Relatively Hyperbolic Groups

ANDRZEJ SZCZEPANSKI

1. Introduction

Let V be a complete, noncompact Riemannian manifold of constant negative cur-
vature with finite volume. Thewv has only finitely many ends;y, E>, . . ., Ex.

The inclusionsE; C V induce injectionsry(E;) < m(V) i =1,2,...,k). The
relations between the fundamental groupV) and the subgroups;(E;) are the

main motivation for introducing a theory of hyperbolic groups relatively to the
family of subgroups (for short, relatively hyperbolic groups). The idea is similar
to the case of the fundamental group of compact hyperbolic manifold. Its geomet-
ric and combinatorial structure gives us the definition of word-hyperbolic groups
[1;3; 7]

There are two definitions of relatively hyperbolic groups. The first one pro-
posed in [7] by Gromov (cf. Definition 1) is a generalization of the parabolic prop-
erties of the subgroups,(E;). The second definition (cf. Definition 2), proposed
by Farb in [4] (see also [5]), is expressed by properties of the modification of the
Cayley graph (coned-off Cayley graph):of( V). According to the first definition,
it is obvious thatr1(V) is hyperbolic relatively to the family of subgroups(E;)
i=12,..., k). Farb’s definition is weaker, and the proof of the hyperbolicity
of 71(V) relatively to the familyr (E;) (1 < i < k) becomes more difficult. How-
ever, it is convenient for constructing many illustrative examples. In this note we
want to prove (Theorem 1) that the Gromov definition is stronger than the one by
Farb, and we give an example (Example 3) of a group that is relatively hyper-
bolic in the sense of Farb’s definition butrist relatively hyperbolic in the sense
of Gromov’s definition.

The paper is organized as follows. In Section 2 we formulate the two defini-
tions of relatively hyperbolic groups and give some examples. This part is based
on [7, 8.6] and [4, 1.1]. IrSection 3 we prove our main result (Theorem 1) that
the Farb definition is more general than the Gromov definition. The main idea of
proof, which was proposed to us by Brian Bowditch, is the following proposition.

ProrosiTION. Let(X, d) be as-hyperbolic metric space& > 0) with the collec-
tion of closed disjoint-quasiconvex subsets. Let each subset contract to a point.
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Then the resulting space is hyperbo{in the Gromov senerovided the dis-
tance between any two quasiconvex sets is bounded below by some cnstant
R(6, &) depending o ande.

Section 3 ends with an example of a relatively hyperbolic group in the sense of
Farb that is not a relatively hyperbolic group in the Gromov sense.

ACKNOWLEDGMENTS. A preliminary version of this article was written in Feb-
ruary 1995 while the author was a visitor at ETH Zirich, whose hospitality and
financial support was much appreciated. | am also grateful to Brian Bowditch,
Urs Lang, Viktor Schroeder, and the referee for their contribution and comments.
Finally, | wish to express my gratitude to Benson Farb, who kindly supplied his
thesis [4].

2. Definitions

Let X be a complete hyperbolic locally compact geodesic space with a discrete iso-
metric action of a group such thatthe quotient spate= X/T is quasi-isometric
to the union ofk copies of [Q co) joined at zero. To simplify the matter, we as-
sume that the action @f on X is free and then lift thé rays inV (corresponding
to thek points indV ~ {1,2, ..., k})tokraysr;: [0,00) —> X, i =1,2,... k.
Denote byi; the corresponding horofunctions andigpo) € aX the limit points
of ;. Denote byl'; C T the isotropy subgroups af(co) for the action ofl" on
9X, and assume that; preserves; fori =1,2,...,k.

Denote byB;(p) the horoballshi‘l(—oo, ) C X and assume that, for a suffi-
ciently smallp, the intersectioryB;(p) N Bj(p) is empty unlesg = j andy €
;. Denote byT'B(p) C X the unionUi,y yBi(p)overi =1,2,..., kandally €
I'. Let X(p) = X\ 'B(p) and assume that the actionlobn X(p) is co-compact
forall p € (—o0, 00).

DEeFINITION 1 [6]. A groupT is calledword-hyperbolicrelative to some sub-
groupsI’y, I'y, ..., T in T if T admits an action on some with the foregoing
properties, wher&; denotes the isotropy subgroups/f

ExampLE 1. LetI be a finite co-volume discrete isometry group of a complete
simply connected Riemannian manifotdwith pinchednegative curvature,

0> —-a>KX)>-b>—c0.
Thenr is hyperbolic relative to the cuspidal subgroups in the sense of Definition 1.

Let us formulate a Farb definition (see [4; 5]). liebe a finitely generated group,
and let{Hq, . . ., H,} be afinite set of finitely generated subgroupsofVe begin
with the Cayley graph™ of G, and we form a new graph = I'({H., . . ., H,})
as follows: for each cosetd; (1 <i <r)of H; in G, add a vertex(gH;) toT’
and add an edge(gh;) of length ¥ 2 from each elemengh; of gH; to the vertex
v(gH;).
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We call this new graph theoned-off Cayley grapbf G with respect to{ Hy,
..., H,}. Although[ is not a proper metric space (i.e., closed balls are not always
compact), it is still a path-metric space.

