Pluripolar Hulls

NorRMAN LEVENBERG & EVGENY A. POLETSKY

1. Introduction

Let E be a pluripolar set i©". That is, for eachg € E, there exists a neighbor-
hoodU of zp and a plurisubharmonic (psh) functianz —oco on U with

ENUC{zeU:u(zx) =—00}.

From the well-known result of Josefson (cf. [K, Thm. 4.7.4]), there exists a
plurisubharmonic functiom on CY, u # —oo, With E C {z € D : u(z) =
—oo }. For example, iff is holomorphic in an open sé, then

E:={zeD: f(z)=0}={zeD:u(z) :=log|f(z)] = —o0}

is pluripolar. It can happen that any psh functiothat is—oo on a pluripolar set
E C D is automatically—oco on a larger set. As a simple example, if

E={zeC" |z <1 zp=---=2zy =0},
then any globally defined psh functiarthat is—oo on E must be—oc on
E*={zeCV:71€C, zp=---=zy =0}.

This follows sincel/(z1) := u(z1, 0, . . ., 0) is subharmonic o€ and—oo on the
nonpolarset{z; € C : |z1] < 1}. To describe this phenomenon of “propagation”
of pluripolar sets more concretely, given a pluripolarEeh CV and a neighbor-
hood D of E, we define two types gbluripolar hulls of E relative toD:

Ep=(zeD: u(z)=—o0},
where the intersection is taken owadr psh functions inD that are—oco on E; and
Ey =({zeD:u(x) =-o0},

where the intersection is taken over madigativepsh functions inD that are—oco
onE. Clearly,Ef C E, andif E C D1 CC D5 then

Ep C Ep, N D1
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In general, a precise description of the pluripolar hé@lfsand E;, is very dif-
ficult. One way of obtaining points in these hulls igHfhits a one-dimensional
analytic varietyA in a nonpolar set of points of. Then the points ofA lying in
D belong to the hull. In the preceding example, theBet {z e CV : |z4] < 1,
z2 = --- = zy = 0} hit the one-dimensional analytic variety:= {z, = --- =
zy = 0} in anonpolar set of points;E N A was a disk. However, an example
in [L] shows thatE} \ E can be non-empty even B hits all such varieties in
polar sets (cf. the remark at the end of Section 2).

In this paper we offer two criteria for a point to belong &g . The first one
(Theorem 2.1; see also Corollary 2.2) works for arbitrary pluripolar getexd
claims thatE;, = {z € D : w(z, E, D) > 0}, wherew(z, E, D) is the har-
monic measure oF relative toD (see Section 2). However, evaluation of the
harmonic measure is in general quite difficult; thus, in Corollary 2.6 we present
another criterion, which is valid for compact pluripolar seétand claims that €
E if and only if there is a Jensen measwren D with barycenter at such that
w(E) > 0. Note that, by [P2], every Jensen measure is the limit of a sequence
of push-forwards of the standard Lebesgue measure on the boundary of the disk
under holomorphic mapping§ (j =1 2, .. .) of the disk intoD.

Theorems 2.4 and 2.5 allow us to switchAg from E,;. Note that a point €
D lies outside ofE}, (E,,) precisely when there existispsh (and negative) i
with u = —oo on E but withu(z) > —oo; that is,u “separates’E andz. The
question as to whether one could find a psh C? that separates the origin from
the sef{w = z%, z # 0}, wherex > 0 is an irrational number, is related to a prob-
lem of Sadullaev (see [S] and [B]). We solve this problem in Section 3 by using
our techniques to determine the pluripolar hull of this set (Theorem 3.5).

To motivate our results, recall that in [P1] the second author gave a characteri-
zation of the polynomial hulk of a compact seX in CV; here,

Xi={(Gn....2v) €C" 1 |p(ze, ..., zw)| < I plx for all polynomialsp }.

If X contains the boundary of an analytic disk—that is, if there exists a noncon-
stant holomorphic map = (g1, . . ., gn) from the unit diskU ¢ C into CV with
g*(e'") e X for a.e.t (whereg*(e') denotes the radial limit value @f at e’ )—
then, by the maximum modulus principl&, contains the analytic disk(U). In

[P1], the following result is proved.

