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Artin Groups of Finite Type
with Three Generators

THoMAS BRADY

1. Introduction

Let W be a finite Coxeter group on three generatbr$, C, and consider the set

of all possible expressions of the Coxeter elem@nt BAC in W as a product

of three reflections. In Section 3 we will construct a 3-dimensional CW-complex,
K (W), which we can associate to this set in a natural way. (Daan Krammer has
informed us that he has also considered this complex and has obtained similar re-
sults.) We will show that this complex enjoys two remarkable properties. First,
the fundamental group & (W) is isomorphic to the finite type Artin group deter-
mined byW; second,K (W) can be given a piecewise Euclidean (PE) metric of
nonpositive curvature. Thus, @ is an Artin group of finite type with three gen-
erators, therG acts cocompactly on a 3-dimensional PE complex of nonpositive
curvature.

The paper is arranged as follows. In Section 2, we make the corresponding con-
struction for two-generator Artin groups and prove that the associated 2-complex
has nonpositive curvature. In Section 3, we define the comiplard show that it
has the correct fundamental group. In Section 4, we gi&PE metric and show
that it has nonpositive curvature.

We would like to thank the Mathematics Department at Brigham Young Uni-
versity, where most of this work was completed.

2. Artin Groups of Finite Type with Two Generators

Let W be a finite Coxeter group on two generatdrand B; that is, W = W,, has
a presentation of the form

Wi = (A, B | A= B® = (AB)" =1).

ThusW,, is the dihedral group of ordem2, which can be thought of as a finite
reflection group acting oR?. The elementst and B act as reflections in lines
through the origin that make an anglewfn while the elemen#i B acts by rotation
through 2r/m. The corresponding Artin group is the group with the presentation

Gm = <a7 b | proda, b7 m) = prodbv Cl; m)>a
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where prodx, y; k) is the wordxyxyx ... with a total ofk letters. There is a
canonical surjection frond;,, to W,, takinga to A andb to B. We will exhibit
a different presentation fa and use it to construct a presentation 2-complex
whose universal cover is PE and has nonpositive curvature. The existence of such
a 2-complex is not surprising, since the Artin groups are virtually direct products
of free groups withZ. However, the construction here will motivate the construc-
tion for three-generator Artin groups and Proposition 2.1 will be used to prove the
equivalence of presentations in Section 3.

Define the abstract group, by the presentation

Lw={(y,ayaz,...,an |y =a1a2 =azaz = -+ = ap_1a, = aydy).

We note that there is also a canonical surjection fiigyto the reflection group
W,, that takesi; to A, as to B, y to the rotationA B, and the otheu; to the other
reflections inW,,. In fact, the following proposition is shown in [4].

ProrosiTiON 2.1. For all m, the homomorphisng,, = I, defined bya — a;
andb — a» is an isomorphism with inverse defined by

y > ab, ay1r> (ab)fa(ab)*, aziz > (ab)*blab)*.

Next we see that the presentation 2-complex determinef,bgan be given a
piecewise Euclidean metric of nonpositive curvature.

THEOREM 2.2. The two-generator Artin group&,, act cocompactly by isome-
tries on contractible2-complexes of nonpositive curvature.

Proof. Let K,, be the presentation 2-complex foy. Thusk,, has a single O-cell
and its 1-cells are labelled a, ..., a,,, with each 1-cell having both its endpoints
attached to the single 0-cell. For each relatjo& rs in the presentation, we at-
tach a 2-cell by gluing the boundary along the path reaging' in the 1-skeleton.

We give K,, a PE metric by assigning lengths to the 1-cells. Each 1-cell labeled
a; is given length 1 and the 1-cell labelgds given lengthy/2, so that each 2-cell
becomes a Euclidean triangle with sides 1, 1, &l We know from [1], for ex-
ample, thatk,, will have nonpositive curvature if the vertex link has no embedded
loops of length less than2 From Figure 1 we see that this is indeed the case.
The universal cover oK, is now the desired 2-complex. O

Note. This result can also be deduced from [4], where a slightly different metric
is used.
3. Artin Groups of Finite Type with Three Generators

Let W be a Coxeter group on three generatérsB, andC; thatis,W = W,, , ,
has a presentation of the form

Wynp =1{A, B,C | A>=B%*=C?=(AB)" = (BC)" = (CA)" =1).
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Figure 1

The corresponding Artin group is the group with the presentation

Gu.np = {a,b, c | proda, b; m) = prodb, a; m),
prod(b, c; n) = prod(c, b; n),
prodc, a; p) = proda, c; p)).

