdorff dimension of the Julia set
of an analytic family of hyperbolic rational mappings on the Riemann sphere de-
pends subharmonically on the parameter. Hence Theorem 5.4 can be considered
as the higher-dimensional counterpart (for polynomial automorphisr@g)fo
Ransford’s result. It should be mentioned that some of the ideas in [Ra] are used
in the proof of Theorem 5.4.

CoroLLARY 5.5. The mappinga — dimy J, anda + dimy J.* are plurisub-
harmonic inHyp,.

Proof. For g, € Hyp, we have dimy J, =t +t}; see (4.6). On the other hand,
it is shown in Theorems 4.1 and 4.2 that gimi* = 74" 4 2. Therefore, the re-
sult follows immediately from Theorem 5.4. O

6. Small Perturbations of Polynomials in C

In this section we show that the Hausdorff dimensiongbfandJ are related to

the Hausdorff dimension of the Julia set of a hyperbolic quadratic polynomial in
C, provided the corresponding complex Hénon mapping is a small perturbation
of the polynomial.
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Let us recall some definitions for quadratic polynomials (see e.g. [CG]}: Eor
C we consider the complex polynomiBl(z) = z2 + ¢. We will sometimes iden-
tify the map P, with the complex number. We useJ. to denote the Julia set of
P.; let M denote the Mandelbrot set. We céallc M ahyperbolic component
of M ifitis a connected component of the set of@#t M such thatP. is hyper-
bolic. In particular, ifC is the set of alt € C such thatP, has an attracting fixed
point, then we calC themain cardioid.

In the following we will consider a slightly different normal form for the com-
plex Hénon mapping as in (2.2). Fau,c) € C? we consider the mapping
ga.c: C?2 — C2defined by

8a,c(z, w) = (Pe(2) +aw, az).

If a # 0 theng, . is conjugate to a complex Hénon mapping in the usual nor-
mal form (2.2). For smallaz| we considelg, . to be a small perturbation of the
polynomial P.. We will also use the notatiod, ., Jj}c, andkK fe for the sets cor-
responding to the mapping,... In addition we define/*. , = J£. N C x {w}
andK*, , =KX NC x {w}.

The dynamics of,. . has been observed to be related to the dynamié} &dr
small values ofa|. The following result compiles some known results from [FoS]

and [HO].

THEOREM 6.1. Let C be a hyperbolic component of the Mandelbrot get, C
and R > 1. Assume thaP. has an attracting cycle of peridd Then there exists
anaog(c, R) > 0such that for all0 < |a| < ao(c, R) the following statements
hold.

(i) ga.c has an attracting cycle of period, {ps, ..., pi}; the interior of K",
consists ofk connected components, each of which is the immediate basin of
attraction of one ofpy, ..., px.

(i) If we Cwith |w| < R, thenK_ isaconnected compact set.

(iii) ga.. is hyperbolic. '

(iv) There exists a holomorphic moti@n: D(0, ag(c, R)) x J. — C such that
hi(a, J.) = Prl(chC,O), and there exists a holomorphic motiest D (0, R) x
Pri(J;". o) = Csuch thatiz(w, Pr(J;7, o) =P/ ).

(v) The Hausdorff dimension of’, satisfies the inequality

log 2

2<dimypJ  <2— —.
logla|

ReEMARK. The result of Theorem 6.1(iii) is extended in [BS4] to finite com-
positions of generalized Hénon mappings. In particular, one can deduce from
[BS4] that there exists an > 0 such thatg, . is hyperbolic for all(a, c) €
P((0,¢),r) \ {0} x D(z,r), whereP((0, ¢), r) denotes the polydisk with center

(0, ¢) and radius..

LemMma 6.2. Letc € C and leta € C be a repelling periodic point oP,. with
period k € N. Then there exist ang(c, @) > 0 and a holomorphic mapping
h: D(0, ag(c, )) — C? such that, ifa # 0, thenk(a) is a saddle point og,, .
with periodk and#(0) = («, 0).
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Proof. The proof for the existence of a mappihgvith the property thak (a) is a
periodic point with period is similar to that given for an attracting periodic point
in [FoS, Lemma 3.10]. Analogous to [FoS], we have

ga.c(z,w) = (PXR@) + Pz, w), Oz, w)),
where all the coefficients af andQ contain positive powers of. Note thatx is
a repelling fixed point oP*. Thus|(P*)'(«)| > 1 This implies that ifzo(c, &) is
small enough therﬁ)gﬁ,c(h(a)) has at least one eigenvalue of modulus larger than
1. The mapping,. . is volume-decreasing foa| < 1. This implies that the mod-
ulus of the other eigenvalue is smaller than 1. Theref(e) is a saddle point
of g4.c- O

LEMMA 6.3. Letg e Hyp, and p € J, and letU c C? be a neighborhood of.
Thendimyg JTNU =dimy JT.

Proof. We choose > 0 such that

wi= |J WwWi@cu
gew(p)nJ
Analogous to the proof of Theorem 4.1, we conclude thatdi#i = dimy J*.
This completes the proof. O

We will now show that the Hausdorff dimension.gf . is related to the Hausdorff
dimension of/,, if |a| is small.

