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A Note on Brieskorn Spheres and
the Generalized Smith Conjecture

ZH1 LU

1. Introduction

Let f: C" — C be the complex polynomial function defined by
f(zlﬂ "'7Zn) = Zfl + te _}_ZZH,

where thes, are integers greater than 1. Then the origin is the only isolated sin-
gular point of the hypersurfacg(0). In [9] Milnor showed that the intersection
Ya = X(ay, ..., a,) of £71(0) with a sufficiently small spher§, centered at the
origin is a(2n — 3)-dimensional smooth manifold and alsdis— 3)-connected,
wherea denotes the-tuple(ay, ..., a,) of thea,. Foreach I k < n, ¥, admits

a periodic diffeomorphisnd}, of perioda, defined by

Tk(Zla---vZka--'vzn)Z (Zlv---awkzk»uwzn)

such that the fixed point set @f is X5, , wherewy is a primitivea, th root of unity
andé; = (ay, ..., d, ..., a,). For the complemenE, — X4, of 5, in X5, we
first show the following theorem, which implies thag, is knotted inX,.

THEOREM 1.1. Foreachl <k <nandn > 4, £, — X4, does not have the same
homotopy type as®.

Itis well known that, for many suitabl@ = (ay, ..., a,) andn # 3, X, is a topo-
logical sphere (called a Brieskorn sphere). Milnor [9] and Brieskorn [1] gave the
necessary and sufficient condition f&r, to be a topological sphere. We use a
simple method of determining whethE, is a topological sphere in terms at=

(ai, ..., a,) given by Brieskorn. By choosing a speck (ay, ..., a,) such that

¥, andXy, (for somek) are topological spheres, we obtain a counterexample for
the generalized Smith conjecture in the topological category.

THEOREM 1.2. Letm andn be integers such that > 2 andn > 5. For a =
(2,...,2,2m -1, 2m +1, m), the Brieskorn manifoldE, and 5, are the topo-
——

n—3
logical spheres of dimensio2& — 3 and2n — 5, respectively. Th& ,,-actionT,
on X, has the fixed point sef,, that is knotted inz,.
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Brieskorn spheres can be exotic spheres or the spheres with standard differentiable
structure (here called the standard spheres). By using the Arf invariant and the sig-
nature, Brieskorn [1] gave methods for determining whekhgis an exotic sphere

or a standard sphere. We also obtain counterexamples of the generalized Smith
conjecture with fixed point set being a differentiably knotted standard sphere in
the standard sphere. Let

o = 2244221 _ 1) . numeratof4B,/1),

whereB; denotes théth Bernoulli number. Then our result is stated as follows.

TueoreM 1.3. Letm and! be integers such that > 2 and/ > 2.
(i) Fora=(2,...,2,2mo; +1, 2mo; — 1, m), the Brieskorn manifoldX ; and
S ——’
21-1
Ya,,, are the standard spheres of dimensidis-1and 4/ — 1, respectively.
TheZ ,-action T4 on X, has the fixed point sef s, ,, which is differen-
tiably knotted inX ,.
(i) Fora=(2,...,2,2mo; +1, 2mo; — 1, m), the Brieskorn manifoldX , and
—————
21-2
Ya,,, are the standard spheres of dimensidis- 1and 4/ — 3, respectively.
TheZ,-action T» 41 0N X4 has the fixed point set 4, ,,, which is differen-
tiably knotted inX ,.