THEOREM 1.1. LetX be acompact set and It be a Runge neighborhood &f.
Fix zo € D. Thenzo € X if and only if, for any open sét C D containingX and
for anye > 0, there exists an analytic digk U — D in D with g(0) = zp and

m({te[0,2n]: g(eeV}) > 2n —e.

Here we writeg: U — D to meang is holomorphic orl/ and continuous ol.
In Corollary 2.2 of the next section, we give an analogous characterization for a
pointzo to lie in the pluripolar hullE,; of a pluripolar sef C D.

This research was undertaken while the authors were visiting the mathematics
departments at Indiana University (Bloomington) and the University of Toronto.
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2. Construction of Pluripolar Hulls

We write PSHD) for the class of psh functions ab. Given a functionp on a
domainD in C", we define thgsh envelope o to be

Py(z) :=sup{u(z) :uePSHD), u <¢inD}.
If ¢ is upper semicontinuous di then Py (z) is psh inD and, by [P1],

2
Py(z) = inf{ % d(fe"))dt: f: U — D holomorphic f(0) =z}.
0

For a subseE of a domainD C C", we definew(z, E, D) := —P4(z), where
¢ = —xE, and call this quantity thbarmonic measure of (relative toD) atz.
If E is open then, by the preceding equation,

w(z, E, D) = % sup{m{t €[0,2n]: f(e")e E}}, )

where the supremum is taken over gl U — D with f(0) = z. In particular,
if there exists anf: U — D with f(0) = z andm{e € 3U : f(e") € E} >
2ma, thenw(z, E, D) > a; and ifw(z, E, D) < a then, foranyf: U — D with
f(0) = z, we havem{ e €U : f(e") e E} < 2ma.

It follows that, for a subsek of D,

w(z, E,D)=inflw(z,V,D): VC Disopenand C V }. (2)

Indeed, clearly the right-hand side of (2) is greater than or equaldoE, D). On
the other hand, for ang/> 0 and any pointo € D, by definition ofw (zo, E, D) we
can find a psh function on D with u < —xg on D such thatw(zo, E, D) + & >
—u(zp). LetV ={ze D :u(z) < —1+¢}. ThenV is open and containg.
Moreover,

w(z,V,D) < —f(—z)

for all z € D; thus,

uzo) o E.D)+e

,V,D) < —
@(zo ) 1—¢ 1-¢

Sincee > 0 andzg € D are arbitrary, we obtain (2).
In the next three results (Theorems 2.1 and Corollaries 2.2 and 2.3), to avoid
trivialities, we assume thd? admits negative, nonconstant psh functions.

Tueorem 2.1. Let D be a domain inC¥, and letE C D be pluripolar. Then
E, ={zeD:w(z, E,D) > 0}.
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Proof. First of all, if zo € D andw (zo, E, D) > 0 then, for anyw € PSH D) with
v < 0inDandv = —oco on E, we haveu,(z) := v(z)/n < —w(zo, E, D) for
each positive integer =1, 2, . . .. Thus, in particular,

v(z0) < —nw(zo, E, D), n=12,...;

lettingn — oo, we obtainv(zg) = —oco and henceg € E,,. Conversely, ifzg €
D andw(zg, E, D) = 0 then, by definition of-w, we can find a sequence of
negative psh functiong;} in D with u; < —1onE andu;(zo) > —1/2/. Then

o0

u(z) =Y u;(z)

=1

is a negative psh function iP (the partial sums form a decreasing sequence of
psh functions, since eaal) is nonpositive) that is not identicallrco—indeed,
u(zo) > —1—but sincer; < —1 onE for eachj, we haveu = —oo on E. Since
u(zo) > —1, we havezg ¢ E, . O

ReEMark. If F Cc E C D with E pluripolar and ifE C F,, then of course
E, = Fj; thus, in this situation,

E, ={zeD:w(, F,D) > 0}.
This observation will be used in the proof of Theorem 3.5.

Theorem 2.1, together with equation (2), immediately implies the following.

COROLLARY 2.2. Let D be a domain inC", and letE c D be pluripolar. Fix
zo€ D. Thenzo € Ej if and only if there exists am > 0 such that_, for any open
neighborhoodV C D of E, there exists a holomorphic map: U — D with
f(©) =zoand ‘
m({t€[0,2n]: f(e")eV}) > 2na.

Proof. Suppose first that there does existias 0. Then

w(zo,V,D) > a
for every open neighborhodd C D of E; from (2) we obtain

w(z0, E, D) > a,

so thatzg € E; by Theorem 2.1. Conversely, suppases E,, but that for all
a > 0 there exists a neighborhoddC D of E such that, for any holomorphic
mapf: U — D with f(0) = zo,

m({t€[0,27]: f(e")eV}) < 2ma.

Thenw(zo, V, D) < a. From (2),w(zo0, E, D) < a; this being valid for al > 0,
we havew(zg, E, D) = 0, which contradicts Theorem 2.1. O

If E is compact, we can find a sequence of holomorphic maps thrajgthich
(eventually) works foanyneighborhood of.
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COROLLARY 2.3. Let D be a domain inC", and letE Cc D be compact and
pluripolar. Fix zg € D. Thenzg € E;, if and only if there exists an > 0 and a

sequencé f;} of holomorphic mapg;: U — D with f;(0) = zo such that, for
any open neighborhood c D of E, there existg such that, for allj > jo,

m({te€l0,2n]: fi(e")eV}) > 2ma.

Proof. The “if” follows from Corollary 2.2. For the “only if”, suppose, € E, .
Foreachj =1,2,..., set

Vi:={zeD :dist(z, E) <1/j}.

From Corollary 2.2, for eacli we get a holomorphic mag;: U — D with
fi(0) = zg and '
m({r€[0,2x]: fi(e")eV;}) > 2ma.

The open set§V;} are nested and, for any open neighborh®od D of E, there
is an integerjo(V) such thatV; C V for j > jo; this completes the proof. [

To pass from local pluripolar hulls to global pluripolar hulls, we prove the follow-
ing theorem.

THEOREM 2.4. Let D be a pseudoconvex domain@'. Let {D;} be an increas-
ing sequence of relatively compact subdomains M;ﬂ)j = D. LetE C D be
pluripolar. Then

Ep =U(END))y,.

Proof. Without loss of generality, we let be a psh exhaustion function far
and assume thdd; ;= {ze D : p(z) <rj}, r; + +oo, withr; —r;_1 > 1. For
if we have any increasing sequence of relatively compact subdorfi@jhsvith
U, G; = D, then eaclG; is contained inD; for k sufficiently large. Takeo €
Uj(E n D,-)Bj. Thenzpe (EN Dj)gj for somej. For anyv € PSH D) with v =
—oo on E, we can find a constaat= c(v) such that —c¢ < 0 onD;. Sincezg €

(EN Dj)l;j, it follows thatv(zg) — ¢ = —oo0 SOv(zg) = —oo; that is,zg € E}.
For the reverse inclusion, takg € E;; and supposeg ¢ Uj(E n Dj);)/_; for sim-
plicity in notation, we assumg, € D;. Then, foreacly =1, 2, .. ., we can find

uj € PS"(DJ) with uj < O0in Dj anduj = —00O0NnEN Dj bUtl/tj(Zo) > —1/Zj
We define the following (psh) functions ih:

max(u;(z), p(z) —rjl, z€Dj,

p(z) =1 z€D\ D;.

Setp(z) := )72, p;(z). Note first of all thatp # —oo sincep;(z0) > u;(z0) >
—1/2/ implies thatp(zo) > —1. Next, we claim thap € PSH D). Forif o cC
Dthenwe haver C D; for j > jo = jo(w). Sincep; < 0onD;, we havep; < 0
onw for j > jo and so the partial sums in the series defininfiprm a decreas-
ing sequence of psh functions an hencep is psh onw. Finally, to show that
p = —oo on E, from the assumption thaf — r;_; > 1 it follows thatp; < —1

pj(z) = {
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on E N Dj_1. Thus, for any point € E, sincez € D;_; for j > jo(z) we have
p(z) = —oo. Thuszg ¢ E}%, a contradiction. O

SupposeD is hyperconvex-that is, D admits a continuousegativepsh exhaus-
tion functionp; thus{z € D : p(z) < ¢} cc D for all ¢ < 0. Then we get a
similar conclusion for the hulE ;.

THEOREM 2.5. Let D be a hyperconvex domain @®". Let {D;} be an increas-
ing sequence of relatively compact subdomains WjthD; = D. LetE C D be
pluripolar. Then

Ep =U;(EN D))y,

Proof. We may takeD; := {z € D : p(z) < —1/2/}, wherep is a negative
psh exhaustion function fab. The inclusion J;(E N Dj)p, C Ep is obvious
from the definitions. For the reverse inclusion, tales E, and supposeg ¢
Uj(E N D,)L‘)j; again we assumg € D;. Then, foreaclhy =1 2,..., we can
find uj € PS"(DI) with uj < Oin Dj anduj = —oc0oO0nkEnN DJ‘ bUth(Zo) >
—1/2/. As in the proof of Theorem 2.4, we define (psh) function®inia

maxfu;(z), p(z) +1/2/], ze€D;,
p(2) +1/27, zeD\ D;.

Setp(z) = [ Y52, pj(2)] — L Note first of all thatp # —oc sincep;(z0) =
u;j(zo) > —1/2/ implies thatp(zo) > —2. Next, we claim thap € PSHD). For
anyw CC D we havew C D; for j > jo = jo(w). Sincep; < 0 onD;, we have
p; < 0onwforj > jo(w); hence the partial sums in the series definirfgrm a
decreasing sequence of psh functionswand p is psh onw. Clearly p < 0 on
D, since eaclp; < 1/27 on D. Finally, to show thapp = —co OnE, fix z € E.
Sincez € D; for j > jo(z), it follows that p;(z) < p(z) +1/2/ for j > jo(z).
Thus, using the fact that(z) < 0, we get

pi(2) = {

Jo(2)

PR +1=) pi@+ Y. pi
j=1

J>jo®)
Jjo(@) 1
= ij(z) + Z (p(z) + E) = —00.
j=1 J>Jjo(2)
We conclude thatg ¢ E,,, a contradiction. O

REMARK. Note that the set&& N Dj)gj in Theorems 2.4 and 2.5 are monotone.
Thatis,
(EN Dj+l)[_)j+1 D (EN Dj)Bj, Jj= 1L2,....

Forz € D, we denote by7, (D) the set of allensen measuréwith respect to psh
functions onD) with barycenter at; precisely,u € J.(D) if u is a probability
measure with compact supportinand, for eactk e PSH D),
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u(z) < /udu,.

It follows thatif¢: D — R is Borel measurable then
Py(2) < inf{ /qﬁdu : MGJZ(D)} = Jy(2). (3

Clearly, if f: U — D is holomorphic withf(0) = z thenu, := push-forward of
dt/27 underf is an element i/, (D).

COROLLARY 2.6. LetD be a hyperconvex domain@", and letE ¢ D be com-
pact and pluripolar. Fixzg € D. Thenzg € E, if and only if there exists & €
J2o(D) with u(E) > 0.

Proof. Let¢ = —xg. If zg € D and there exists a € J,,(D) with u(E) > 0,
then

Jp(z0) < /d)du = —W(E) <0;

thus, by (3),P,(z0) < 0. Hencezg € E; by Theorem 2.1. Conversely,dp € E,
then, by Theorem 2.5 (and using the same notatiang, (E N Dj)p, for j suffi-
ciently large. Fix such g. As in the proof of Corollary 2.3, we take > 0 and
fx: U — D; holomorphic with;(0) = zo and

m({te0,27]: fieNeVi) >a, k=12 ..., 4)

whereV, ;= {z e D; : dist(z, E) < 1/k }. We take a subsequence of the mappings
{ fx} such that the corresponding measufes, } converge weak-to a measure
n € J.,(D) supported inD;; by (4), w(E) > a. O

REMARK. We cannot replacg € 7, (D) in Corollary 2.6 byu s for some holo-
morphic f: U — D with f(0) = zo. To see this, recall that Wermer [W] con-
structed a compact sétin 9U x C ¢ C2with X c U x C and such thar :=
X\ X C U x C does not contain any analytic disk; that is, there is no noncon-
stant holomorphig: U — C? with g(U) C Y. In [L], we showed that such a set
can be constructed so thatis pluripolar; then in [LS] we showed that any such
pluripolar Wermer-type sdft is complete pluripolar iU x C; that is, there exists
aupshinU xCwith E ={zeU xC:u(z) = —oo}. Let M > 1 be chosen
sufficiently large sothal € D := {(z,w) 1z € U, |lw| < M}. ThenY =Y}.
Fixr <landlety, :={(z, w) €Y : |z| = r}. Using standard properties of poly-
nomial hulls,Y, = {(z,w) €Y :|z|] <r}. SinceD is Runge, it follows that, C
(Y,);, and so

Y, C Y, C (Y5 C (Vo)

Fix a point(zg, wo) € Y, \Y, C )\ If f: U — D is holomorphic with
f(0) = (z0, wo) andus(Y,) > 0, then for anyu psh inD that is—oco on Y, we
haveu = —co on f(U); thus,

f)c@)pCcyy, =Y,
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which implies—since’ contains no nonconstant analytic disk—tlias constant.
This contradicts the fact that(0) = (zo, wo) € Y, \ ¥, while p/(Y,) > 0.

3. The Setw = z*

The goal of this section is to find the pluripolar hull of the set
Ey:={(z,w)eC?:w=2z% z+#0)}

whena > 0 is irrational. A preliminary remark on the definition of this set is in
order. Consider the real-analytic curve

Ey:={(x,y)eR?:y=x% x> 0}.

We consider all analytic continuations ¢fx) = x® onx > 0; thenE, is the
Riemann surface generated By. In particular, note thaf, contains no points
of the form(0, w).

We mention that it = p/q is rational then, using the psh functior, w) :=
log|w? — z”|, we see that the pluripolar hull @, with respect taC? is contained
in the union ofE, and the origin. But the origin also belongs to the pluripolar
hull because, if a psh functian(z, w) is equal to—oo on E,, then the function
U) = u(¢4,¢?) equals—oo on C \ {0} and hence equalsco everywhere.
Thus the pluripolar hull of,, equals the union of,, and the origin.

We show (Theorem 3.5) that, whenis irrational, the pluripolar hull ofz,
equalsE,. We begin with the essential lemmas.

Lemma 3.1. LetD c CN andE c D and letA C D be a closed, pluripolar set
withENA =@. Thenw(z, E, D) = w(z, E,D\ A)onD \ A.

Proof. Clearlyw(z, E, D) > w(z, E, D \ A). On the other hand, if is a neg-
ative psh function orD \ A andu < —1 on E, thenu extends to be psh and neg-
ative in D (cf. [K, Thm. 2.9.22]). Thus, sinc&€ N A = ¢, the extension is less
than or equal te-1 on E and thereforev(z, E, D) < w(z, E, D \ A). O

LemMa 3.2. LetD ¢ CVY andG ¢ CM be domains, and lgt: D — G be a
holomorphic mapping. £ ¢ G thenw(z, h"YE), D) < w(h(z), E, G).

Proof. If u is a negative psh function o@ that is less than or equal tel on
E, thenu o h is a negative psh function ab that is less than or equal tel on
h~YE). Thus,w(z, " (E), D) < w(h(2), E, G). O

We need equality to hold for holomorphic covering mapm certain circum-
stances.

LemMa 3.3. Let D andG be domains irC", and leth: D — G be a holomor-
phic covering mapping. Suppose that a Bet G has a simply connected open
neighborhoodV such that:~1(V) is the union of disjoint connected open SEfs
(j=12,...)andthat, for some pointe D,
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lim a)(z, U/?i, Vi, D) =0.

j—o0
Thenw(z, h"XE), D) = w(h(2), E, G).
Proof. By Lemma 3.2w(z, h"X(E), D) < w(h(z), E, G). To verify the reverse
inequality, we first fixe > 0 and takej sufficiently large so that
o(z, U,fiij, D) <e.
Take an open neighborhodd of 2~1(E) such that
w(z, " YE), D) > w(z, W, D) — ¢. (5)

LetW; =WwnV,andW' = i;ih(wk). ThenW’ is an open set containing
andW’ c V. Thus, using (1) and (2), we can find a holomorphic mapging/ —
G such thatf(0) = h(z) and

m({te[0,27]: f(e")eW'}) > 27 (w(h(2), E, G) — ¢). (6)

Let g be alifting of £, thatis,z o g = f andg(0) = z. If W = h=%(W’) andA =
(te€[0,2n] : g(ei') e W}, then

m(A) =m({t€[0,27] : f(e")eW'}). )
SinceW = [J2,(W N V;) and this is a union of disjoint sets, we have
oz, Ui, (WN V), D) <e.

Therefore, the measure of those poinia A whereg(e) U,f;’j(vi/ NV is
less than 2¢. Thus,
i1~ 1
o(z, UiZi(W n'Vp), D) = Som(A) —e > w(h(@), E, G) — 2,
T
where the second inequality uses (6) and (7). @l{jﬁ(ﬁ/ NV C U,{;i Wi C
W, and from the preceeding inequality together with (5) we obtain
w(z, h"N(E), D) > o(z, W, D) — ¢ > w(h(2), E, G) — 3e.
Sincee is arbitrary, we deduce that(z, »X(E), D) = w(h(z), E, G). O
Lemma 3.4. Let D cC G be domains inCV. Let E ¢ D be compact, and
let V be a domain inG that contains a point € D and does not intersedt.

Let K = aV N D. If w(z, E, D) = a then there is a pointv € K such that
o(w, E,G)>a.

Proof. Notethatk separatesandE in D. To prove thelemma, we take a sequence
of open(1/j)-neighborhoodd’; C D of E so thatw(z, V;, G) = w(z, E, G) as

j — oo. For eachj, we take a holomorphic mapping : U — D such that
£i(0) = z and such that the length of the skt = {¢ € [0, 2n] : fj(e”) eV;}is
greater than or equal torda — 1/j). Let h; be a harmonic function oty with
boundary values equal tp;. Thenh;(0) > a — 1/j and, by the maximum prin-
ciple, there is a poing; € fj‘l(K) with 7;(¢;) > a —1/j. SinceK is compact,
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we may assume (by taking a subsequence if necessary) that theypoiatg (¢;)

converge to a poiniv € K. We may also assume that; — w| < 1/j and that
fi(U) —w; +w C Gforall j. Let

{+4

1+¢¢

and setg; (¢) = fi(e;(¢)) —w; +w. Theng;: U — G andg;(0) = w. If A} =

e; {(Aj) thenm(A)) > 27 (a—1/j); furthermoreg;(A}) C V;_ysincelw; —w| <

1/j2. Thusw(w, E, G) > a. O

ej(¢) =

Now we can commence with the proof of the following theorem.

THEOREM 3.5. If E = {(z,w) € C? : w = z%, z # 0}, wherea > 0Ois an
irrational number, there %, = E.

Proof. By Theorem 2.4 it suffices to prove th@ N D), = E N D for each bidisk
D c C2. For simplicity in exposition and notation, we take:= U x U and
write E~ for (E N D).

Note that if we take a nonpolar piece of a “branch’mffor example, by setting
A:={z:]z—1/2] <1/4} and taking

Fi={(z,w):z€A, w=e¥09kI+ticAGzy

thenE C Fj, . ThusF,, = E~ and, by the remark after Theorem 2.1, our goal is to
evaluatew ((z, w), F, D). We show for pointsz, w) € D thatw((z, w), F, D) >
0if and only if (z, w) € E. For future use, we séft .= {z: |z —1/2| < 3/8} so
that O¢ 7.
We first consider a point, w) e D\ E withz £ 0. Let A = DN {z = 0}. By
Lemma 3.1,
w((z,w), F,D\ A) = w((z,w), F, D).

LetH :={£e€C: Rt <0}andG =: H x U, and defineh: G — D\ A via
h(g, w) = (%, w). Thenh is a holomorphic covering mapping.

The openseY = T x U is simply connected and contaifis Clearlyr (V) =
U;’;OO(TJ/ x U), where the seij’ lies in the semi-infinite strigfhé < O,
2] — D < J¢ < (2j + Dr}. These sets are open and disjoint. Thus, for
everyR > 0 we can choosg sufficiently large such tha\tj‘k‘zj T/ lies outside
the disk of radiusR centered at 0. Hence

Nim o(§ Uy i H) = 0

for everyé € H. From Lemma 3.2, using the projection mép w) — & we
conclude that

Jlim, o(Ew), (Ups, i) xU,G) =0
for every point(¢, w) € G. Thus, by Lemma 3.3,
o((, w), h (F),G) = o((¢*, w), F, D). (8)
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The seth"X(E N (D \ A)) is the disjoint union of the analytic sets
E={(EweG w=e2 e} (j=0,+L+2,...)
in G. For eachj, we consider the negative psh function
uj(g, w) = Injw — 2T | 2
onG. Sinceu; is —oo precisely onk;, we conclude that
w((¢ w),E;,G)=0 for (§,w)¢E;;

thus, we conclude thab ((€, w), h"XE), G) = Z?‘;foow((é’ w), E;,G) =0
when(g, w) ¢ h~1(E). Then, because

o ((€ w), NE), G) = o((§, w), h(F), G) = o((¢*, w), F, D)

on G (here we use (8)), we deduce that(z, w), F, D) = 0if (z, w) e D\ E
andz # 0.

Now suppose that, w) € E. We take a pointé, w) € Eg such thati(&, w) =
(z, w). Sincew((§, w), E;, G) = 0 whenj # 0, we see that

o (€ w), h1(F), G) = o((§, w), Fo, G),

whereFy = h™X(F) N Eo. Note thatFy = {(§, w) : £ € Ag, w = e*¢ }, where
Ag is the connected component of the preimagéafnder the mapping = ¢
lying in the strip{f¢ < 0, —7 < J& < 7}. Here we are using the hypothesis that
« is irrational to conclude thaky consists of a single component; clearly, then,
w(&, Ay, H) — 0 ashé — —oo. By Lemma 3.2 applied to the projection map
(&, w) — &, it follows thatw ((&, w), Fp, G) — 0 asii&é — —oo. Finally, using
Lemma 3.3 we conclude that((z, w), F, D) — 0 as|z| — 0. This statement
remains valid if we replac® by a larger (but fixed) polydisk.

To finish the proof, we consider points of the fokt w) € D. Suppose that
there is a point0, w) € D with w((0, w), F, D) =a > 0. LetG = {(z, w) :
|z] < 2, |lw| < 2}. By the previous paragraph, we can chopse 0 sufficiently
small so thato((z, w), F, G) < a/2 when|z| < r. Take

V=A{Gw):|z| <r |lw| <2}.

By Lemma 3.4, there is a poilit, w) € G such thaw ((r, w), F, G) > a > a/2.
Hencea = 0.

This concludes the proof that, for points w) € D, w((z, w), F, D) > 0O if
and only if(z, w) € E. By Theorem 2.1E, = E N D; finally, by Theorem 2.4,
El, =E. O

This fact also answers an old question of Sadullaev. AFset CV is called
plurithin at a pointzo € E if there exists a psh functiamon C" such that

limsup u(z) < u(zo).

z—20, ZEE
For example, every real-analytic curve is not plurithin at each of its points (see [S,
Prop. 4.1]). Sadullaev asked whether theBén Theorem 3.5 is plurithin at the
origin (see [S, 5.3]).
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CorOLLARY 3.6. The set, is plurithin at the origin whenr > Qs irrational.

Proof. SinceEg2 = E, there is a psh function on C? such thatu(z) = —oo
whenz € E andu(0) > —oo. O
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