The graph is also a geodesic metric space; that is, there exists a geodesic be-
tween any two points. Thus it makes sense to talk about geodesic triandles in
and whether or not these triangles &sthin.

DErFINITION 2 [4]. The groupG is hyperbolicrelative to{Hs, . . ., H,} if the
coned-off Cayley graph of G with respecttdHy, . . ., H,} is a negatively curved
metric space.

We now give a few examples of relatively hyperbolic groups in the sense of Defi-
nition 2. Most of them come from Farb’s thesis [4].

ExampLE 2. (1) LetM" be a complete, finite volume Riemannian manifold as in
Example 1. A group” = m1(M") is hyperbolic relative to the cuspidal subgroups
(see [4, p. 73)).

(2) Let Mod(S) be a mapping class group. By definition, this is the group of
autohomeomorphisms of the surfa&aup to isotopy. There are only a finite num-
ber of distinct nontrivial, nonperipheral homotopy classes of simple curvSs in
(distinguished by the topological type of their complement), up to the action of
Mod(S). Let {a3, a2, . . ., ay} be a fixed list of representatives of these NiHg
orbits, and letH; be the subgroup of Mad) fixing «;. Then the group Mo@)
is hyperbolic relative t¢ H1, Ho, . . ., Hy} (see [8, Thm. 1.3]).

(3) A groupG is hyperbolic relative to the trivial subgroup if and onlydfis a
word-hyperbolic group.

(4) If H is normalinI’, thenT is hyperbolic relative t& if and only if I'/H is
a word-hyperbolic group.

(5) Aword-hyperbolic group is hyperbolic relative to any quasiconvex subgroup
(cf. [6]).

For commentary and more examples, see [4] and [5].

3. Proof of Main Result
We need the following proposition.

ProrosiTioN 1. Let (X, d) be as-hyperbolic metric spacé& > 0) with the col-

lection of closed disjoint-quasiconvex subsets. Let each subset contract to a
point. Then the resulting space is hyperbdlic Gromov’'s sengeprovided the
distance between any two quasiconvex sets is bounded below by some constant
R = R(38, ¢) depending o and .

Proof. ChooseR so thatR > (245 + 4¢). Let X’ be the space formed by delet-
ing the interiors of all quasiconvex subsets, and giV¢he following metric: it is
zero at the boundary of quasiconvex subsets, and it agrees wiltinetric out-
side of these subsets. This makésinto a pseudometric space, which we give
the path metric.
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When considering pathsin X', we will always assume for simplicity that any
subsegment of lying on a quasiconvex subsdtis drawn as a geodesic on
this does not change any metric properties of paths, since the metticsorero.
The X'-length of a pathy, denoted byx/(y), is just the sum of th&-lengths of
the subpaths of lying outside every quasiconvex subset.

A geodesic between, y € X’ is a pathy in X’ from x to y such that'x.(y)
is minimal. It is not hard to see that, forX geodesicy betweenx andy, the
subpaths of/ lying outside every quasiconvex subset qualitatively consist of the
following: the shortesX-path fromx to some quasiconvex subset, followed by
the union of paths that are the shortéspaths between two quasiconvex sub-
sets, followed by the shortest-path from some final quasiconvex subsetyto
(cf. [4, 3.2]).

LemMma 1. The assumptions of the preceding proposition are kept. Then there
exist constantk = K(8,¢) and L = L(R) with the following property. Let

B be anyX’-geodesic fromx to y, and lety be the X-geodesic fromx to y.
Then any subsegment @gfthat lies outsideNbhdx (y, K) must haveX'-length

at mostL. In particular, any X’ geodesic fronx to y stays completely inside
Nbhdx (y,K + L/2).

Proof of Lemma 1For one quasiconvex set we have a picture shown as Figure 1,
where P is the projection on a quasiconvex set (see [3, p. 108]. We shall give an
estimate fowly (P (x), P(y)).

Figure 1

We first recall the inequality

dx(P(x), P(y)) = max(C, C +dx(x,y) —dx(x, P(x)) —dx(y, P(y))),

whereC = 2¢ 4+ 125 (see [7, Lemma 7.3D] or [3, Chap. 10, Prop. 2.1]). Hence, if
dx(x,y) <dx(x, P(x)) +dx(y, P(y)) thendx (P (x), P(y)) < C.
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We assume that
dx(x,y) = dx(P(x),x) +dx(P(y),y).
From the definition oB-hyperbolic space, for the points, y, P(x), P(y)) we
have the following inequality:
Vzelx,yl, dx(z, [x, P(0)]U[P(x), P(N]U[P(y), y]) = 26.
We have two cases: either (i)

Jzex, y] ldx(z, [P(x), P(Y)]) < 28;
or (ii)
Jdze[x,y] and 3c’'e€[x, P(x)], d €[y, P(y)]
such that
dx(c',z) <25 and dx(d', z) < 26.
In the second case, by assumption and from the triangle inequality we have
dx(P(x),x) +dx(P(y),y) <dx(x,y) <48 +dx(d’, y) +dx(c', x).