There is a canonical surjection fro@, ., , to W,, . , takinga to A, b to B, and

¢ to C. The Artin groupG,, ., is said to have finite type if the corresponding
Coxeter groupV,, .., is finite. The groups¥,, , , are finite when the exponents
(m, n, p) take on the value®3, 3, 2), (3,4, 2), (3,5, 2), and(2, n, 2) forn > 2.

These Coxeter groups have been much studied, and the following terminology
is used. The groufs 3 » is known as the Weyl groug ; or the symmetric group
4. Itisthe complete symmetry group of the regular tetrahedron. The correspond-
ing Artin group is the braid group on four strands. The gré 2 is known as
the Weyl group3s. It is the complete symmetry group of the regular cube or oc-
tohedron. The group/s 5 » is known asHs and is the complete symmetry group
of the regular dodecahedron or icosohedron. The gi@up » is a direct prod-
uct of the dihedral group of ordem2 D5, = (b, ¢), with Z, = (a). Finally, we
note that wherim, n, p) = (2, 2, 2), both the Coxeter grouf¥ ,)® and the Artin
groupZ?® are abelian.

We will use the description dfV as a finite reflection group, where the reflec-
tions are across planesR? through the origin. In Figure 2 we show part of the
intersection pattern of the reflection circles on the 2-sphere for the diaup.

The 2-sphere is cut open and flattened out onto the plane. The intersection patterns
for the other groups can be illustrated with similar diagrams.

Recall that any product of all the standard generators in a finite Coxeter group
is called aCoxeter elementThese elements were first used by Coxeter in [6].
In W,, .. ,, any product of the three generatotsB, C is a Coxeter element. All
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B,

Figure 2

Coxeter elements iV are conjugate irW (see [7, p. 74]), but we will always
mean the particular elemeit= BAC.

In order to define the 3-complexes for the three-generator groups, we will use a
subset of that is a natural generalization of the set of generators used to define
the groupd’,,. We call an element € W allowableif

(a) w can be expressed as a product of one, two, or three reflections, and
(b) the productin (a) is a prefix of some expression for the eleiierst a product
of three reflections.

We will say that an allowable element hiangthk if the expression in (a) has
reflections. This notion of length is quite different from the usual length of a word
in a Coxeter group. In the symmetric grobip, for example, this length coincides
with transposition length for allowable elements. We note khistthe only allow-
able element of length 3.

For eachW = W,, , ,, we define a 3-compleX = K, , , that is analogous
to the 2-complexes of Section 2. The compkxas a single 0-cell and a 1-cell
for each allowable element d¥. As before, each 1-cell has both its endpoints
attached to the 0-cell. Observe tlkahas a 2-cell for each expression of an allow-
able element of length as a product of two allowable elements, the sum of whose
lengths isk. The boundary of the 2-cell consists of three 1-cells, and this gives
the prescription for attaching the 2-cell to the 1-skeletorkofinally, K has a
3-cell for each expression &f as a product of three reflections. If the expression
is X = RST and we define the allowable elemelits= RS andZ = ST, then the
boundary of the 3-cell consists of the four 2-cells with boundary laBels RS,
Z = ST, X = YT, andX = RZ. This specifies the attaching map for the 3-cell.
For a specific triplgm, n, p), the cell structure ok can be deduced from one of
Tables 1-5, which record all possible expressions for the elemesta product
of three reflections. These tables were compiled using induction combined with
the following proposition.

