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1. Introduction

LetV be a complete, noncompact Riemannian manifold of constant negative cur-
vature with finite volume. ThenV has only finitely many ends,E1, E2, . . . , Ek.

The inclusionsEi ⊂ V induce injectionsπ1(Ei) ↪→ π1(V ) (i = 1,2, . . . , k). The
relations between the fundamental groupπ1(V ) and the subgroupsπ1(Ei) are the
main motivation for introducing a theory of hyperbolic groups relatively to the
family of subgroups (for short, relatively hyperbolic groups). The idea is similar
to the case of the fundamental group of compact hyperbolic manifold. Its geomet-
ric and combinatorial structure gives us the definition of word-hyperbolic groups
[1; 3; 7].

There are two definitions of relatively hyperbolic groups. The first one pro-
posed in [7] by Gromov (cf. Definition 1) is a generalization of the parabolic prop-
erties of the subgroupsπ1(Ei). The second definition (cf. Definition 2), proposed
by Farb in [4] (see also [5]), is expressed by properties of the modification of the
Cayley graph (coned-off Cayley graph) ofπ1(V ). According to the first definition,
it is obvious thatπ1(V ) is hyperbolic relatively to the family of subgroupsπ1(Ei)

(i = 1,2, . . . , k). Farb’s definition is weaker, and the proof of the hyperbolicity
of π1(V ) relatively to the familyπ(Ei) (1≤ i ≤ k) becomes more difficult. How-
ever, it is convenient for constructing many illustrative examples. In this note we
want to prove (Theorem 1) that the Gromov definition is stronger than the one by
Farb, and we give an example (Example 3) of a group that is relatively hyper-
bolic in the sense of Farb’s definition but isnot relatively hyperbolic in the sense
of Gromov’s definition.

The paper is organized as follows. In Section 2 we formulate the two defini-
tions of relatively hyperbolic groups and give some examples. This part is based
on [7, 8.6] and [4, 1.1]. InSection 3 we prove our main result (Theorem 1) that
the Farb definition is more general than the Gromov definition. The main idea of
proof, which was proposed to us by Brian Bowditch, is the following proposition.

Proposition. Let (X, d ) be aδ-hyperbolic metric space(δ ≥ 0)with the collec-
tion of closed disjointε-quasiconvex subsets. Let each subset contract to a point.
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Then the resulting space is hyperbolic(in the Gromov sense) provided the dis-
tance between any two quasiconvex sets is bounded below by some constantR =
R(δ, ε) depending onδ andε.

Section 3 ends with an example of a relatively hyperbolic group in the sense of
Farb that is not a relatively hyperbolic group in the Gromov sense.
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financial support was much appreciated. I am also grateful to Brian Bowditch,
Urs Lang, Viktor Schroeder, and the referee for their contribution and comments.
Finally, I wish to express my gratitude to Benson Farb, who kindly supplied his
thesis [4].

2. Definitions

LetX be a complete hyperbolic locally compact geodesic space with a discrete iso-
metric action of a group0 such that the quotient spaceV = X/0 is quasi-isometric
to the union ofk copies of [0,∞) joined at zero. To simplify the matter, we as-
sume that the action of0 onX is free and then lift thek rays inV (corresponding
to thek points in∂V ≈ {1,2, . . . , k}) to k raysri : [0,∞)→ X, i = 1,2, . . . , k.
Denote byhi the corresponding horofunctions and byri(∞)∈ ∂X the limit points
of ri . Denote by0i ⊂ 0 the isotropy subgroups ofri(∞) for the action of0 on
∂X, and assume that0i preserveshi for i = 1,2, . . . , k.

Denote byBi(ρ) the horoballsh−1
i (−∞, ρ) ⊂ X and assume that, for a suffi-

ciently smallρ, the intersectionγBi(ρ) ∩ Bj(ρ) is empty unlessi = j andγ ∈
0i.Denote by0B(ρ) ⊂ X the union

⋃
i,γ γBi(ρ) overi = 1,2, . . . , k and allγ ∈

0. LetX(ρ) = X \0B(ρ) and assume that the action of0 onX(ρ) is co-compact
for all ρ ∈ (−∞,∞).
Definition 1 [6]. A group0 is calledword-hyperbolicrelative to some sub-
groups01, 02, . . . , 0k in 0 if 0 admits an action on someX with the foregoing
properties, where0i denotes the isotropy subgroups ofhi.