Sincedy (P (x), x) = dx(x,c") +dx(c’, P(x)) anddx (P (y), y) = dx(y,d") +
dx(d’, P(y)), it follows that

dx(c', P(x)) +dx(d’, P(y)) < 43.

Hence, in this case we havg (P (x), P(y)) < 84.
Summing up we have proved:

dx(z,[P(x), P(y)]) > 28 Vz€[x,y] = dx(P(x), P(y) =C. (D

Let us start to prove a general case. Chokise: 25 + ¢. Suppose thag’ is
a subsegment ¢f lying completely outsid&Vbhdy (y, K); sayz = B'(0) satis-
fiesdx(z, y) = K, and letw be the last point o’ with dx(w, y) = K. We can
assume that the first and the last poin6tio not lie on one of the given quasi-
convex sets. Let’ (resp.w’) denote the image of (resp.w) under a projection
ontoy (note thaty is a quasiconvex set).

See Figure 2 and recall thaf (s, y) > K for all s € /. We have:

Ix(B) <dx(z,2') +dx(',w') +dx(w', w); 1)
Ix(B) < 2K + (2(#q.c.s) +1))C = 2K + 2(#q.c.s)C + C, (2)
where “(#qg.c.s.)” means the number of quasiconvex sets penetratgd bire
second inequality follows frongt). Now quasiconvex sets are separated by an
X-distance of at leask, so
Ix(B) > (#g.c.s— DR
and so l )
x (B 41

(#q.C.S) < T

Plugging back into the inequalities (1) and (2) gives
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Figure 2

Ly (B' (B!
XB) o0y =2k +3c 420X P)

Ix(B) <2K +2C
x'(B) = 2K + R R

and so
R-2C

l;«(ﬁ’)( > < 2K +3C.

Now R > 2C by our choice ofR, so we can divide:

, R(2K + 3C)
Ix(B") < TR_20

Now let L = R(2K + 3C)/(R — 2C), and we are done. O

Now we can finish the proof of Proposition 1. Suppose we are given a triangle
A(x,y,z) C X', where by “triangle” we mean the union of the thdéegeodesics
Xy, yz, andxz. Now consider theX-geodesic between each pair of vertices. The
resulting triangle inX is §-thin.

Let K andL be the constants given by Lemma 1. Suppose we are given gjpoint
onxy. Then there is a point’ on theX-geodesic fromx to y so thatdy(p, p') <
K + L/2, and there is a poinj’ on (say) theX-geodesic fronx to z with

dx(p',q") <dx(p',q") <8.

Combining Lemma 1 with the definitions of quasiconvex set and hyperbolic space
(see [3, Lemma 7.2, p. 153]), we conclude that there is a poon xz so that

dx (q,q") < 2K + L + 28 + ¢; without changing we may assume tlgatdoes

not lie on a quasiconvex set. It follows from these observations that

dx(p,q) <K+ L/2+8+2K +L+25+&=23K +3/2L + 25 +¢.
Hence triangles irX’ are(3K + 3/2L + 2§ + ¢)-thin. O

Now we can formulate our theorem.

THeoreM 1. LetTI be afinitely generated group, and lgty, . . ., H,} be afinite
set of finitely generated subgroups. Iifis hyperbolic relative tq Hy, . . ., H,}
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in the sense of Definition 1, then is hyperbolic relative toH in the sense of
Definition 2.

Proof. For simplicity, we assume that the family of subgroups has one element;
the proof for more than one subgroup is similar (see [4, Apx. A] and [5]). We
retain the notation of Definition 1.

Let X be a completé-hyperbolic locally compact geodesic space with a discrete
isometric action of the group such thatH is the isotropy of-(co) € X and pre-
serves a corresponding horofunctibnBecause horoballs af@s)-quasiconvex
sets (see [7, p. 192]), we can apply Proposition 1 for the spadeaom Defini-
tion 1 we have the quasi-isometyy. I' — X(p). Hence we have the following

commutative diagram:

r —L. xp

| |

FH) —— Xy,
whereX(p)’ denotesX(p) with a metric defined on the beginning of the proof of
the Proposition 1. The map is quasi-isometry induced by (see [4, Sec. 3.2]).
By Proposition 1, the space(p)’ is §-hyperbolic for somé. Hence the groufy
is hyperbolic relative td{ in the sense of Definition 2. O

Note. These considerationsare ageneralization of [4, 3.3]. In particular, Lemma
3.4 and Proposition 3.5 of [4] are corollaries of our Theorem 1.

QuesTtions. (1) LetT" be hyperbolic group relative to subgroipin the sense
of Gromov’s definition. Does the paff’, H) have a bounded coset penetration
property? (See [4] or [5] for a definition of this property.)

(2) Is the mapping class group hyperbolic relative to the family of subgroups in
the Gromov sense? (Compare Example 2(2).)

ExampLE 3. Letl’ = Z @ Z and letH = Z. The grouprl" is hyperbolic relative
to H in the sense of Definition 2 but not in the sense of Definition 1. In fact, any
Z @ Z acting on a hyperbolic space has an ideal fixed point (see [2, p. 86]).
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