ProrosiTion 3.1. Eachreflection is allowable. Moreover, every reflection is con-
jugate to one oA, B, or C by some power of the Coxeter element.
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Table 1 Ga 32

ReﬂeCtiOﬂS:Al, Az, A3, A4, Bl, Bz

Expressions for Coxeter element:

BiA1As  A1A3By  A3ByA; BaAsAs AyA4Bi A4BiAs  BiAsA;
A3A1By; A1B2As ByAsAr; AsAyB1 AyB1A1 AzAzA1 AxA1Ay
A1A4A3 A4A3A2

Table 2 G3,4,2

Reflections:Ay, A,, Az, B, By, B3, C1, C, C3

Expressions for Coxeter element:

B1A1C1 A1CiBa  C1B2A;  B2A2C;  AC2Bz C2B3As  B3AsCs
A3C3B1 C3B1jA1 B1CiA1  CiA1B>  A1BoCy;  ByCoA; C2A3B3
A3B3Cs B3C3Az C3A3B1 A3BiCi CiA2A1 A2A1C>  A1C2A3
C2A3A; A3A2C3 AC3A1 C3A1As A1A3C1 AzChiA;

Table 3 G3,5,2

ReﬂectiOHS'Al, ...,As5,B1,...,Bs, Cyq, ..., Cs

Expressions for Coxeter element:

B1A1C1 A1C1By  CiB2A;  B2A2Cy;  ACaBs CaB3Az  B3AsCs
A3C3Bs C3BsAs BiAsCs A4CsBs CyuBsAs BsAsCs AsCsBp
CsB1A1  B1C1Ay  C1A1B>  A1B2Cy;  B2CaA; C2A2Bs AzB3Cz
B3C3A3 C3A3Bs A3BsCs BsCaAs CuAsBs AuBsCs  BsCsAs
CsAsB;  AsB1C1 C1AzA1 AA1C>  A1C2A3 CaAzA;  A3A2Cs
AoC3As C3A4A3 A4A3Cs A3zCuAs CuAsAy AsAuCs AuCsAq
CsAiAs  A1AsCy  AsCiAs  AsAsAr AsAiAs  AjAzAs  AsAsA,
AsArA,

Proof. If W is reducible then this follows easily from the two-generator case, so
we will assume thaW is irreducible. First note tha&, A, andC are each allow-
able, since

X = BAC = AC(CABAC) = C(CBC)(CAC).

Next, sinceA and C commute, our choice of the Coxeter eleméht= BAC
means thall = X;X,, where the factors ok; = B are commuting reflections
and likewise the factors of, = AC. Coxeter elements of this type were used to
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Table 4 G2,2k,2

Reflections:Ay, By, ..., By, Cq, ..., Ck

Expressions for Coxeter element:
B]_A]_Cl AlCle CleA]_ e BkA]_Ck A]_CkBl CkB]_Al
B1C1A; C1A1B, A1B,C, ... BiCiA1 CrA1B1 Ai1B1Cy

Table 5 Gz, 2k+1.2

ReflectionsAy, By, ..., Byi1

Expressions for Coxeter element:
B1A1Biy2  A1Bii2Bz  Bii2B2A;
ByA1Byy3  A1Bii3Bz  Bii3B3A:

Boiy1A1Biy1  A1BijaB1r Biy1BiA

great advantage by Steinberg in [8]. For such a Coxeter element it follows from
[8, Cor. 4.6] that the reflections W are

B, BAB, BACAB, BACBCAB, BACBABCARB, ...,
which can be rewritten as
B, XAX Y XCxX7Y XBX7L, X?AX~?, ...

Thus each reflection iW is a conjugate of one of three allowable reflections
(A, B, or C) by some power of the Coxeter elementHowever, each such ele-
ment is allowable, since whenevEr= RST we have

X = X *xX)xk = (X *RX*F(XFsx*y(x*FTXxk). O
We are now in a position to prove the analog of Proposition 2.1.
THEOREM 3.2. If W, , , isfinite, thenry (K u,p) = Gumon,p-

Proof. Computingry(K,,, ., ,) from the 2-skeleton and eliminating the generators
corresponding to length-2 allowable elements, we findth@k’, ., ,) has the fol-
lowing presentation. There is one generatdor each reflectiork in W and an
extra generatar corresponding to the Coxeter eleméht= BAC in W. The re-
lations ofr1(K,, ., ,) are all of the formx = rsz, wherer, s, ¢ are generators that
correspond to allowable elements of length 1 for which the corresponding reflec-
tions in W satisfyX = RST.
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In each of the Artin group& under consideration, we define= bac andr; =
x¥irxi=Yforr e {a, b, ¢}, so thata; = a, by = b, andc; = ¢. Under the quotient
map fromG to W, x maps to the Coxeter element and egamaps to a reflection.