ReMARK. The original Smith conjecture, which states that no periodic transfor-
mation of $° can have a tame knottest as its fixed point set, has been solved
provided that the transformation is required to be a diffeomorphism (see [10]).
However, its higher-dimensional analogs—known collectively as the generalized
Smith conjecture (i.e., for ak > 3 no periodic transformation f” can have

the tame knotted "2 as fixed point set)—are false in either category, as Giffen
[3], Sumners [12], and Gordon [4] have shown using different methods. The idea
of using Brieskorn manifolds to construct counterexamples is indicated by Davis
[2]. The theorems just stated giexplicit counterexamplesf periodic actions

on Brieskorn manifolds for any period > 1, these examples are of interest be-
cause of their algebraic nature. The Brieskorn manild,, a,, a3) is not, in
general, simply connected. For exam@&_2, 3, 5) is the Poincaré dodecahedral
space S@)/I (see [9]). Hence the counterexample using a Brieskorn manifold
is given for odd-dimensional spheres of dimension not less than 7. Of course, our
method is different from those methods used in [3], [12], and [4].

Theorem 1.1 is proved in Section 2. In Section 3 we review the work of
Brieskorn—that is, the necessary and sufficient conditionXfgrto be a topo-
logical sphere and the methods that deterniiheto be an exotic sphere or a
standard sphere—and then give the proofs of Theorems 1.2 and 1.3. Through-
out this paper, for a real numbér [d] denotes the greatest integer not greater
thand. For integers:, b > 1, by (a, b) we mean the greatest common divisor of
a andb.
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2. Proof of Theorem 1.1

LetEa(r) = {zeC" | z{'+---+z% =r}andE, = Ea(D). Itis easy to see that,
fort £ 0, E4(¢) is diffeomorphic toE, (also see [11]). In a natural way there
exist diﬁeomorphisms,i: Ea — E, defined by

ELZL ey Tl o es Zn) = (Z0y ey @42y vy Tn),s

wherew; = exp(2ri/ay)andl<! < a;. All suchg,ﬁ cangenerate agroup denoted
by Qa, and we letZ,, = {exp2nli/ay) |1 =1, ..., ax}; thenQa = [[_1Z4,
the direct product of cyclic groups. Again I€t denote the integer groupring on
Q,, and let/, be the ideal in/, generated by elementsfls;, + - - - + E,f’f’l. The
following two results are due to Pham [11] and Brieskorn [1].

LeEmMA 2.1 (Pham). Fori #Qandn — 1, H;(E;; Z) = 0andH,_1(Eg; Z) =
Ja/I5 are nontrivial.

LemmMma 2.2 (Brieskorn). For eacha = (a, ..., a,) andn > 3, E;is (n — 2)-
connected.

In order to prove the Theoreirl, welook atL = f~1(0)—{ze f~1(0) | zx = 0}.
LEMMA 2.3. X, — X, is a deformation retract of..
Proof. Consider the diffeomorphism: (£, — £3,) x Rt — L defined by

P21y ooy o t) = (Y20, .. 17,

Given anyz = (zg, ..., z,) € L, there exists only ong determined by such that

(%23, ..., 1;"2,) € B0 — Ta,. In particular, ifz € 5, — Ts, thenr, = 1

Now consider the map': L x [0,1] — L defined by
F(z,s) = (t;s/’“zl, el t;s/“”zn).

Then F satisfies the following three properties: (#Xz,0) = zfor z € L;
(i) F(z,) € Za — Xy, for z e L; (iii) F(z,s) = zforze X4 — Zy,. This
means exactly thadf, — X4, is a deformation retract af. O

Letp: L - C* = C — {0} be the map defined by

p(ZL---,Zk,...,Zn):Zk'

It is obvious thatp~Y(s) = Ea,(—s%) for eachs € C*.

LEmMA 2.4. The mapp: L — C*is alocally trivial fiber bundle oveC* with
typical fiberp=1(1) = E4,(-1).