THEOREM 6.4. Let C be a hyperbolic component of the Mandelbrot get, C
andé > 0. Then there exists aig(c, §) > 0 such that for all0 < |a| < ao(c, §)

we have
dimy J . e (dimy J. +2 -4, dimy J. + 2+ 6).

Proof. Let R and ag(c, R) be as in Theorem 6.1. Applying Theorem 6.1(iv)
and makingag(c, R) smaller if necessary, we conclude (similarly to the proof
of Theorem 3.2) that

dimy J, o€ (dimy J. — 8/2, dimy J, +6/2) (6.22)

forall 0 < |a| < ap(c, R). Leth, be the holomorphic motion in Theorem 6.1(iv).
By Theorem 3.2, there exists an- 0 such that

dimH< U J;_C,w> eldimy J/ o+ 2 dimg J o +2+8/2)
lw|<r
forall 0 < |a| < ag(c, R). Making againag(c, R) smaller if necessary, we can
assure by Lemma 6.2 they,,,_, J,". , contains a saddle orbit for all @ |a| <

a,c,w

ao(c, R). Thus Lemma 6.3 implies
dimy J;7 e[dimy J7 o+ 2, dimg I o+ 2+ 68/2).
Settingao(c, 8) = ap(c, R) and applying (6.22) completes the proof. O

CoroLLARY 6.5. LetC be a hyperbolic component of the Mandelbrot set and let

ceC. Then
lim dimy J, . = dimy J..

la]—0
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Proof. For small|a| we deduce from Theorem 6.4 that dini;, is close to
dimy J. + 2. On the other hand, we conclude by Theorem 6.1(v) thatdifn. is
close to 2. Therefore, the result follows immediately from Theorem 4.3. [

REmMARK. Even if the Hausdorff dimensions of the Julia skt. and the 1-
dimensional Julia sef. are very close, their topological structures are completely
different. If, for instanceg lies in the main cardioid, theh. is a quasi-circle while
Ja.c is locally the product of a curve and a Cantor set.

Let C be a hyperbolic component of the Mandelbrot set. Theorem 6.1 implies that
there exists a connected componéptof Hyp, that containg” in its closure. If

C is the main cardioid then we will refer to the corresponding compo@gnas

the main cardioid for complex Hénon mappings.

LemMma 6.6. The cardinality of attracting periodic points is constant in every
connected compone@ty of Hyp,.

Proof. By [BS2, Thm. 5.6], eacly € Cy has finitely many attracting periodic
points. Since hyperbolicity is an open property and since attracting periodic points
are hyperbolic, we can conclude that the mappipgp ¢ — #{« : « is an attract-

ing periodic point ofg} is locally constant; becaug®; is connected, itis constant

in Cy. [

We recall thattj,‘/ff denotes the Hausdorff dimension of the unstable/stable slice
of g4.c.

CoROLLARY 6.7. Let Cy be the main cardioid for complex Hénon mappings.
Then

(i) inf{z} .1 (a,c)eCy} =1
(i) sup{zy . : (a,c)eCy} =2

(iii) inf {z3 . : (a,c) € Cy} = 0.

Proof. (i) By Theorem 6.1(i), we know there existgg, ., € Cy With an attract-

ing fixed point. Therefore Lemma 6.6 implies thatgll. in Cy have an attracting
fixed point. We can thus apply a result of [Wo] that implies that the topological
dimension oW (p) N J,,. is equal to 1 for alla, ¢) € Cy. This gives the required
lower bound fort} .. On the other hand, we conclude by Theorem 4.1 and Theo-
rem 6.4 that" , is close to 1ifla| is small.

a

(ii) There exists a sequence );cn in the main cardioid such that
lim dimgy J,, =2
1—> 00
(see [Sh]). Hence the result follows from Theorem 4.1 and Theorem 6.4.
(i) The result follows immediately from Theorem 4.2 and Theorem 6.1(\).

RemARk. We do not have a nontrivial upper bound fgr.. However, Theo-
rem 4.2 and a result of [Wo] imply that, fof . close to 2, it would be necessary
that|a| be close to 1.
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A domain2 c C" (n > 2) is calledFatou—Bieberbach domaifit is biholomor-
phically equivalentt€” andQ # C". Itis a well-known fact that basins of attrac-
tion of automorphisms of” are biholomorphically equivalent ©” (see [RR]).
This implies that basins of attraction of mapping%4p are Fatou—Bieberbach do-
mains. See [BS1; RR] for further information about Fatou—Bieberbach domains.

We obtain the following result about the Hausdorff dimension of boundaries of
Fatou—Bieberbach domains@r.

CoroLLARY 6.8. Forall s €[0, 1) there exists a Fatou—Bieberbach dom&nc
C2 such thatdimy 92 = 3 + 5.

Proof. By a result of Stensgnes [St], there exists a Fatou—Bieberbach domain in
C? with smooth boundary. This implies the result wher= 0. Suppose now

that 0 < s < 1. We conclude by Theorem 4.1 and Corollary 6.7 that there exist
(a1, c1), (az, ¢2) in the main cardioid for complex Hénon mappings such that

dimH Jt

e <345 <dimy Jf

.o
According to Corollary 5.1, there exists, ¢) € Cy such that diny J(;fc =3+s.

Theorem 6.1 and Lemma 6.6 imply that . has an attracting fixed pointe C2.
By [BS3, Thm. 2] we havéW*(a) = J;/.. This completes the proof. O
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