We will refer tox as the lift of the Coxeter element and to each ofithas lifts of
reflections.

Our first step will be to establish a set of identitiesdrof the formx = rsz,
wherer, s, t are lifts of reflections. Sinc# is a homomorphic image @, each
such identity will give a factoring of the Coxeter element as a product of three
reflections. We will see that our list of identities exhausts the set of possible fac-
torings of the Coxeter element and thus we will have a well-defined surjective
homomorphism fromiry(K,,,»,») to G.

First observe that, whenever= rst andx = stu,

rx = r(stu) = (rst)u = xu 0}
so thatu = x~%x. Thus we can write
X = bia;c; = a;jcibiy1 = cibiy1a;11. 2
Using thatac = ca in each Artin group, we deduce
x = bicia; = cia;b; 11 = a;b;11ci 1. 3
Equating expressions far(starting withc;), we obtain
aibiy1 = biy1ai41. (4)
We now look at each specific group in turn.

Case 1.G is irreducible. Since the group generated by, ; anda;; is a two-
generator Artin group of typ€'s, we deduce from equation (4) and Proposition 2.1
that

aibit1 = bipa;41 = a;1a;.

This yields more expressions fer
X = CiGi410; = Aj410;Ciy1 = 0;Ci41di12. 5)
Equating expressions farstarting witha;, we have
a;-1¢; = ¢ibiy1 = biy1Ciy1 = Ciy1aiy2. (6)
Case 1(a):G = G352. Here the group generated by.1 andc; 1 is a two-
generator Artin group of typ&s, so we deduce from Proposition 2.1 and equa-
tion (6) that
a;—1¢; = Cibj11 = b 1Ciy1 = Ciy10;42 = Q120 1.
This gives more expressions for
X = 004201 = Qi1 20;_10;11 = ;10 {10;{3. (7)

Equating expressions far, starting witha; once again, we obtain
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Ajy2di-1 = a;-3di-1 = di+2di+4,
from which we conclude;; = a; 5. From this and equation (5) it follows that
¢; = ciys, and from this and equation (2) we get= b, ,s. Thus,x® is central;
together with equations (2), (3), (5), and (7), this gives the expressionscior
responding to Table 3.

Case 1(b):G = Gs342. Now the group generated ldy,; andc;; is a two-
generator Artin group of typ&,4, so we deduce from Proposition 2.1 and equa-
tion (6) thata; 1 = a; 2 Ora; = a; 3. Together with equation (5), this yields =
ci+3 and from equation (2) we have = b;, 3. Thusx? is central, and together
with equations (2), (3), and (5) this gives the expressions foorresponding to
Table 2.

Case 1(c):G = G332. Now the group generated y,; andc;;; is a two-
generator Artin group of typ&s;, so we deduce from Proposition 2.1 and equa-
tion (6) thatc; = a;.» andc;y1 = a;_;. From this we conclude that = a;, 4.
Finally, equation (3) gives

X = biy2Ciy2ai12 = bi12a;14c; = biy2a;ci;
together with equation (2), this givés,, = b;. Thusx* is central, and together

with equations (2), (3), and (5) this gives the expressions foorresponding to
Table 1.

Case 2: G is reducible.Here the group generated by, ; anda; 1 is a two-
generator Artin group of typ&,. Thus we deduce from Proposition 2.1 and equa-
tion (4) thata; 1 = a;. Equating expressions farstarting witha; yields

¢ibiy1 = bij1cit1 (= ciyabit2 = bitociy2).

However, the group generated by ; andc; ;1 is a two-generator Artin group of
typeG,.

Case 2(a):n is even.If n = 2k thenb;; = b;, c;4x = ¢;, andx is central.
Together with equations (2) and (3), this gives the expressionsdorresponding
to Table 4.

Case 2(b)misodd. If n = 2k +1thenc; = b;x11, birn, = b;, andx™ is cen-
tral. Together with equation (2), this gives the expressions fmwrresponding to
Table 5.

These expressions correspond to all possible factorings of the Coxeter el€ment
in W. For a givenW and a given reflectio®, we find at least one factoring with
first factor R by Proposition 3.1. IfW = RST then all the possible factorings
starting withR correspond to the number of ways of factoring the rotafignin
the dihedral group generated Kyand7.