Proof. Consider the diffeomorphisiy : L — L defined by

hl‘(zla LR} Zn) = (tl/alzla LR} tl/anzn)a
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wheret € C* — R~ and+Y% denotes the single-value branch witf1 = 1.
Clearly h, carries each fibep~(s) diffeomorphically onto the fibep=1(+Y/s).
Givensg € C*, let U be a small neighborhood of in C*. Then the correspon-
dencey : U x p~(so) — p~XU) defined by

V(S (200 -+ s Zk—1, SO 2kt -+ Tn))

= h(so’ls)”k(zl’ eees Zk=1, S0 Zkt1s -+ +» Zn)

=((sg s)ak/alzl’ o (Sals)ak/(ak—l)zk_b s, (So_ls)ak/(ak+l)2k+1, o, (sals)ak/anzn)
maps the produdf x p~(so) diffeomorphically ontgp—X(U). Thereforep: L —
C*is alocally trivial fiber bundle ove€*. O

Proof of Theoreni.1. We look at the fiber homotopy exact sequence (in integer
coefficients) forp: L — C* in Lemma 2.4:

e > nn—l(C*) - ﬂn—Z(Eék(_l)) - 7[11—2(14) - nn—Z(C*) — > 772((:*)
— 7m1(Eq(=1) — m1(L) — 71(C*) — 7o(Ea(=1) — mo(L) — mo(C").

Note thatS* andC* have the same homotopy type, aBgl (—1) is diffeomorphic
to E4,. By Lemmas 2.1 and 2.2 and the Hurewicz theorem, we obtain from the
above exact sequence that

mi(L) =Em(C*) = Z,
Tn—2(L) = m,_2(Ea(=D) = H,_2(Eg,(-1) = Ja, /I, 0,
andr;(L) = m;(84,(—1) = 0 wheni is less tham — 2 andi # 1. Moreover, by
Lemma 2.3 we have that (X, — X3,) = 0 wheni is less tham — 2 andi # 1,

and
m1(Xa — Xg,) EZ, Tp—2(Xa— Xa) = Ja /1a, Z0.

This implies thatt, — X5, is not homotopy equivalent t§". O

3. Brieskorn’s Work and Proofs of Theorems 1.2 and 1.3

Following the notation of Brieskorn [1], f@= (ay, ..., a,) letGa=G(ay, ..., a,)

be the graph with: vertices having weightay, ..., a, and with edges defined
as follows. Two vertices with weights;, a; in G, are connected by an edge if
gcd(a;, a;) > 1. The vertex with weight; is an isolated point of; if (a;,a;) =1
for all a; # a; in G,. Brieskorn proved the following.

ProrosiTioN 3.1. Letn be an integer greater thaB and leta = (ay, ..., a,) be
ann-tuple of integers greater thah ThenX, is a topological sphere if and only
if the graphG, satisfies one of the following two conditions

(i) G4 has at least two isolated points
(il) Gahas oneisolated point and one compongrtonsisting of an odd number
of vertices, each with even weight, and with, a;) = 2fori # j in K.

Now it is very easy to show Theorem 1.2.
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Proof of Theorem 1.2t is obvious thatm, 2m — 1) =1, (m,2m +1) =1, and

(2m—1, 2m+1) = 1; thus the vertices with weights2—1 and 2n +1 are two iso-

lated points in the grap& (2, ..., 2,2m — 1, 2m + 1, m). Hence it follows from
——

Proposition 3.1(i) that n-3
a=2%2(2,...,2,2m—-12m+1Lm) and X, =X(2,...,2,2m—12m+1)
N—— S——
n—3 n—3

are topological spheres. As stated in Section 1, in a naturabwadmits a peri-
odic diffeomorphism of period: defined by

(21, oy Zn-1,2n) —> (2L -+, Tn—1, ®Zy)

such that the fixed point set is exactlls,, wherew is a primitive mth root of

unity. By Theorent.1, ©, — =5, does not have the same homotopy typesas

This means that the complement does not meet the unknotting criterion (see [4;
6]) and hencez s, must be knotted irE,. This completes the proof. O

Next we review the methods given by Brieskorn for determining whether a topo-
logical spherez, is an exotic sphere or a standard sphere.

