Nonpositively Curved, Piecewise Euclidean
Structures on Hyperbolic Manifolds
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A well-known question is whether any Riemannian manifold M of nonpositive sec-
tional curvature admits a piecewise Euclidean metric that is nonpositively curved.
Here “nonpositively curved” is in the sense of Aleksandrov and Gromov—that is,
it is defined by comparing small triangles in the space with triangles in the Eu-
clidean plane via the “CAT (0)-inequality”. (See [BH] or [G] for the precise def-
inition.) Our purpose in this paper is to describe a simple construction that gives
an affirmative answer to the question in the case of constant sectional curvature.

The most naive approach to this problem does not work, at least not obviously.
Namely, given a hyperbolic manifold, first find a triangulation of it by hyperbolic
simplices. Next, replace each hyperbolic simplex by a Euclidean simplex with
the same edge lengths. Finally, try to prove that the resulting metric is nonposi-
tively curved. This approach works in dimension 2. However, in higher dimen-
sions there are at least two problems with it: (1) there are hyperbolic simplices
that do not have the same set of edge lengths as a Euclidean simplex (consider a
hyperbolic tetrahedron with one face a big triangle and fourth vertex almost on the
plane of the triangle); and (2) even when the replacement process can be carried
out, the dihedral angles in the Euclidean simplex can be smaller than the corre-
sponding dihedral angles in the hyperbolic simplex, so the curvature can become
positive. We shall take a different tack.

We use the quadratic form model of hyperbolic n-space: R™! denotes an (n+1)-
dimensional vector space with coordinates (xi, ... , X,+1) equipped with the in-
definite symmetric bilinear form (, ) defined by (x, y) = x;y1 + -+ + X,y —
Xn+1Yn+1, and the associated quadratic form g(x) = (x, x). Hyperbolic space H"
is identified with the sheet of the hyperboloid g(x) = —1 defined by x,,,; > 0.
If T is a k-dimensional linear subspace of R™! then there are three possibilities
for the restriction of the bilinear form to T': either it is positive definite, positive
semidefinite, or indefinite of signature (k — 1, 1). One says that T is, respectively,
spacelike, lightlike, or timelike. If F is a k-dimensional convex subset of R™!,
then let 7r denote the k-dimensional linear subspace that is parallel to the affine
span of F. We say that F is spacelike, lightlike, or timelike as T is.

Let V be a discrete subset of H". The Dirichlet region D, for V at a point v
in V consists of the points in H” which are at least as close to v as to V — {v}.
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Equivalently, D, = {x € H" | (x,v) > (x, w) forall w € V — {v} }. Any such
Dirichlet region, being an intersection of hyperbolic half-spaces, is a geodesically
convex subset of H". In fact, if the Dirichlet region is bounded then it is an n-cell,
that is, a geodesically convex polytope in H”.

Let Conv(V) denote the closure of the convex hull of V in R™! and let B(V)
denote the boundary of Conv (V). Then every point in B(V) is contained in a sup-
porting hyperplane of Conv (V). (An affine hyperplane E is a supporting hyper-
plane if E N Conv(V) # @ and Conv (V) lies in the closure of one component of
R™! — E.) We will show that, if every Dirichlet region is bounded, then B(V) has
a natural piecewise Euclidean structure which is CAT(0). If M = H"/T" and V is
a set of I'-orbits, we obtain the desired piecewise Euclidean structure on M.

Let I denote the interior of the light cone, I = {z € R™! | g(z) <0, Zngl >
0}, and let p: I — H" be radial projection (defined by p(z) = z//—q(x)).

PROPOSITION 1.  Let V be a discrete subset of H" such that each Dirichlet region
Jor V is bounded. Then the following statements are true.

(1) Each face of B(V) is a spacelike cell (i.e., each face is compact and the re-
striction of the bilinear form to its tangent space is positive definite). Thus,
B(V) is naturally a piecewise Euclidean cell complex.

(i1) Radial projection p takes B(V) homeomorphically onto H" and also takes
each face of B(V) onto a geodesically convex cell in H".

The referee has pointed out that similar constructions appear in [EP] and [NP].
Naitinen and Penner [NP] consider the same construction, but only in dimension
2. In particular, when n = 2, they prove Proposition 1 as well as Lemma 5. Ep-
stein and Penner [EP] use a similar construction to find piecewise Euclidean struc-
tures for certain noncompact hyperbolic manifolds; they take the convex hull of a
set of points on the light cone associated to orbits of the cusps.

To prove the proposition we need three easy lemmas.

LEMMA 2. Let E be an affine hyperplane in R™! which has nonempty intersec-
tion with H" and which is not tangent to H". Let X = ENH". If E is not space-
like, then the hypersurface L g separates H" into two unbounded regions. More
precisely, the following statements are true.

(1) If E is spacelike, then Lk is a sphere of some radius centered at some point
in H".
(ii) If E is lightlike, then X g is a horosphere.
(iii) If E is timelike, then X is the “equidistant hypersurface” consisting of the
points of some constant oriented distance from a hyperbolic hyperplane.

Proof. (i) Suppose T is spacelike. Its orthogonal complement is a timelike line
that intersects H” in a unique point xg, and the function x — (x, xo) is con-
stant on E. Since X is nonempty and not a singleton, the constant ¢ = (x, xg) is
negative. Thus, X is the sphere of radius cosh™! (—c) about xy.
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(ii) Suppose T% is lightlike. Then there is a lightlike vector z, with z,4; > 0,
such that T is tangent to the light cone along Rz. Hence, x — (x, z) is constant
on E. Since X # @, this constant is negative and X g is a horosphere.

(iii) Suppose T is timelike. Then X is an equidistant hypersurface to the hy-
perbolic hyperplane 7 N H”. O

LEMMA 3. Let V be a discrete subset of H". The following statements are equiv-
alent.

(1) Each Dirichlet region for V is bounded.
(ii) Each horoball in H" has nonempty intersection with V.

Proof. (ii) = (i) . Suppose that, for some v in V, the Dirichlet region D, is un-
bounded. Then there is a geodesic ray y: [0, o0) — D, starting at v. Let y (c0)
denote its “endpoint” on the sphere at infinity. Let H be the horoball centered at
y (00) such that v € dH, where dH denotes the corresponding horosphere. Let
¢:H" — R be the Busemann function determined by y:

¢(x) = lim d(x, y (1)) —¢.

It is well known that the horospheres centered at y (oco) are level sets of ¢. More-
over, dH = ¢~1(0), and if H’ is any smaller horoball centered at y (co) then H' =
¢~ ((—o0, c]) for some ¢ < 0. If H' is any such smaller horoball, then H' NV =
@. For suppose, to the contrary, that v/ € H' N V. (Heuristically, v’ is “closer to
y (00)” than is v.) Then, for all sufficiently large ¢, d(v/, y(¢)) <t = d(v, y(¥));
that is, for such ¢, y (¢) does not lie in D,—a contradiction. Thus, the negation of
(1) implies the negation of (ii).

(i) = (i1) . Suppose there are horoballs that have empty intersections with V
in their interiors. Choose a maximal such horoball H such thatint(H) NV =@
anddHNV #@.Letv e dH NV and let y: [0, co) — H” be aray with y(0) =
v and y (0c0) the center of H. We claim that the image of y is contained in D,. For
if d(v', y(to)) < d(v, y (o)) = to for some v’ € V and some tg, then for all £ >
to we have

d@',y(@) <d@, y(t)) +d(y(te), (@) < to+ (t —to) =1t.

Thus, ¢(v') < 0, so v’ lies in the interior of H, contradicting the choice of H.
Hence, the negation of (ii) implies the negation of (i). O

Suppose that E is an affine hyperplane in R™! that has nonempty intersection with
I (the interior of the light cone). Then, I — E has two components. Call such a
component unbounded if there is aray, t — tz, such that ¢z lies in that component
for all ¢ larger than some constant. Another way to phrase Lemma 2 is this: if £
is timelike or lightlike, then both components of I — E are unbounded; whereas
if E is spacelike, then one component is unbounded and the other is not.

LEMMA 4. Let V be a discrete subset of H" such that each Dirichlet region for
V is bounded. Then each supporting hyperplane E of Conv (V) is spacelike and
Conv (V) is contained in the closure of the unbounded component of I — E.
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Proof. This is immediate from Lemmas 2 and 3, since any unbounded component
of I — E contains a horoball. O

Proof of Proposition 1. (i) By Lemma 4, each face of B(V) is spacelike. Let F
be such a face and E a supporting affine hyperplane containing F. Since the ver-
tex set of F' is a discrete subset of the sphere X, it is a finite set. Hence, F (being
the convex hull of its vertex set) is compact.

(i1) We first remark that the radial projection p: I — H" takes each convex sub-
set of I onto a geodesically convex subset of H". To show that p|pwy): B(V) —
H” is a homeomorphism, it suffices to show it is one-to-one and onto. Both of
these facts follow easily from Lemma 4. Indeed, suppose that p|g(y) is not onto.
Let x € H" be a point that is not in the image, and let r, denote the ray t — .
Then there exists a supporting hyperplane E of Conv (V) that separates r, from
Conv (V). The component of I — E containing r, is unbounded, contradicting
Lemma 4. Hence, p|pv) is onto. Similarly, suppose p|p) is not one-to-one.
Then there is a point x € H” such that the ray r, intersects B(V) in two points,
fix and 1, x, with #; < ;. By convexity, the ray r, then intersects Conv (V) in the
line segment [#; x, t2x]. Let E be a supporting hyperplane of Conv (V) containing
tox. Then r, intersects E transversely (since E is spacelike) and [#; x, £, x] lies cn
the bounded side of E. This again contradicts Lemma 4. O

LEMMA 5. The cellulation of B(V) by its faces is combinatorially dual to the cel-
lulation of H" by Dirichlet cells. Moreover, if o is a Dirichlet cell and F, is its
dual cell in B(V), then the linear span of o is the orthogonal complement of Ty,
in R™1,

Proof. Suppose x € H” and v € V. Let E, , be the affine hyperplane:
Erp={zeR" | (x,2) =(x,0)}.

We first prove that E, , is a supporting hyperplane for Conv (V) if and only if x €
D,. To see this, note that the affine function z — (x, z — v) does not change sign
on the unbounded component of I — E, ,. Furthermore, the sign must be nega-
tive (consider the restriction of the function to any ray). If E, , is a supporting
hyperplane of Conv (V) then, by Lemma 4, the function z — (x,z—v)is <0Oon
Conv (V). In particular, (x, w) < (x, v) forall w € V, thatis, x € D,. Similarly,
if x € D, then (x, w) < (x,v) for all w € V, and hence E, , is a supporting
hyperplane. This proves the claim.

Next we show that the cellulation of H” by Dirichlet cells is “dual” to the cellu-
lation of B(V) by faces. First suppose that o is a k-face of some Dirichlet cell D,,.
letV(oc)={weV|o CD,} Foreachx € o, (x,w) < (x,v) forall w €
V, with equality if and only if w € V(o). The (n — k)-dimensional affine space
E,,={z¢€ R™®! | (x,z —v) = 0forall x € ¢} contains V (¢) and is an inter-
section of supporting hyperplanes (the E, ,, x € o). Moreover, it is clear that the
affine span of V (o) is E,; ,. (There are at least n — k linearly independent vectors
of the form w — v, where D,, N D, is a codimension-1 face containing o.) Thus
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F, = Conv(V (o)) is an (n — k)-face of B(V), called the dual face to o. Note that
the tangent space to F, is Tr, = {z € R*! | (x,z) = Oforall x € o}. Thus,
TF, is the orthogonal complement of the linear span of o. In fact, by dimension
arguments, o = (T, )™ N D,.

Conversely, suppose that F is an (n — k)-face of B(V). Let V¢ be the vertex set

of F. Let
O = ﬂ Dw.

wevVr

Fix an element v in V. Let (TF)* denote the orthogonal complement of the tan-
gent space to F. Thus, (7)™ is a (k + 1)-dimensional timelike subspace of R™,
Then a point x in D, lies in of if and only if (x, w —v) = O0forall w € Vg.In
other words, o7 = (Tr)* N D,. It follows that the supporting hyperplanes con-
taining F are precisely the planes E, , with x € of. Thus, of is a nonempty,
k-dimensional face of D,. Call oF the dual face to F.

It is clear that 0 — F, and F — o are inverse functions between the sets
of faces of the two cellulations. (We remark that if F is an n-dimensional face
of B(V), if E is the affine hyperplane spanned by F, and if x is the correspond-
ing dual vertex defined by x = (Tr)* N HP", then x is the center of the sphere
YE.) U

The cellulation by Dirichlet cells is known as the Voronoi diagram for V. Its dual is
the Delaunay tesselation (see e.g. [R]). Thus, Lemma 5 shows that B(V') projects
to the Delaunay tesselation associated to V.

THEOREM 6. The natural piecewise Euclidean metric on B(V) is CAT(0).

Proof. As explained in [G] or [BH], to show that a piecewise Euclidean complex
is CAT(0) it suffices to show that it is simply connected and that the link of each
vertex is CAT(1). The link of a vertex v is the piecewise spherical cell complex
whose cells are the “solid angles” in the Euclidean cells containing v. That is, if
F is a Euclidean cell containing v, then the inward pointing unit tangent vectors
to F at v form a spherical cell, which we denote by link (v, F'). These cells are
glued together in a natural fashion to get a piecewise spherical complex, denoted
by link (v, B(V)).

Since B(V) is homeomorphic to H”, it is simply connected. It remains to show
that links of vertices in B(V') are CAT(1). For this we appeal to the main theorem
in [CD]. As explained in [CD], associated to a geodesically convex n-cell X in
H" there is a piecewise spherical complex P(X), called its polar dual, defined as
follows. If o is a proper face of X, then let C, be the convex polyhedral cone in
R™! consisting of all vectors that are orthogonal to o and point outward from X
thatis, C;, = {z € R™! | (z,y) =0 Vy € 0 and {(z, x) < 0 Vx € X }. This cone
is spanned by the outward-pointing normal vectors to the codimension-1 faces of
X containing o. Let ST denote the unit pseudosphere in R™! consisting of all vec-
tors z with g(z) = 1. Set & = S§ N C,. Since C, spans a spacelike subspace of
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R™!, & is naturally a spherical cell. By definition, P (X) is the union of the &,
where o ranges over the proper faces of X. The main result of [CD, Thm. 4.1.1]
asserts that P(X) is CAT(1).

Fix a vertex v in B(V). We claim that the link of v in B(V') is the polar dual of the
Dirichlet region D,,. If F is a face of B(V') containing v, then the inward-pointing
tangent vectors to F at v form a polyhedral cone, Cr, spanned by the tangent vec-
tors to the edges of F containing v. (That is, Cr consists of all positive linear com-
binations of these tangent vectors.) Thus, link (v, F) = Cr N S{. By Lemma 5,
the edges F; of F containing v are dual to the codimension-1 faces o5, of D, con-
taining or; moreover, the tangent vector to the F; is the outward-pointing normal
to the face op,. Thus, Cr = C,, and link (v, F) = . It follows that the link of
v in B(V) is the polar dual of D,, as claimed. 1

In [CD] it is proved not only that the polar dual of a hyperbolic convex polytope
X is CAT(1) (or “large”) but that it is extra large in the sense that the length of
every closed geodesic in P(X) is strictly greater than 27, and similarly for links
in P(X). It follows that the links of cells in B(V) are also extra large in this sense.
This is what one expects in this situation: the negative curvature of H” has not dis-
appeared; rather, it has been concentrated on the codimension-2 skeleton of B(V).
The property of having extra-large links is interesting because it is an open condi-
tion in the sense of stability under small perturbations of the piecewise Euclidean
structure (see [CD, Lemma 6.1.2]). Without this additional property, the condition
of being CAT(0) is not stable under small perturbations.

COROLLARY 7. Let M" be a complete hyperbolic n-manifold. Then M" admits
a piecewise Euclidean metric that is nonpositively curved in the sense of [G] (i.e.,
M" has a piecewise Euclidean structure that is locally CAT(0)). Moreover, the
links of vertices in this structure are extra large.

Proof. Let W be a discrete subset of M”" such that any point in M” lies within a
bounded distance of W. (Such W obviously exist; for example, if M" is compact
then we can take W to be a singleton.) Identify the universal cover of M” with H"
and 7 (M"™) with a discrete subgroup of O(n, 1). Let m: H"® — M" be the cov-
ering projection. Set V = n~!(W). By construction, V satisfies the hypothesis
of the theorem; hence, B(V) is CAT(0). Moreover, ; (M”) acts freely on V and
acts isometrically on B(V); hence, B(V)/m;(M™) gives a nonpositively curved,
piecewise Euclidean structure on M”" with extra-large links. 1

REMARK 8. The same proof shows that any complete hyperbolic orbifold admits
a nonpositively curved piecewise Euclidean structure, in the sense that its uni-
versal orbifold cover has a CAT(0) piecewise Euclidean structure on which the
fundamental orbifold group acts isometrically.

We end with some remarks on generalizing Theorem 6. Let us say that a subset B
of R™! is a spacelike convex hypersurface if it is the boundary of a closed convex
set S and if each supporting hyperplane of S is spacelike. Let us also exclude the
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case where B consists of two parallel hyperplanes. Then it is not difficult to see
that B is homeomorphic to R”. We say that B is polyhedral if S is the convex hull
of a discrete set, and that B is smooth if it is a smooth submanifold. Theorem 6
can be generalized as follows.

THEOREM 9. If B is a polyhedral, spacelike convex hypersurface in R™!, then
the natural piecewise Euclidean structure on B is CAT(0) with extra-large links.

Proof. Suppose B is the boundary of the closed convex set S. Let F be an (n — k)-
dimensional face of B. Identify (Tr)* with R¥!. Let C denote the polyhedral cone
in R®! of all inward-pointing normal vectors to F. We can identify link (F, B)
with dC N S{. Let C* denote the dual cone of C, that is,

C*={xeR" | (x,y) <Oforall y e C).

Since all supporting hyperplanes of C are spacelike, C* intersects H* in a convex
hyperbolic polytope X = C* NH¥*. As explained in [CD], the polar dual P(X) of
this polytope is 0C N S{‘ . Thus, the link of F in B is the polar dual of X. The the-
orem now follows from the main theorem of [CD]. O

A smooth convex hypersurface in R™! is spacelike if and only if the normal direc-
tion at each point is timelike. It follows from the Gauss equation (see [O, p. 107])
that any smooth spacelike convex hypersurface in R™! has sectional curvature <
0 and hence is CAT(0).

Now suppose we are given an arbitrary spacelike convex hypersurface B in R™!,
and suppose that (B;);cn 1s a sequence of spacelike convex hypersurfaces converg-
ing to B. If each B; is either (a) polyhedral or (b) smooth, then each B; is naturally
a CAT(0) geodesic metric space. Moreover, it seems likely (although the details
have not yet been written down) that, in either case, the metrics on the B; converge
to a geodesic metric on B and that this metric is CAT(0). Such approximations al-
ways exist, so this would show that any spacelike convex hypersurface has a nat-
ural CAT(0) metric. In particular, if B is polyhedral, we obtain another proof that
its natural metric is CAT(0) by approximating B by smooth convex hypersurfaces.
(We thank B. Kleiner, C. Weber, and J.-M. Schlenker for pointing this out to us.)
However, this argument does not show that links in B are extra large. Conversely,
if B is smooth, we obtain (without reference to the Gauss equation) a proof that
its natural metric is CAT(0) by approximating B by polyhedral hypersurfaces.
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