Hence we get a well-defined surjective homomorphism fra(KX,, . ,) to G
given by

a; — xlax™Y b > XV bx’Th o > xtlex T
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wherex = bac. The inverse homomorphism that is given by a1, b — b,
andc — c; is well-defined by Proposition 2.1 and is surjective by the proof of
Proposition 3.1. O

4. The Piecewise Euclidean Metric orK

Since each 3-cell of is combinatorially a 3-simplex, we can gikethe structure

of a PE cell complex by specifying the lengths of 1-cells. Each 1-cell corresponds
to a generator that is an allowable elemen#iobf a given lengthk, wherek =

1, 2, or 3. We give the corresponding 1-cell the length. Thus each 3-cell ik

can be given the metric of the Euclidean simplex on the vertegs 0), (1, 0, 0),

(14,1, 0), and(, 1, 1) in R®, where the 1-cells of length 1 correspond to reflections,
the 1-cells of length/2 correspond to allowable elements of length 2, and the
1-cell of length+/3 corresponds te. We note that this Euclidean tetrahedron is
part of a standard subdivision of the unit cube into six congruent tetrahedra.

ExampLE. We note that, for the grou@ » », there are precisely six 3-cells i
corresponding to the six expressions fan W, , » asbac, bca, cba, cab, ach,
orabc. These six 3-cells fit together to give a subdivision of the usual flat 3-torus
with fundamental groui, 2 » = Z°.

ExampLE. In general, the complek,, » », is isometric to a product of the metric
2-complexk, described in Theorem 2.2 with a circle of length 1. The isometry
K, x S* — K, ., can be described at the level of 3-cells by subdividing the prod-
uct of a 2-cell with a 1-cell into three 3-cells—in the standard way that a triangular
prism is subdivided simplicially. Specifically, if the 2-cell froff, is labeled by

Y = RS (= BA) and if the 1-cell is labeled by the central eleméhtthen the
corresponding 3-cell ik, x St is mapped to the union of the 3-cells labeled by
X = RSC, X = RCS, andX = CRS.

Next we establish two lemmas regarding the local geometky ifSee [5] for def-
inition and properties of spherical joins.) Lebe the single vertex ik, and let
S be its star and. its link. Letx* be the vertex inL corresponding to the edge
in K, let X be the star of the vertex* in L, and letA be the link ofx* in L. Thus
each 1-cell inA joins a vertex labele®; to a vertex labele®;R;, whereR; and
R; are reflections and®;R; is allowable of length 2. The 1-complex is shown
in Figure 3 for the grour s 5 2, where the allowable elements of length 2 are

Y =BiA; =A;A; 1= A, 1B,
Z; =BiCi = CiAis1=Ai1Ai—2 = A; 2Ci1 = C; 1B,
Wi = A;C; = CiA;.
We note that the 1-complex f@Fs 3 » is precisely the link that occurs in [2].

LemMma 4.1. There is an isometry between the libkand the spherical join of a
copy of thed-sphere with thd-complexA.
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A M A Y A Yy Ay Yo Ay Y5 Ag

olW: B, oW/, B, eW, ¢B; elV; e B; eV, e B, el;

Cs |21 |C1 |2y |Gy |25 |Cs |24 |Ci |Z5 |Ch

Ay Ay As As A Ay Ay As As A
Figure 3

Proof. It follows from equation (1) that the face with labh&l= ST of the 3-cell
corresponding to the expressi&n= RST is incident on exactly one other 3-cell,
namely the one correspondingXo= STU, whereU = X 'RX. Similarily, the
face labeledr = RS is incident on the single other 3-cel = QRS, where
Q = XTX L. Thus the universal covef of K (G) is a union of infinite triangular
prisms. It is this structure that will give us the required isometry.

Let ¥ be a fixed vertex irk. We will study the star of in K since it is isometric
to the star ob in K. Every 1-cell ofA joins a vertex corresponding to a reflection
R to a vertex corresponding to an allowable elem@fit Since RS is allowable,
there is a reflectio” satisfyingX = RST. LetU = XTX L, V = XSX %, and
W = XRX1so that

X = WVU = VUR = URS = RST. (8)
We consider the seven verticeskngiven by
X%, (voy™, U, ¥, RO, (RS)D, Xd.