Let bP,;, denote the group (under the connected sum operation) fial 1)-
dimensional homotopy spheres, each of which bounds a parallelizable manifold.
Using the Arf invariant and the signature, Kervaire and Milnor [7] showed that for
oddk, bPy; = 0 0orZ,; for evenk = 21 # 2, bPy is a cyclic group of ordes; /8,
whereo; is the number stated in Section 1. Now Mt (7)) denote the intersection
of Ea(¢) with a small ball

D. ={zeC" | |z12 + -+ |z, < €7}

andM,(1) = M,. ThenM, is a parallelizable manifold with boundaiy/, diffeo-
morphic toX, (see [1, Lemma 7]). WheR,(ay, ..., a,) is a topological sphere,
Brieskorn calculated the Arf invariantM,) and the signature(M,) of M,, thus
showing that each elementaP,; is represented by son¥,. Brieskorn’s results
are stated as follows.

ProposiTION 3.2. Let ¥, = X(ay, ..., a,) be a topological sphere with > 3.

(i) Whenn is even,c(M,) = 1 (mod 2 if and only if the graphG, has only
one isolated point with weight, = £+3 (mod 8 and only one component
K consisting of an odd number of vertices, each with even weight, and with
(a,-,aj) = 2fori ;ﬁ j in K.

(i) Whenn is odd,oc(M,) = o} — o, . Hereo denotes the number of alt
tuples(ja, ..., jo) WithO < ji < axand0 < Y} _;(jx/ax) <1(mod 2; o
denotes the number of alttuples(jy, ..., j,) with0 < j; < ay and -1 <
> ke1(jr/ar) <0 (mod 2.

REMARK. It should be pointed out that, for even if ¢(M;) = 0 (mod 2
then 2, is diffeomorphic to the standard sphere (see [7]), and Levine [8] ob-
tained thatc(M,) = 0 (mod 2 if and only if Ay(—1) = £1 (mod 8 and that



330 ZH1 LU

c(My) = 1 (mod 2 if and only if Aj(—1) = 43 (mod 8, where A,(¢)
Moo <o (t —@f - - @) With wy = exp(2ri/ay). For oddn = 21 +1, if o'(Ma)
0 (mod 0y) then X, is diffeomorphic to the standard sphere (see [7]).

Now let us discuss counterexamples of the generalized Smith conjecture for a
knotted standard sphere in a standard sphere. To prove Theorem 1.3, we need the
following results.

Leta, b, c be positive integers greater than 1. By, b, ¢) we denote the num-
berofall(x,y,z)withl<x <a-11<y<b-11<z=<c-1 and
0 < x/a+y/b+z/c <1 FromO0 < x/a + y/b + z/c < 1 we have 0<
bex 4+ acy + abz < abe. Furthermore,

l<x< —abc—acy—abz =a 1—X—E .
bc b ¢
Again from1— y/b — z/c > 0, it follows that 1< y < b(1— z/c). Therefore we
have the following lemma.

LEMMA 3.3. T(a,b,¢) = 1o o 12 1< y<pa—zjegl@@ — y/b = z/0)].

Hirzebruch and Mayer [5, p. 108, Proposition] gave a computation method of
o(My) for a = (2,...,2,a,b) with the positive odd numberg, » > 1 and
—— —’
21-1
(a, b) = 1 For our purposes we give a computation formular6#1,) for a =
(2,...,2,a,b, c) such that the positive integer numberd, ¢ > 1 are relatively
——

212
prime.

ProrosiTioN 3.4. Leta=(2,...,2,a, b, ¢) such that the positive integer num-
— —

21-2
bersa, b, ¢ > 1are relatively prime. Then

o(My) = (=1)'"H4r(a, b, ¢) — (a — 1)(b — D(c — D)}.