Example 1. Let0 be a finite co-volume discrete isometry group of a complete
simply connected Riemannian manifoldX with pinchednegative curvature,

0> −a ≥ K(X) ≥ −b > −∞.
Then0 is hyperbolic relative to the cuspidal subgroups in the sense of Definition1.

Let us formulate a Farb definition (see [4; 5]). LetG be a finitely generated group,
and let{H1, . . . , Hr} be a finite set of finitely generated subgroups ofG.We begin
with the Cayley graph0 of G, and we form a new grapĥ0 = 0̂({H1, . . . , Hr})
as follows: for each cosetgHi (1≤ i ≤ r) of Hi in G, add a vertexυ(gHi) to 0
and add an edgee(ghi) of length 1/2 from each elementghi of gHi to the vertex
υ(gHi).
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We call this new graph theconed-off Cayley graphof G with respect to{H1,

. . . , Hr}. Although0̂ is not a proper metric space (i.e., closed balls are not always
compact), it is still a path-metric space.

The graph0̂ is also a geodesic metric space; that is, there exists a geodesic be-
tween any two points. Thus it makes sense to talk about geodesic triangles in0̂

and whether or not these triangles areδ-thin.

Definition 2 [4]. The groupG is hyperbolicrelative to{H1, . . . , Hr} if the
coned-off Cayley grapĥ0 ofGwith respect to{H1, . . . , Hr} is a negatively curved
metric space.

We now give a few examples of relatively hyperbolic groups in the sense of Defi-
nition 2. Most of them come from Farb’s thesis [4].

Example 2. (1) LetMn be a complete, finite volume Riemannian manifold as in
Example 1. A group0 = π1(M

n) is hyperbolic relative to the cuspidal subgroups
(see [4, p. 73]).

(2) Let Mod(S) be a mapping class group. By definition, this is the group of
autohomeomorphisms of the surfaceS, up to isotopy. There are only a finite num-
ber of distinct nontrivial, nonperipheral homotopy classes of simple curves inS

(distinguished by the topological type of their complement), up to the action of
Mod(S). Let {α1, α2, . . . , αN} be a fixed list of representatives of these Mod(S)-
orbits, and letHj be the subgroup of Mod(S) fixing αj . Then the group Mod(S)
is hyperbolic relative to{H1, H2, . . . , HN} (see [8, Thm. 1.3]).

(3) A groupG is hyperbolic relative to the trivial subgroup if and only ifG is a
word-hyperbolic group.

(4) If H is normal in0, then0 is hyperbolic relative toH if and only if0/H is
a word-hyperbolic group.

(5) A word-hyperbolic group is hyperbolic relative to any quasiconvex subgroup
(cf. [6]).

For commentary and more examples, see [4] and [5].

3. Proof of Main Result

We need the following proposition.

Proposition 1. Let (X, d ) be aδ-hyperbolic metric space(δ ≥ 0) with the col-
lection of closed disjointε-quasiconvex subsets. Let each subset contract to a
point. Then the resulting space is hyperbolic(in Gromov’s sense) provided the
distance between any two quasiconvex sets is bounded below by some constant
R = R(δ, ε) depending onδ and ε.

Proof. ChooseR so thatR > (24δ + 4ε). LetX ′ be the space formed by delet-
ing the interiors of all quasiconvex subsets, and giveX ′ the following metric: it is
zero at the boundary of quasiconvex subsets, and it agrees with theX-metric out-
side of these subsets. This makesX ′ into a pseudometric space, which we give
the path metric.
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When considering pathsγ inX ′, we will always assume for simplicity that any
subsegment ofγ lying on a quasiconvex subsetA is drawn as a geodesic onA;
this does not change any metric properties of paths, since the metric onA is zero.
TheX ′-length of a pathγ, denoted bylX ′(γ ), is just the sum of theX-lengths of
the subpaths ofγ lying outside every quasiconvex subset.