The part of the star of in K consisting of those simplices whose vertices be-
long to this set of seven is a union of four 3-simplices corresponding to the four
expressions foX in equation (8). Furthermore, this part of the star is isomet-
ric to the piece oR® shown in Figure 4, where the seven vertices are mapped
to(—-1 -1, -1, (0, -1 -1, (0,0, -1, (0,0, 0), (1,0,0), (1, 1,0), and(1, 1, 1),
respectively. Hence, this part of the statwag isometric to the set of directions at
(0, 0, 0) pointing into the region defined by the inequalities z < Oandx + y <
0. Both of the bounding planes of this region contain the vertiees —1, —1),
(0,0,0), and(1, 1, 1). The planey + z = 0 also contains the verticg8, —1, —1)
and (1, 0, 0), while the planex + y = 0 contains(0, 0, —1) and (1, 1, 0). This
part of the link thus contributes a segment of a 2-sphere that is the orthogonal sus-
pension of a copy of the 0-sphere with a segment of a circle of lemgBh The
0-sphere corresponds to the two poittsl, —1, —1) and (1, 1, 1), while the seg-
ment lies in the plane + y + z = 0 between the planes+ y =0 andy + z =
0, which make an angle of/3 between them.

Because (a) every 1-cell of contributes precisely one such segment to the
star ofv and (b) each 3-cell in the star oflies in exactly one such segment, the
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(17 1’ 1)
(0,0,0
(1,1,0)
(_17_17_1) (17()’0)
(0, ‘_17 _1)
(0,0,-1)
Figure 4

correspondence induces an isometry frbrto the spherical join of° with A if
each 1-cell ofA is given lengthr/ 3. O

LEmMA 4.2. For eachl-complexA, there are no embedded loops with less than
six 1-cells.

Proof. The 1-complexA is the geometric realization of the poset whose elements
are the allowable elements 8f of length 1 or 2, with the partial orde? < Y if

and only if P is allowable of length 1Y is allowable of length 2, andl = PQ for

some allowable elemer@® of length 1. It follows that each circuit in traverses

an even number of 1-cells and that there are no embedded circuits of length 2.
Hence it suffices to show that there are no embedded circuits of length 4. Sup-
pose such a circuit exists. Then there are allowable elenfeatsd Q of length

1 and allowable elements andZ of length 2 withP < Y, P < Z, Q < Y, and

Q < Z. The element® and Q correspond to reflection planesR¥ through the
origin, while Y andZ correspond to lines iR® where reflection planes intersect.
The relationsP < Y andQ < Y mean that the planes correspondingPt@and

Q intersect along the line correspondingtto similarily, these planes also inter-
sect along the line correspondingZo Thus these two lines coincide. This gives

a contradiction, since there is at most one allowable element of length 2 with fixed
set a given line iR3. O

THEOREM 4.3. The 3-generator Artin groupsG,, . , of finite type act cocom-
pactly by isometries on contractibBcomplexes of nonpositive curvature.

Proof. The desired 3-complex will be the universal coverky , ,. We recall
from [1] that a PE cell complex will be CAT(0) if the links of vertices are CAT(1).
Lemma 4.1 exhibits this link as a spherical join of a copys8fwith a 1-complex
A. By [5], L will be CAT(1) provided thatA is a CAT(1) 1-complex; by [1]A
will be CAT(1) providedA contains no embedded loops of length less than 2
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Since each edge has lengti3, this is equivalent to there being no embedded
loops with fewer than six 1-cells. This is established in Lemma 4.2. O

REMARK. Itis possible to extend the definition &f( W) and its PE structure to fi-

nite Coxeter group® of higher rank. However, the problem of deciding whether

or notK (W) has nonpositive curvature is much more difficult in these caség. If

has rankz, then the analog of the complex we here calleé a finite piecewise
spherical complex of rank— 2. If this complex is CAT(1) therK (W) is CAT(0).
However, it is difficult in general to show that a given PS complex is CAT(1), and
few general results of this type exist. We have used one of the simplest—namely,
that when the dimension is 1 it suffices to check that there are no embedded short
loops. Nonetheless, it can be shown (see [3]) &i@# ) is contractible in the

braid group case, whel® is a symmetric group of any rank.
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