Proof. By the definitions ol ando in Proposition 3.2, it is easy to see that
o(My) = (=1)!"lo(My) wherea = (a,b,c). Now we need only consider
o(My). Since the equations

f+X+£=1or2

a b ¢
have no solutions if(x, y,z) |1<x <a—-11<y<b-11<z=<c-1},
we have

o;,' +o, =(@—-D®b-D(c-1.

Using the mapping defined by, y,z) — (¢ — x,b — y, ¢ — z), we conclude
that the two sets

4

{(x,y,z)|0<f+
a b

+5<L15x5a—L15y§b—L1§zgc—4
C

and
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{(x,y,z)|2<;—C+%+§<3,1SXS0—1,1§)’§17—L 1§Z§c—1}

have the same number of elements. By Lemma 3.3, it follows that
o; = 2I'(a, b, ¢)
and thus
o(Ma) = (=)' "o (My)
=(-)"Noy — oy
= (=D)'"Y4r'(a,b,c) — (@ = Db — D(c — 1)}. O
CoroLLARY 3.5. Leta=(2,...,2, 2uv + 1 2uv — 1, u) with integersu > 2
——
andv > 1. Then 2-2
o(My) = (-1 2u(?® — v
Proof. By Proposition 3.4, we need only comput€uv + 1, 2uv — 1, u). Hence,
by Lemma 3.3 we have
' Cuv + 1, 2uv — 1, u)

- 3 |:(2uv 1 1)(1— 2uvy— - - 5)}

1<z<u-11<y<[(Ruv—1)(A—z/u)]

2y z
= 2 1—2vz—y— -1
Z Z [ wt e <2uv—l+u>i|

1<z<u-11<y<2uv—2vz-1

By direct calculations, we see thatly < uv — vz — limplies O< 2u2vy71 +2<1
2y

and thatuw — vz <y < 2uv — 2vz — limplies 1< 5~ + £ < 2. Therefore,

I'Cuv+212uv —1Lu) = Z { Z Quv — 2vz — y)

I<z<u-1%1<y<wuv—vz-1

+ > (2uv—2vz—y—1)}

uv—vz<y<2uv—2vz—1

=2v Z (u—2)(uv —vz -1

1<z<u-1
2 —DQ2u -1
=vu(u 3)(“ )—vu(u—l).

Furthermore, we have
o(My) = (=)' Y4r 2uv + 1, 2uv — 1, u) — duv(uv — 1)(u — 1)}

v(2u — 1) B
3

= (—1)Z%u(u2 — o U

= (=)' Yuv(u — 1){ 1— (uv — 1)}
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Proof of Theorem 1.3(i)By Proposition 3.1(i),X, and X4, , are topological
spheres because the vertices with weights2+ 1 and 2no; — 1 are two isolated
points in the graph
G(2,...,2,2mo; + 1, 2mo; — 1, m).
e —
21-1

It follows from Proposition 2(i) thatc(M;) = 0 (mod 2 and thusX, is a

(4 4+ 1-dimensional standard sphere. Now we prove Mg}, is a standard
sphere, too. Choose= 2 andv = mo;/2 in Corollary 3.5 (note that; is even);

we have
o(May,,) = (—1)'2m*s/ =0 (modo))

and thusX,,,, , is a standard sphere. Finally, as in the proof of Theorem 1.2, by
Theorem 1.1 we conclude that, admits a periodic diffeomorphism of peried
with differentiably knotteds in X, as fixed point set. O

az+2

Proof of Theorem 1.3(ii)Similarly to the proof of Theorem 1.3(i), we need merely

to show thatz, and X4, , are standard spheres far= (2,...,2,2mo; + 1,
21-2

2mo; — 1, m). First, it is easy to see from Propositions 3.1(i) ang(B.that X,

andX,,,, are topological spheres; in particulars,,,, is a(4l — 3)-dimensional

standard sphere. Taking= m andv = o; in Corollary 3.6, it follows that

o(My) = (-1 gm(m® — 1o =0 (mod o)
and thusX, is a standard sphere. This completes the proof. O
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