A geodesic betweenx, y ∈ X ′ is a pathγ in X ′ from x to y such thatlX ′(γ )
is minimal. It is not hard to see that, for aX ′ geodesicγ betweenx andy, the
subpaths ofγ lying outside every quasiconvex subset qualitatively consist of the
following: the shortestX-path fromx to some quasiconvex subset, followed by
the union of paths that are the shortestX-paths between two quasiconvex sub-
sets, followed by the shortestX-path from some final quasiconvex subset toy
(cf. [4, 3.2]).

Lemma 1. The assumptions of the preceding proposition are kept. Then there
exist constantsK = K(δ, ε) andL = L(R) with the following property. Let
β be anyX ′-geodesic fromx to y, and let γ be theX-geodesic fromx to y.
Then any subsegment ofβ that lies outsideNbhdX(γ,K) must haveX ′-length
at mostL. In particular, anyX ′ geodesic fromx to y stays completely inside
NbhdX ′(γ,K + L/2).

Proof of Lemma 1.For one quasiconvex set we have a picture shown as Figure 1,
whereP is the projection on a quasiconvex set (see [3, p. 108]. We shall give an
estimate fordX(P (x), P (y)).

Figure 1

We first recall the inequality

dX(P (x), P (y)) ≤ max(C,C + dX(x, y)− dX(x, P (x))− dX(y, P (y))),
whereC = 2ε+12δ (see [7, Lemma 7.3D] or [3, Chap. 10, Prop. 2.1]). Hence, if
dX(x, y) ≤ dX(x, P (x))+ dX(y, P (y)) thendX(P (x), P (y)) ≤ C.
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We assume that

dX(x, y) ≥ dX(P (x), x)+ dX(P (y), y).
From the definition ofδ-hyperbolic space, for the points(x, y, P (x), P (y)) we
have the following inequality:

∀z∈ [x, y], dX(z, [x, P (x)] ∪ [P(x), P (y)] ∪ [P(y), y]) ≤ 2δ.

We have two cases: either (i)

∃z∈ [x, y] | dX(z, [P(x), P (y)]) ≤ 2δ;
or (ii)

∃z∈ [x, y] and ∃c ′ ∈ [x, P (x)], d ′ ∈ [y, P (y)]

such that
dX(c

′, z) ≤ 2δ and dX(d
′, z) ≤ 2δ.

In the second case, by assumption and from the triangle inequality we have

dX(P (x), x)+ dX(P (y), y) ≤ dX(x, y) ≤ 4δ + dX(d ′, y)+ dX(c ′, x).
SincedX(P (x), x) = dX(x, c ′)+ dX(c ′, P (x)) anddX(P (y), y) = dX(y, d ′)+
dX(d

′, P (y)), it follows that

dX(c
′, P (x))+ dX(d ′, P (y)) ≤ 4δ.

Hence, in this case we havedX(P (x), P (y)) ≤ 8δ.
Summing up we have proved:

dX(z, [P(x), P (y)]) > 2δ ∀z∈ [x, y] ⇒ dX(P (x), P (y)) ≤ C. (†)

Let us start to prove a general case. ChooseK ≥ 2δ + ε. Suppose thatβ ′ is
a subsegment ofβ lying completely outsideNbhdX(γ,K); sayz = β ′(0) satis-
fiesdX(z, γ ) = K, and letw be the last point ofβ ′ with dX(w, γ ) = K. We can
assume that the first and the last point ofβ ′ do not lie on one of the given quasi-
convex sets. Letz ′ (resp.w ′) denote the image ofz (resp.w) under a projection
ontoγ (note thatγ is a quasiconvex set).

See Figure 2 and recall thatdX(s, γ ) > K for all s ∈ β ′. We have:

lX ′(β
′) ≤ dX(z, z ′)+ dX(z ′, w ′)+ dX(w ′, w); (1)

lX ′(β
′) ≤ 2K + (2(#q.c.s.)+1))C = 2K + 2(#q.c.s.)C + C, (2)

where “(#q.c.s.)” means the number of quasiconvex sets penetrated byβ ′. The
second inequality follows from(†). Now quasiconvex sets are separated by an
X-distance of at leastR, so

lX ′(β
′) ≥ (#q.c.s.−1)R

and so

(#q.c.s.) ≤ lX ′(β
′)

R
+1.

Plugging back into the inequalities (1) and (2) gives
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Figure 2

lX ′(β
′) ≤ 2K + 2C

lX ′(β
′)

R
+ 2C + C = 2K + 3C + 2C

lX ′(β
′)

R
and so

lX ′(β
′)
(
R − 2C

R

)
≤ 2K + 3C.

NowR > 2C by our choice ofR, so we can divide:

lX ′(β
′) ≤ R(2K + 3C)

R − 2C
.

Now letL = R(2K + 3C)/(R − 2C), and we are done.

Now we can finish the proof of Proposition 1. Suppose we are given a triangle
4(x, y, z) ⊂ X ′,where by “triangle” we mean the union of the threeX ′-geodesics
xy, yz, andxz. Now consider theX-geodesic between each pair of vertices. The
resulting triangle inX is δ-thin.

LetK andL be the constants given by Lemma1. Suppose we are given a pointp

onxy. Then there is a pointp′ on theX-geodesic fromx to y so thatdX ′(p, p′) ≤
K + L/2, and there is a pointq ′ on (say) theX-geodesic fromx to z with

dX ′(p
′, q ′) ≤ dX(p′, q ′) ≤ δ.

Combining Lemma 1 with the definitions of quasiconvex set and hyperbolic space
(see [3, Lemma 7.2, p. 153]), we conclude that there is a pointq on xz so that
dX ′(q, q

′) ≤ 2K + L + 2δ + ε; without changing we may assume thatq ′ does
not lie on a quasiconvex set. It follows from these observations that

dX ′(p, q) ≤ K + L/2+ δ + 2K + L+ 2δ + ε = 3K + 3/2L+ 2δ + ε.
Hence triangles inX ′ are(3K + 3/2L+ 2δ + ε)-thin.

Now we can formulate our theorem.

Theorem 1. Let0 be a finitely generated group, and let{H1, . . . , Hr} be a finite
set of finitely generated subgroups. If0 is hyperbolic relative to{H1, . . . , Hr}
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in the sense of Definition 1, then0 is hyperbolic relative toH in the sense of
Definition 2.

Proof. For simplicity, we assume that the family of subgroups has one element;
the proof for more than one subgroup is similar (see [4, Apx. A] and [5]). We
retain the notation of Definition 1.

LetX be a completeδ-hyperbolic locally compact geodesic space with a discrete
isometric action of the group0 such thatH is the isotropy ofr(∞)∈ ∂X and pre-
serves a corresponding horofunctionh. Because horoballs are(2δ)-quasiconvex
sets (see [7, p. 192]), we can apply Proposition 1 for the spaceX. From Defini-
tion 1 we have the quasi-isometryf : 0 → X(ρ). Hence we have the following
commutative diagram:

0
f−−−−→ X(ρ)y y

0̂(H )
f̂−−−−→ X(ρ)′,

whereX(ρ)′ denotesX(ρ) with a metric defined on the beginning of the proof of
the Proposition 1. The map̂f is quasi-isometry induced byf (see [4, Sec. 3.2]).
By Proposition 1, the spaceX(ρ)′ is δ̄-hyperbolic for somēδ. Hence the group0
is hyperbolic relative toH in the sense of Definition 2.

Note. These considerations are a generalization of [4, 3.3]. In particular, Lemma
3.4 and Proposition 3.5 of [4] are corollaries of our Theorem 1.

Questions. (1) Let0 be hyperbolic group relative to subgroupH in the sense
of Gromov’s definition. Does the pair(0,H ) have a bounded coset penetration
property? (See [4] or [5] for a definition of this property.)

(2) Is the mapping class group hyperbolic relative to the family of subgroups in
the Gromov sense? (Compare Example 2(2).)

Example 3. Let0 = Z ⊕Z and letH = Z. The group0 is hyperbolic relative
toH in the sense of Definition 2 but not in the sense of Definition 1. In fact, any
Z ⊕ Z acting on a hyperbolic space has an ideal fixed point (see [2, p. 86]).
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