On the Boundary Behavior
of Singular Inner Functions

EvA DECKER

1. Introduction

A holomorphic function f in the open unit disc D = {z e C: |z| < 1]} is called
an inner function if | f(z)| <1 for ze D and if f has radial limits f*(e’) =
lim,_,; f(re®) of modulus 1 at almost every point e of the unit circle T =
aD. If (a;) is a sequence of complex numbers in D that satisfies the Blaschke
condition X, (1—|a,|) <o, then the Blaschke product

lax| ax—z

B(z)=11—

r g l—ﬁkz

, z2€D,

is an inner function whose zeros are exactly at the points (a;). The boundary
behavior of Blaschke products was investigated in various contexts. For a
survey on this subject we refer to Colwell [7, pp. 13-44, 83]. In particular,
Belna, Carroll, Colwell, and Piranian have shown in [2] and [3] that the
radial boundary behavior of Blaschke products can be prescribed on any
countable subset £ of T. In [11] and [12] Nicolau extended some of their
results to even more general subsets £ of T of Lebesgue measure zero.

Contrary to the situation for Blaschke products, related questions on the
boundary behavior of the second basic type of inner functions, the singular
inner functions, remained open. If f is an inner function that does not van-
ish in D, then f = cS,, where ¢ is a unimodular constant and

it
S.(z) = exp(—f eit+z dp.(f)), zeD,
T " —2
is given by a (uniquely determined) positive finite Borel measure g on T
which is singular with respect to linear Lebesgue measure. Therefore S, is
called a singular inner function with associated measure pu (cf. [13, pp. 32-
33). For simplicity we shall often identify e e T with t € (—, 7].

It is the aim of this paper to establish the existence of singular inner
functions having a prescribed radial boundary behavior. Here, in contrast to
Blaschke products, we shall be concerned with fwo different kinds of nonvan-
ishing inner functions. For discrete singular inner functions S,, the generating
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measure ¢ consists entirely of point masses—that is, o = X4 sxé,, where §,
denotes the Dirac measure that assigns unit mass to the point e?xe T. On
the other hand, a continuous singular measure » satisfies »({e”}) = 0 for all
e’ e T and induces a so-called continuous singular inner function S,. In gen-
eral, a singular inner function will be of mixed type S, =S, S,.

A major tool in our investigations will be the concept of angular deriva-
tives. Let f be holomorphic on D with | f(z)| <1 for ze D and let e’ be a
boundary point. Then f is said to have a finite angular derivative at e® if
there exists { € T such that the limit of the difference quotient

f'(e”) =lim in(?
exists and is finite as z — e’ nontangentially through D. Obviously, this is
only possible if f possesses the radial limit f*(e’’) = ¢. The basic results on
angular derivatives were developed by Carathéodory [4, no. 295-300] and
Herzig [10]; see also [14, §4.3]. In particular, f’(e’®) # 0 whenever f # const.
(cf. [14, Prop. 4.13]). For singular inner functions there is a close relation-
ship between the mass distribution of the measure x and the angular deriva-
tive S; (e'e) of the induced function S, which is due to M. Riesz [16]: The
smgular inner function S, has a ﬁmte angular derivative at e e T if and
only if f1 1/|t—0|? du(t) < oo and in the latter case
ry 00 it 1¢ 10 ( 19) i0
|Sﬂ(e )I = fT m dpt(e ) and Su(e ) |S ( )l (1)
For an alternative proof of this fact we refer to [1, Thm. 2]; see also the
connection with Theorem 5 in [8]. Moreover, by considering the argument
of the difference quotient, it is easily seen that a finite angular derivative im-
plies that f is in a certain sense conformal at e’%: f carries any curve in D
that ends nontangentially at e? into a curve terminating at = f*(e®) in
such a way that the angle with T compared with the original one remains
1nvar1ant (see [14, Prop. 4.10]). In particular, f maps each Stolz angle at
% into a suitable Stolz angle at {; hence, following the notion in [2], e fisa
so-called strong Fatou-¢-point of f. These geometric consequences will play
a dominant role in our further investigations when studying angular limits
of composite functions gof.

The aim of Section 2 is the construction of singular inner functions hav-
ing prescrlbed radial limits S; (e’%) = a; (j=1,2,...) on a given countable
set E={e%:j=1,2,..}<T (T heorem 1). Our solution S, actually will be
constructed in the smaller class of purely discrete singular inner functions.
The main problem will be the solution of the special case where all the bound-
ary values g; are of modulus 1 (Lemma 6). Here, in addition, the measure
can be chosen such that S assumes its boundary values with finite angular
derivative at each point e’% € E and extends analytically whenever e is an
isolated point of E. These nice geometric properties of the solving singular
inner function will play an essential role in Section 4. In consideration of
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the angular derivative, the countability of E is best possible (Remark 7).
These positive results on singular inner functions generalize Theorem 3 of
Cargo in [5] and Theorem 9 in [8] and show the correspondence to the re-
sults of Belna, Carroll, and Piranian [2] on Blaschke products.

In Section 3 we adapt our methods to the more general problem of pre-
scribing radial cluster sets instead of radial limits in countably many points
of T. Theorem 9 is a straightforward combination of the boundary interpo-
lation problem of Section 2 with the constructive results in [8, §3]. This main
result establishes a direct analogue to the case of Blaschke products that was
investigated by Belna, Colwell, and Piranian in [3] and by Nicolau in [11,
§11.4].

In Section 4 we shall be concerned with boundary value problems for the
class of singular inner functions that are generated by purely continuous
singular measures. In general, the construction of continuous singular mea-
sures is more complicated than that of discrete measures. In contrast, we
shall show in Corollary 13 that the existence of continuous singular inner
functions having prescribed radial limits can immediately be derived from
the above investigations on the discrete case. Here the proof is mainly based
on a composition argument involving angular derivatives. Finally, some open
questions are discussed.

This paper is part of my thesis. I am grateful to Professor Dr. M. von
Renteln and Privat-Dozent Dr. R. Mortini for their valuable help and en-
couragement.

2. Prescription of Countably Many Boundary Values

THEOREM 1. Given any countable subset E = {e%: j=1,2, ...} of the unit
circle T and any sequence (a;) of complex numbers with |a;| < 1, there exists
a discrete singular inner function S, having prescribed radial limits

Sxe™y=a; (j=12,..). )
In addition, the discrete measure p can be chosen such that S, has finite
angular derivative in " whenever |a;| = 1.

The proof of Theorem 1 will be divided into several steps. We shall first
restrict ours_elves to the special case where all boundary values are of modu-
lus 1, a; = e">; thus (2) becomes
SHey=e (j=1,2,...).
Here u will be constructed as the weak* limit of discrete measures of the form
S ()
Bn = 2 Sk 6!{"’:
k=1

which interpolate the first » boundary values,

S (e =e (j=1,...,n). 3)
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(This notatlon of the radial limits indicates that S, actually extends analyt-
ically to e’%; cf. [9, Thm. 11.6.2].) This weak*-process p, =" p is equivalent
to the convergence of S, (z) —» S,(z) for ze D (n— ). In order to ensure
an additional convergence of the radial limit function Sy (e%)— Ske™) as
n—oo at every point e e E, further restrictions on Pn are necessary. We
shall succeed by controlling the angular derivatives of the approximating
sequence (S, ) in the sense of the following lemma.

LemMma 2. Let e €T and let (f,) be a sequence of holomorphic self-maps
of D whose angular derivatives at e’ are bounded by a constant C; that is,

|fie®)|=C<o (n=1,2,..). (4)

If fo(z) = f(z) asn — o for z € D, then the limit function f possesses a radial
limit of modulus 1 at e with

ey - f*e") as n—-oo (5)
and
| f'(e®)| < liminf| f(e”®)| < C. (6)

Proof. Without loss of generality, we may assume that f is not a constant.
Hypothesis (4) implies the existence of radial limits f;(e”) = {, € T. Let ({,,)
be an arbitrary convergent subsequence and { € T its limit as £k — co. Accord-
ing to the Julia-Carathéodory theorem (cf. [10] and [4], no. 295-300]) we
have

[0~ Su P _ e =2
<C forall zeD.
1-|f(2)]? 1-|z[?
Hence, if k — oo,
2 2
§—/ )] C1 | forall zeD.

I=I/@PF = " T-zP
Conversely, the Julia-Carathéodory theorem gives
|f(e®)|=C and f*e")=¢.

Since these considerations are valid for any convergent subsequence of ({},),
the existence of the limit lim,,_, ., £;*(e"?) = lim,, _, » , = f*(e") is established.
The stronger inequality (6) easily follows by considering appropriate subse-
quences of (f,,). O

REMARK 3. Ahern and Clark [1, Thm. I(iii)] ensure (6) under the weaker
hypothesis liminf, _, .| f;(e")| < o, which obviously can also easily be de-
rived from Lemma 2. However, it should be noted that with the weaker
hypothesis the convergence of the radial limits (5) in general does not hold.
For example consider the singular inner functions f, =S, where uy;_; =
(l/k )(5 l/k+6l/k) and [.sz—(l/k)ao Then f,,-*f-’l on D and by (1)
liminf, ,|S, ()| =0, but S;, (1) =0+1=f*(1).
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The construction of (u,) satisfying (3) will be done via an inductive process.
In order to ensure weak*-convergence of these measures, the main problem
in the step from n—1 to n will be adequate control of the change of its point
masses and discontinuities. This is the purpose of Lemma 4. For motivation,
notice that the prescription of finitely many boundary values of modulus 1
can be considered as an interpolation problem for the argument function.
Thus (3), with n—1 instead of n, becomes

_ n—1 t(""l)__g.
argS, (e")=73 stV cot k—z——’— =w;mod2r (j=1,...,n—1) (7)
k=1
(see also relation (5) in [8]). Here the discontinuities (£ ™", ..., £ 7") may
be regarded as solutions of a system of nonlinear equations
Fn—l(tl’---atn—l)=(wl’--°swn—-l)TmOd27r: (8)

where we define F,_; = (f}, ..., f,—1)| with components

te—0;
Filt1s coor ty 1)—2 e —2—’— (j=1,..,n—1).

For the present, our aim is to interpolate the nth boundary value by adding
a further point mass s6, at a point e” € T and a slight movement of the dis-
continuities t,(("_” where the point masses s,ﬁ"_l) remain fixed. Using the im-
plicit function theorem, the following lemma asserts that this is possible in
the case where e% ¢ supp u,_;, proceeding on the additional assumption

that the functional determinant in (8) does not vanish, that is,

OF, _ ("1 L, ey
det{ ——! e . 9
© ( a(tls ---stn—l) >$O ( )

A similar method can be found in the work of Belna, Carroll, and Piranian
[2, esp. p. 696] for the case of Blaschke products. However, considerable
differences arise from the fact that finite Blaschke products extend analyt-
ically to a neighborhood of the closed unit disc whereas singular inner func-
tions have a singularity at every point of the support of the generating mea-
sure (cf. [9, Thm. I1.6.6]). In the following, let (9, s) = {z: |t — 60| < s}.

LEMMA 4. Let the singular inner function S, _ interpolate n—1 boundary

values
n—1

(e =e"i(j=1,...,n—1) where p,_ ;=3 Sk, e-n (10)
k=1

nun 1

and assume (9). Then, for any further interpolation point e'% & supp p,_y,
for any boundary value e’ e T, and for each sufficiently small point mass
s, >0, there exist discontinuities 1", ..., t\") such that the singular inner
Sfunction associated with

E Sk5,(n) (11)
k=1
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solves the nth interpolation problem (3), also having a nonvanishing func-
tional determinant. Moreover, the location of the new discontinuities can be
controlled such that

[ — 1" "D <2C,_18, (k=1,...,n=1) and "€ I@,,s,),
where the constant C,_, depends only on p,_, and e

Except for an additional discontinuity, the new measure u, differs arbitrarily
little from the original measure pu,_, provided that s,, is chosen small enough.

Proof. (i) We claim that, for every sufficiently small value s > 0 and every
point e” e T that lies sufficiently close to e, the interpolation problem (10)
for the first n—1 boundary values also can be solved by adding a further
point mass s8,. Consider the function G =(gy, ..., g,_;)", where

n— t,—0; f—0;
gi(tyy eesty_1,1,8) = Eskcot 5 * 7 tscot J
k=1
= fi(t1, ovr ty_1) +5COL ;f (12)

for j =1, ...,n—1. Then hypothesis (7) can be written in the form

1 1 1 1
G, t70,0,,0) = F, (1", ot = (@1 ey )

Because 0; # t(” D , we can find suitable neighborhoods U, € R of the orig-

inal dlSCOHtlIlUlthS t(" D such that G is a continuously differentiable real
function of the n+1 variables (¢, ..., ¢,_1,%,5) on

UX---xU,_xI(,,m,/3)X(—m,/3, m,/3),

where m, = min, ¢ ; . ; < ,|0;—0;|. Assumption (9) ensures that the functional
determinant corresponding to system (12),

det A I )
a(tl’-“,tn—l)( : n-l g )
oF, _
a(ty, .oy ty—y)

does not vanish. Hence, applying the implicit function theorem, there exist
neighborhoods U € R2 of (6,,,0)and VS U, X +-- X U, _, of (¢{"~ B 1)
and a continuously differentiable function
g=(,....t,_1):U->V
with
1:(0,,0)=t""" for k=1,...,n—1;

(13)
G(t,(t,8), .., ty_1(t,8),1,8) = (w1, ..., w,—1)T for (¢,s)eU.

Hence, for each pair (¢,s5) e U we can find a solution of (10) whose asso-
ciated measure is of the form
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n—1

E Skﬁtk(t,s) +S(3,. (14)
k=1

Moreover, because g is continuously differentiable, there exists a constant
C,_,, depending only on f;, ..., f,_; and %, with

[t (8, ) =t 0| = |t (1, 8) = 1 (0, O)| < Co 1 (| =0, +[s]) (19

forallk=1,...,n—1and (¢, s) € U, where U possibly has to be replaced by a
smaller neighborhood. Thus, as a conclusion of the first step, we can ensure
a solution of the original interpolation problem (10) with arbitrarily good
control on the location of the new discontinuities.

(ii) The free parameter (¢,s) e U allows us to interpolate the additional
nth boundary value. To this end, consider the behavior of the argument
fugnction related to the singular inner function with measure (14) at the point
e''n,

tk(t,S)—On t—f),,

n—1
Sy cot ————— +scot ,
,Z:, k 2 2

as t— 0, for fixed s and (¢,s) € U. According to (15), for sufficiently small
s, the discontinuities #;(¢, s) lie arbitrarily close to t,(("_l). Hence, because
eng supp p,_; =f{ei" ", ..., e 1"}, the discontinuities are bounded away
from 6, as ¢ — 0, with ¢ # 0,. Consequently, the first (n—1) terms in (16) re-
main bounded, whereas the last summand s cot((¢—86,)/2) tends to oo as
t — 6. Thus, taking s, > 0 small enough, we can find a value t,(,") e I(6,,s,)

that satisfies

(16)

(n) (n)
tk(tn ,S,,)—@n tn _011
+5, cot —

2 " 2

where w,, is chosen appropriately modulo 2#. Combining this last equation
with (13), the points t,ﬁ") = tk(t,(,"),s,,) (k=1,...,n—1) lead to the required
measure (11) which solves the nth interpolation problem (3), and
147 =t 0 = 3™, ) = 160 O] = C—y (|13 = 0, + 5 ])
<2Ch_18, (k=1,...,n—1).

n—1
>, s cot = Wy,
k=1

(iii) In the third step we shall show that, in addition, s, > 0 can be chosen
so small that the functional determinant associated with S, does not vanish.
It takes the form

Op
OF, _(ty, ..., t,_
aFn(tl,...,tn) n l( 1 »*n l) .
det = det Aty .eestn_y) '
B(tl, ..-,tn) Op_1,n
Opy " Opopn—i I Xnn
Here the (n—1) X (n—1) submatrix satisfies
(n) (n) (n—1) (n—1)
aF‘n—l(tl ’ ---atn—l) N aF|l1—l(rl ’ ---:tn—l ) as Sn“’0+

3(!1,...,1‘,,_1) a(tlyoﬂatn—l) ’
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and hence is invertible whenever s, is chosen sufficiently small. For the ele-
ments we have

Ui _ 5 !

in = -y 0 .= seey -
=, 2 s =gy o 280 Ushieon=D
and
fn _  Sn 1
®nn = T _E—sinz((t,g")—ﬂ,,)/Z) where |a,,| = 25, — as s, 0%,
since #{ € I(6,, s,). This completes the proof of Lemma 4. N

REMARK 5. The proof of Lemma 4 makes use of the hypothesis en¢
supp u,_;. In order to continue our inductive process on the basis of the new
solution S, , we need the corresponding condition e+ ¢ supp u,. To this
end, we point out that if u,_, in Lemma 4 satisfies

t/sn—l)_e' n-—1
det(cot =4 ) # 0, (17)

2 i k=1
then a similar reasoning as in step (iii) of the proof shows that, for suffi-
ciently small s, > 0, the new solution S, constructed according to Lemma 4
satisfies

1M —g;\"
det(cot ———1) # 0. (18)
2 Jik=1

LemMA 6. Corresponding to each countable set E = {e': j=1,2,...} on
the unit circle T and every sequence (e'”) of complex values of modulus 1,
there exists a discrete singular inner function S, having the prescribed radial
limits

SHe®y=e" (j=1,2,..). (19)

In addition, the discrete measure n can be chosen so that the induced singu-
lar inner function S, has finite angular derivative at every point " of E and
so that S, can be extended analytically to e's whenever e" is an isolated
point of E.

REMARK 7. According to a theorem of Calderdn, Gonzalez-Dominguez,
and Zygmund (see {17, Thm. VIIL.7.48]), every singular inner function §,
(p # 0) assumes each value { of modulus 1 infinitely often as a radial limit.
It is well known that S, can have at most countably many {-points where, in
addition, the angular derivative is finite. Conversely, for every countable
subset £ of T and {e T, Lemma 6 guarantees the existence of a (nontrivial)
discrete singular inner function with S:(ei") = { and |S,j(em)| < oo for all
e'’e E. Thus, in this sense Lemma 6 is best possible.

Proof of Lemma 6. Let my=1, m,=min, ¢ j<,|0;—06;| for n =2, and
e, = (m,/2")2. By an inductive process we shall construct discrete measures
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(n}

n
= S,E")é,*m where 0<s;’ <e¢, and t,((")el(ﬁk,ek) (k=1,...,n),

(20)
so that the associated singular inner function S, interpolates the first »

boundary values according to (3) under the restriction that p, differs only
little from u,,_;; this means that

and |s,§"_”—s,§")|<% for k=1,...,n—1 (n=2).
(21)

Taking d; = dist(supp p;, %), the distance of the discontinuities #{" to the
mterpolatlon points e’ will be controlled by

_ 1
7% 1)—t/£n)|<§',7

n
|87 — ;] = dj(1 - % 2i> forall j=1,...,n and k=1, ..., (22)
where in the case n = 1 we have the empty sum >)_,1/2" =0.
This inductive process will now be carried out. In the case n =1, let 0 <
( ) < €; and choose t(”eI(Gl,sl(”) satisfying

(D

' —#6
s{ cot ——+

= w;mod 2.

Then the induced singular inner function possesses the radial limit S,, (e"’*) =
e’ Here, relation (22) is trivial since |t{" —9,| = d,. If, in addition, stV <

my/3 =0, —0,|/3, then we also have e?2¢ supp u, = fei"}.

Now suppose that for an integer n = 2 we have constructed a solution S, _
of the (n—1)th interpolation problem (10) satisyfing (20) and (22) with » re-
placed by n —1. Moreover, the first step of our induction allows us to assume
that e® ¢ supp kn—1 and that S, _ fulfills the hypothesis (9) of Lemma 4
and (17) of Remark 5. For every sufficiently small value s, € (0, ¢,), Lemma
4 ensures a solution of the nth interpolation problem (3) with associated
measure

n-—1

> S,((n 6’Jf">+s‘"6’,§")’

k=1
where ¢ lies close to the new mterpolatlon point with ¢{” e 1(9,, s,), and
whose discontinuities t ) for k=1, ...,n—1 lie close to the respective dis-
continuities of u, _; with

Itl((n—l)_tlgn)l<zcn_lsn (k=1,...,n—1). (23)

Hence we can again assume 7" € I(0, ex) whenever s, is sufficiently small.
Recall that the constant C,_; depends only on g,_; and e’ If, further-
more, S, is so small that

2C,_ 5, < (G=1,..,n=1), 24)

dj
2"
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then by (23), (24), and the inductive hypotheses corresponding to (22), for
J=1,...,n—1and k=1,..., j we obtain

687 == ("~ =6~ |8 — ")

sa1i-S N4 _gfi-s ! 25)
J = v X - Yy = 2V .

Since for j =n and k =1, ..., n this last estimation is trivial, u, satisfies (22).

Because d; < |tj“ ) —0;| <¢; <1, it follows by (23) and (24) that

1
2"

We choose s, so small that p, also has nonvanishing functional determinant
(in the sense of Lemma 4) and that u,, satisfies (18) of Remark 5.

In the case e +' ¢ supp p, we can continue our induction with the mea-
sure (20), which essentially possesses the old point masses (s\", ..., s\) =
(si"Y, .., 7Y, s5,). If, in contrast, e+ = eilk, for an index kg€ {1, ..., n),
then a further modification is necessary: Consider the point masses (sf"_l), ooy

stV s,) as a solution of the system of linear equations for the argument

function whose matrix
1M g\
(cot = J )
2 Jjk=1

is invertible according to (18) in our construction. For sufficiently small
movement of the critical point t,g(’)' ) the modified system of linear equations
remains uniquely solvable and the solution (s{™, ..., s!™) depends contin-
uously on t,ﬁ(’)’). Furthermore, if (25), (26), and the conditions on the two
determinants are preserved, we then obtain a solution of the interpolation
problem (3) whose point masses s,ﬁ") differ only little from the original ones.

Hence, we can assume 0 < s{” < ¢, (k=1, ..., n) and

|t D — 1| < for k=1,...,n—1. (26)

_ 1
IS[Ern l)_S]({n)|<-2—n- for k:l, ,,,,n—l.

Altogether the induction can be continued for all #n e N.
According to (21), the sequences (t,ﬁ")),, > x and (s,((”)) n >k are (for fixed k)

Cauchy sequences. Thus there exist numbers #;, s; satisfying

">t and sf” —>s, as noowo (k=1,2,...).

Using 0 < s; < ¢, it is esily verified that the sequence (u,) converges weak* to
the discrete measure p = X3, 5¢6,, which has finite total variation u(T) <
2k € < oo. We claim that the induced singular inner function S, solves the
interpolation problem (19): Let j € N be fixed. On the one hand, by (22) we
have, for n = j,

d:
|4 —6;} = — >0 for k=1,...,J.
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On the other hand, as t,ﬁ") € I(0y, €;) and € < m;/2 we get

m m
647 =)= 16, 00l ~10— 17 = =5 = K for k=1, .0

Thus, using ¢, < 7¥4X, for n = j we have
n SIE”)

f It elz dp,(t) = E

n

—f <= Ej: €k + 2 S
S|P =0 k21 (di/2) kS5 (my/2)?

1 1

j
T
=— 2 5=+ E < C;,

2 P R L

where C; = 2(7r2/d2+ 1). Hence, by the theorem of M. Riesz mentioned in
Section 1 the sequence (S, ) has bounded angular derivatives at each of the
points e’%. Consequently, by Lemma 2, the locally uniform limit S, possesses
a finite angular derivative for all e% e E, and by (5) we obtain the existence
of the radial limits
Sx(e") = lim S; (e') = e™
HnH—->0

for all jeN. O

REMARK 8. The restriction on N steps in the inductive process leads to an
alternative proof of Theorem 1 in [8]. However, the implicit function theo-
rem involves nonconstructive elements compared with the direct approach
of [8].

Now, based on Lemma 6, the statement of Theorem 1 can easily be derived.
Instead of completing its proof here, we shall immediately demonstrate the
method in the more general situation of prescribing radial cluster sets.

3. Radial Cluster Sets of Discrete
Singular Inner Functions

The radial cluster set C,(f, e’) of f at e” e T is the set of all points a € C for
which there exists a sequence (r,,) with 0 < r, < 1 and r, - 1 with f(r,e"®) »a
as n—oo. If f is inner then necessarily C,(f, e") is a non-empty, closed, and
connected subset K of the closed unit disc D; hence it is a continuum or a
singleton in D (see [6, pp. 1-3]).

THEOREM 9. Let E = {e'%: j=1,2, ...} be an arbitrary countable subset of
the unit circle T and let (K;) be a sequence of non-empty, closed, and con-
nected subsets of the closed unit disc D. Then there exists a discrete singular
inner function S, that has prescribed radial cluster sets at every point of E,
that is,

C,(S,,e)=K; (j=12,...).
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Since the function f possesses a radial limit f*(e”) = a at e if and only
if C,(f,e") = {a}, Theorem 9 contains Theorem 1. On the other hand, a
proper continuum C,(f, e'%) = K describes an oscillating behavior of f on
the radius from 0 to e”. Inner functions possess radial limits almost every-
where on T, with the possible exception of a set £E<S T of measure zero.
Conversely, for the countable sets E, Theorem 9 allows one to prescribe pre-
cisely divergence phenomena for singular inner functions.

Even though both K; and E can have rather complicated structures, the
proof of Theorem 9 will be a straightforward combination of the special
case in Lemma 6 and the /ocal cluster set result of [8, Thm. 10]. The con-
structive approach used there allows a strengthened version of the latter
result involving a precise control of the participating measures.

LEMMA 10. Let K be a continuum in D and let e € T. Then, for each count-
able subset E of T an_d each € > 0, there exists a discrete singular inner func-
tion S, with C,(S,, e®) = K such that p(T) < 2,

suppu S I(0,¢), and supp uNEC {e®).
Proof. Without loss of generality, assume e’ = 1. Since E is countable we can
find a € (0, €) such that EN{e*®*: k=1,2, ...} =0. Consider the measure

@ = 3 5 D (8 +6_ ),
k=1

where £{*) = a/k and s =t — 1{*,. Then 7'® possesses the structure of

the measure n = 7! used in the construction of [8]. In particular, the basic
asymptotic behavior of the discontinuities remains invariant, which means
that

(o)

t; k+1

@ = k —1 (k——)OO)
L

and 7‘)(T) = «. Thus, using 7 instead of 4, the construction of [8, Thm. 10]
gives u with C,(S,,e") = K, u(T) < 29 (T) < 2¢, and supp p < suppn*’ €
(—e, €), completing the proof of Lemma 10. O

We are now in a position to prove Theorem 9.

Proof of Theorem 9. Let my=1 and m, =min, << j<,|0;—0;| for n = 2.
According to Lemma 10, for every je N and ¢; = m;/2/ there exists a dlS-
crete singular inner function S, , with radial cluster set C,(S, ,ell) =
1;(T) < 2¢; (ensuring that the measure p;+py+--- is ﬁnite), and

supp p; < 1(6;, ej) and supp w;,NEC {e%}. (27)

Hence, at every point e’% # e'% the function S, extends analytically and
therefore (trivially) possesses a radial limit of modulus 1:

ISk (e =1 for k#j. (28)
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Even the infinite product IT7.; j+« S, (2) is well-behaved when z radially
approaches e'%; that is, it assumes a "radial limit of modulus 1. For k =
1, ..., j—1we obtain |0, —6;| = m; and therefore, by definition of ¢; and (27),
we have the estimate dist(supp p;, e ey > m;/2; consequently,

i (T) €; 1
———d (1) < <4 =< —
f'r |t“’0kl #j( ) mj/2 mj 21_2

Hence, for all ke N,

for k<. (29)

du(t)=2<o

Jj=k+1 f |lL ekl !

and therefore, by [8, Thm. 5], the discrete singular inner functiqn associated
with gy 1+ prs2+ -+ possesses a radial limit of modulus 1 at e’%. Together
with (28), for all k € N there exists w; € R such that, even with the additional
finitely many factors S, , ..., S

P M pp—y?

H S, (re“’*)—»e""* as ro1 (k=1,2,...).
Jj=Lj#k
If we compensate these values by Lemma 6 with a discrete measure o satis-
fying S¥(e') = e " (k=1,2,...), then p=0+p;+p,+--- gives the de-
sired result C,(S,, e) = K for all k. O

REMARK 11. The geometric properties of S, in Theorem 9 can be improved
by considering the angular derivatives. If we choose €; = (m;/2/ )2 in the
above proof, then instead of (29) we have

1 2¢; .
e du() = —Jd <2 for k<]
fT (6, D= