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A Note on Brieskorn Spheres and
the Generalized Smith Conjecture

Zhi Lü

1. Introduction

Let f : Cn→ C be the complex polynomial function defined by

f(z1, . . . , zn) = za1
1 + · · · + zann ,

where theak are integers greater than 1. Then the origin is the only isolated sin-
gular point of the hypersurfacef −1(0). In [9] Milnor showed that the intersection
6a = 6(a1, . . . , an) of f −1(0) with a sufficiently small sphereSε centered at the
origin is a(2n− 3)-dimensional smooth manifold and also is(n− 3)-connected,
wherea denotes then-tuple(a1, . . . , an) of theak. For each 1≤ k ≤ n, 6a admits
a periodic diffeomorphismTk of periodak defined by

Tk(z1, . . . , zk, . . . , zn) = (z1, . . . , ωkzk, . . . , zn)

such that the fixed point set ofTk is6âk ,whereωk is a primitiveakth root of unity
andâk = (a1, . . . , âk, . . . , an). For the complement6a − 6âk of 6âk in 6a, we
first show the following theorem, which implies that6 âk is knotted in6a.

Theorem 1.1. For each1≤ k ≤ n andn ≥ 4, 6a−6âk does not have the same
homotopy type asS1.

It is well known that, for many suitablea = (a1, . . . , an) andn 6= 3, 6a is a topo-
logical sphere (called a Brieskorn sphere). Milnor [9] and Brieskorn [1] gave the
necessary and sufficient condition for6a to be a topological sphere. We use a
simple method of determining whether6a is a topological sphere in terms ofa =
(a1, . . . , an) given by Brieskorn. By choosing a speciala = (a1, . . . , an) such that
6a and6âk (for somek) are topological spheres, we obtain a counterexample for
the generalized Smith conjecture in the topological category.

Theorem 1.2. Letm andn be integers such thatm ≥ 2 andn ≥ 5. For a =
(2, . . . ,2︸ ︷︷ ︸

n−3

,2m−1,2m+1, m), the Brieskorn manifolds6a and6ân are the topo-

logical spheres of dimensions2n− 3 and2n− 5, respectively. TheZm-actionTn
on6a has the fixed point set6ân that is knotted in6a.
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Brieskorn spheres can be exotic spheres or the spheres with standard differentiable
structure (here called the standard spheres). By using the Arf invariant and the sig-
nature, Brieskorn [1] gave methods for determining whether6a is an exotic sphere
or a standard sphere. We also obtain counterexamples of the generalized Smith
conjecture with fixed point set being a differentiably knotted standard sphere in
the standard sphere. Let

σl = 22l+1(22l−1−1) · numerator(4Bl/l),

whereBl denotes thelth Bernoulli number. Then our result is stated as follows.

Theorem 1.3. Letm andl be integers such thatm ≥ 2 andl ≥ 2.

(i) For a = (2, . . . ,2︸ ︷︷ ︸
2l−1

,2mσl +1,2mσl −1, m), the Brieskorn manifolds6a and

6 â2l+2 are the standard spheres of dimensions4l+1and4l−1, respectively.
TheZm-actionT2l+2 on6a has the fixed point set6â2l+2, which is differen-
tiably knotted in6a.

(ii) For a = (2, . . . ,2︸ ︷︷ ︸
2l−2

,2mσl +1,2mσl −1, m), the Brieskorn manifolds6a and

6 â2l+1 are the standard spheres of dimensions4l−1and4l−3, respectively.
TheZm-actionT2l+1 on6a has the fixed point set6â2l+1, which is differen-
tiably knotted in6a.

Remark. The original Smith conjecture, which states that no periodic transfor-
mation ofS3 can have a tame knottedS1 as its fixed point set, has been solved
provided that the transformation is required to be a diffeomorphism (see [10]).
However, its higher-dimensional analogs—known collectively as the generalized
Smith conjecture (i.e., for alln > 3 no periodic transformation ofSn can have
the tame knottedS n−2 as fixed point set)—are false in either category, as Giffen
[3], Sumners [12], and Gordon [4] have shown using different methods. The idea
of using Brieskorn manifolds to construct counterexamples is indicated by Davis
[2]. The theorems just stated giveexplicit counterexamplesof periodic actions
on Brieskorn manifolds for any periodm > 1; these examples are of interest be-
cause of their algebraic nature. The Brieskorn manifold6(a1, a2, a3) is not, in
general, simply connected. For example,6(2,3,5) is the Poincaré dodecahedral
space SO(3)/I (see [9]). Hence the counterexample using a Brieskorn manifold
is given for odd-dimensional spheres of dimension not less than 7. Of course, our
method is different from those methods used in [3], [12], and [4].

Theorem 1.1 is proved in Section 2. In Section 3 we review the work of
Brieskorn—that is, the necessary and sufficient condition for6a to be a topo-
logical sphere and the methods that determine6a to be an exotic sphere or a
standard sphere—and then give the proofs of Theorems 1.2 and 1.3. Through-
out this paper, for a real numberd, [d ] denotes the greatest integer not greater
thand. For integersa, b > 1, by (a, b) we mean the greatest common divisor of
a andb.
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2. Proof of Theorem 1.1

Let4a(t) = {z∈Cn | za1
1 +· · ·+ zann = t} and4a = 4a(1). It is easy to see that,

for t 6= 0, 4a(t) is diffeomorphic to4a (also see [11]). In a natural way there
exist diffeomorphismsξ lk : 4a→ 4a defined by

ξ lk(z1, . . . , zk, . . . , zn) = (z1, . . . , ω
l
kzk, . . . , zn),

whereωk = exp(2π i/ak)and1≤ l ≤ ak.All suchξ lk can generate a group denoted
by�a, and we letZ ak = {exp(2πli/ak) | l = 1, . . . , ak}; then�a = ∏n

k=1 Z ak ,

the direct product of cyclic groups. Again letJa denote the integer groupring on
�a, and letIa be the ideal inJa generated by elements 1+ ξk + · · · + ξak−1

k . The
following two results are due to Pham [11] and Brieskorn [1].

Lemma 2.1 (Pham). For i 6= 0 andn− 1, Hi(4a;Z) ∼= 0 andHn−1(4a;Z) ∼=
Ja/Ia are nontrivial.

Lemma 2.2 (Brieskorn). For eacha = (a1, . . . , an) andn ≥ 3, 4a is (n − 2)-
connected.

In order to prove the Theorem1.1, welook atL = f −1(0)−{z∈ f −1(0) | zk = 0}.
Lemma 2.3. 6a −6âk is a deformation retract ofL.

Proof. Consider the diffeomorphismϕ : (6a −6âk )× R+ → L defined by

ϕ(z1, . . . , zn, t) = (t1/a1z1, . . . , t
1/anzn).

Given anyz= (z1, . . . , zn)∈L, there exists only onetz determined byz such that
(t
−1/a1
z z1, . . . , t

−1/an
z zn) ∈ 6a − 6âk . In particular, ifz ∈ 6a − 6âk thentz = 1.

Now consider the mapF : L× [0,1]→ L defined by

F(z, s) = (t−s/a1
z z1, . . . , t

−s/an
z zn).

Then F satisfies the following three properties: (i)F(z,0) = z for z ∈ L;
(ii) F(z,1) ∈ 6a − 6âk for z ∈ L; (iii) F(z, s) = z for z ∈ 6a − 6âk . This
means exactly that6a −6âk is a deformation retract ofL.

Let p : L→ C∗ = C − {0} be the map defined by

p(z1, . . . , zk, . . . , zn) = zk.
It is obvious thatp−1(s) = 4âk(−s ak ) for eachs ∈C∗.

Lemma 2.4. The mapp : L→ C∗ is a locally trivial fiber bundle overC∗ with
typical fiberp−1(1) = 4âk(−1).

Proof. Consider the diffeomorphismht : L→ L defined by

ht(z1, . . . , zn) = (t1/a1z1, . . . , t
1/anzn),
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where t ∈ C∗ − R− and t1/ai denotes the single-value branch with 11/ai = 1.
Clearlyht carries each fiberp−1(s) diffeomorphically onto the fiberp−1(t1/ak s).

Given s0 ∈ C∗, let U be a small neighborhood ofs0 in C∗. Then the correspon-
denceψ : U × p−1(s0)→ p−1(U) defined by

ψ(s,(z1, . . . , zk−1, s0, zk+1, . . . , zn))

= h(s−1
0 s)ak(z1, . . . , zk−1, s0, zk+1, . . . , zn)

= ((s−1
0 s)

ak/a1z1, . . . ,(s
−1
0 s)

ak/(ak−1)zk−1, s,(s
−1
0 s)

ak/(ak+1)zk+1, . . . ,(s
−1
0 s)

ak/anzn)

maps the productU×p−1(s0)diffeomorphically ontop−1(U). Therefore,p : L→
C∗ is a locally trivial fiber bundle overC∗.

Proof of Theorem1.1. We look at the fiber homotopy exact sequence (in integer
coefficients) forp : L→ C∗ in Lemma 2.4:

· · · → πn−1(C∗)→ πn−2(4âk(−1))→ πn−2(L)→ πn−2(C∗)→ · · · → π2(C∗)
→ π1(4âk(−1))→ π1(L)→ π1(C∗)→ π0(4âk(−1))→ π0(L)→ π0(C∗).

Note thatS1 andC∗ have the same homotopy type, and4âk(−1) is diffeomorphic
to 4 âk . By Lemmas 2.1 and 2.2 and the Hurewicz theorem, we obtain from the
above exact sequence that

π1(L) ∼= π1(C∗) ∼= Z,

πn−2(L) ∼= πn−2(4âk(−1)) ∼= Hn−2(4âk(−1)) ∼= Jâk /Iâk 6∼= 0,

andπi(L) ∼= πi(4âk(−1)) ∼= 0 wheni is less thann− 2 andi 6= 1. Moreover, by
Lemma 2.3 we have thatπi(6a − 6âk )

∼= 0 wheni is less thann− 2 andi 6= 1,
and

π1(6a −6âk )
∼= Z, πn−2(6a −6âk )

∼= Jâk /Iâk 6∼= 0.

This implies that6a −6âk is not homotopy equivalent toS1.

3. Brieskorn’s Work and Proofs of Theorems 1.2 and 1.3

Following the notation of Brieskorn [1], fora= (a1, . . . , an) letGa=G(a1, . . . , an)

be the graph withn vertices having weightsa1, . . . , an and with edges defined
as follows. Two vertices with weightsai, aj in Ga are connected by an edge if
gcd(ai, aj ) > 1. The vertex with weightai is an isolated point ofGa if (ai, aj ) = 1
for all aj 6= ai in Ga. Brieskorn proved the following.

Proposition 3.1. Letn be an integer greater than3, and leta = (a1, . . . , an) be
ann-tuple of integers greater than1. Then6a is a topological sphere if and only
if the graphGa satisfies one of the following two conditions:

(i) Ga has at least two isolated points;
(ii) Ga has one isolated point and one componentK consisting of an odd number

of vertices, each with even weight, and with(ai, aj ) = 2 for i 6= j in K.

Now it is very easy to show Theorem 1.2.
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Proof of Theorem 1.2.It is obvious that(m,2m− 1) = 1, (m,2m+ 1) = 1, and
(2m−1,2m+1) = 1; thus the vertices with weights 2m−1and 2m+1are two iso-
lated points in the graphG(2, . . . ,2︸ ︷︷ ︸

n−3

,2m−1,2m+1, m). Hence it follows from

Proposition 3.1(i) that

6a = 6(2, . . . ,2︸ ︷︷ ︸
n−3

,2m−1,2m+1, m) and 6ân = 6(2, . . . ,2︸ ︷︷ ︸
n−3

,2m−1,2m+1)

are topological spheres. As stated in Section 1, in a natural way6a admits a peri-
odic diffeomorphism of periodm defined by

(z1, . . . , zn−1, zn) −→ (z1, . . . , zn−1, ωzn)

such that the fixed point set is exactly6 ân, whereω is a primitivemth root of
unity. By Theorem1.1,6a − 6ân does not have the same homotopy type asS1.

This means that the complement does not meet the unknotting criterion (see [4;
6]) and hence6 ân must be knotted in6a. This completes the proof.

Next we review the methods given by Brieskorn for determining whether a topo-
logical sphere6a is an exotic sphere or a standard sphere.

Let bP2k denote the group (under the connected sum operation) of all(2k−1)-
dimensional homotopy spheres, each of which bounds a parallelizable manifold.
Using the Arf invariant and the signature, Kervaire and Milnor [7] showed that for
oddk, bP2k

∼= 0 orZ 2; for evenk = 2l 6= 2, bP4l is a cyclic group of orderσl/8,
whereσl is the number stated in Section 1. Now letMa(t) denote the intersection
of 4a(t) with a small ball

Dε = {z∈Cn | |z1|2 + · · · + |zn|2 ≤ ε2}
andMa(1) = Ma. ThenMa is a parallelizable manifold with boundary∂Ma diffeo-
morphic to6a (see [1, Lemma 7]). When6a(a1, . . . , an) is a topological sphere,
Brieskorn calculated the Arf invariantc(Ma) and the signatureσ(Ma) ofMa, thus
showing that each element ofbP2k is represented by some6a. Brieskorn’s results
are stated as follows.

Proposition 3.2. Let6a = 6(a1, . . . , an) be a topological sphere withn > 3.

(i) Whenn is even,c(Ma) ≡ 1 (mod 2) if and only if the graphGa has only
one isolated point with weightak ≡ ±3 (mod 8) and only one component
K consisting of an odd number of vertices, each with even weight, and with
(ai, aj ) = 2 for i 6= j in K.

(ii) Whenn is odd,σ(Ma) = σ+a − σ−a . Hereσ+a denotes the number of alln-
tuples(j1, . . . , jn)with 0< jk < ak and0<

∑n
k=1(jk/ak) < 1(mod 2); σ−a

denotes the number of alln-tuples(j1, . . . , jn) with 0 < jk < ak and−1<∑n
k=1(jk/ak) < 0 (mod 2).

Remark. It should be pointed out that, for evenn, if c(Ma) ≡ 0 (mod 2)
then6a is diffeomorphic to the standard sphere (see [7]), and Levine [8] ob-
tained thatc(Ma) ≡ 0 (mod 2) if and only if 1a(−1) ≡ ±1 (mod 8) and that
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c(Ma) ≡ 1 (mod 2) if and only if 1a(−1) ≡ ±3 (mod 8), where1a(t) =∏
0<lk<ak

(t−ωl11 · · ·ωlnn )with ωk = exp(2π i/ak). For oddn= 2l+1, if σ(Ma)≡
0 (mod σl) then6a is diffeomorphic to the standard sphere (see [7]).

Now let us discuss counterexamples of the generalized Smith conjecture for a
knotted standard sphere in a standard sphere. To prove Theorem 1.3, we need the
following results.

Let a, b, c be positive integers greater than 1. By0(a, b, c) we denote the num-
ber of all (x, y, z) with 1 ≤ x ≤ a − 1, 1 ≤ y ≤ b − 1, 1 ≤ z ≤ c − 1, and
0 < x/a + y/b + z/c < 1. From 0 < x/a + y/b + z/c < 1 we have 0<
bcx + acy + abz < abc. Furthermore,

1≤ x < abc − acy − abz
bc

= a
(

1− y
b
− z
c

)
.

Again from 1− y/b − z/c > 0, it follows that 1≤ y < b(1− z/c). Therefore we
have the following lemma.

Lemma 3.3. 0(a, b, c) =∑1≤z≤c−1

∑
1≤y≤[b(1−z/c)] [a(1− y/b − z/c)].

Hirzebruch and Mayer [5, p. 108, Proposition] gave a computation method of
σ(Ma) for a = (2, . . . ,2︸ ︷︷ ︸

2l−1

, a, b) with the positive odd numbersa, b > 1 and

(a, b) = 1. For our purposes we give a computation formula ofσ(Ma) for a =
(2, . . . ,2︸ ︷︷ ︸

2l−2

, a, b, c) such that the positive integer numbersa, b, c > 1 are relatively

prime.

Proposition 3.4. Let a = (2, . . . ,2︸ ︷︷ ︸
2l−2

, a, b, c) such that the positive integer num-

bersa, b, c > 1 are relatively prime. Then

σ(Ma) = (−1)l−1{40(a, b, c)− (a − 1)(b − 1)(c − 1)}.
Proof. By the definitions ofσ+a andσ−a in Proposition 3.2, it is easy to see that
σ(Ma) = (−1)l−1σ(Ma′) wherea′ = (a, b, c). Now we need only consider
σ(Ma′). Since the equations

x

a
+ y
b
+ z
c
= 1 or 2

have no solutions in{(x, y, z) | 1≤ x ≤ a − 1, 1≤ y ≤ b − 1, 1≤ z ≤ c − 1},
we have

σ+a′ + σ−a′ = (a −1)(b −1)(c −1).

Using the mapping defined by(x, y, z) → (a − x, b − y, c − z), we conclude
that the two sets{
(x, y, z)

∣∣ 0<
x

a
+ y
b
+ z
c
< 1, 1≤ x ≤ a −1, 1≤ y ≤ b−1, 1≤ z ≤ c−1

}
and
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(x, y, z)

∣∣ 2<
x

a
+ y
b
+ z
c
< 3, 1≤ x ≤ a−1, 1≤ y ≤ b−1, 1≤ z ≤ c−1

}
have the same number of elements. By Lemma 3.3, it follows that

σ+a′ = 20(a, b, c)

and thus

σ(Ma) = (−1)l−1σ(Ma′)

= (−1)l−1(σ+a′ − σ−a′ )
= (−1)l−1{40(a, b, c)− (a −1)(b −1)(c −1)}.

Corollary 3.5. Let a = (2, . . . ,2︸ ︷︷ ︸
2l−2

,2uv + 1,2uv − 1, u) with integersu ≥ 2

andv ≥ 1. Then
σ(Ma) = (−1)l 4

3u(u
2 − 1)v2.

Proof. By Proposition 3.4, we need only compute0(2uv+1,2uv−1, u). Hence,
by Lemma 3.3 we have

0(2uv +1,2uv −1, u)

=
∑

1≤z≤u−1

∑
1≤y≤[(2uv−1)(1−z/u)]

[
(2uv +1)

(
1− y

2uv −1
− z

u

)]

=
∑

1≤z≤u−1

∑
1≤y≤2uv−2vz−1

[
2uv +1− 2vz− y −

(
2y

2uv −1
+ z

u

)]
.

By direct calculations, we see that 1≤ y ≤ uv− vz−1 implies 0< 2y
2uv−1 + z

u
<1

and thatuv − vz ≤ y ≤ 2uv − 2vz−1 implies 1< 2y
2uv−1 + z

u
< 2. Therefore,

0(2uv +1,2uv −1, u) =
∑

1≤z≤u−1

{ ∑
1≤y≤uv−vz−1

(2uv − 2vz− y)

+
∑

uv−vz≤y≤2uv−2vz−1

(2uv − 2vz− y −1)

}
= 2v

∑
1≤z≤u−1

(u− z)(uv − vz−1)

= v2u(u−1)(2u−1)

3
− vu(u−1).

Furthermore, we have

σ(Ma) = (−1)l−1{40(2uv +1,2uv −1, u)− 4uv(uv −1)(u−1)}

= (−1)l−14uv(u−1)

{
v(2u−1)

3
−1− (uv −1)

}
= (−1)l 4

3u(u
2 −1)v2.
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Proof of Theorem 1.3(i).By Proposition 3.1(i),6a and6â2l+2 are topological
spheres because the vertices with weights 2mσl +1 and 2mσl −1 are two isolated
points in the graph

G(2, . . . ,2︸ ︷︷ ︸
2l−1

,2mσl +1,2mσl −1, m).

It follows from Proposition 3.2(i) that c(Ma) ≡ 0 (mod 2) and thus6a is a
(4l + 1)-dimensional standard sphere. Now we prove that6 â2l+2 is a standard
sphere, too. Chooseu = 2 andv = mσl/2 in Corollary 3.5 (note thatσl is even);
we have

σ(Mâ2l+2) = (−1)l2m2σ 2
l ≡ 0 (mod σl)

and thus6 â2l+2 is a standard sphere. Finally, as in the proof of Theorem 1.2, by
Theorem 1.1 we conclude that6a admits a periodic diffeomorphism of periodm
with differentiably knotted6 â2l+2 in 6a as fixed point set.

Proof of Theorem1.3(ii).Similarly to the proof of Theorem1.3(i), we need merely
to show that6a and6â2l+1 are standard spheres fora = (2, . . . ,2︸ ︷︷ ︸

2l−2

,2mσl + 1,

2mσl − 1, m). First, it is easy to see from Propositions 3.1(i) and 3.2(i) that6a

and6â2l+1 are topological spheres; in particular,6â2l+1 is a(4l − 3)-dimensional
standard sphere. Takingu = m andv = σl in Corollary 3.6, it follows that

σ(Ma) = (−1)l 4
3m(m

2 −1)σ 2
l ≡ 0 (mod σl)

and thus6a is a standard sphere. This completes the proof.
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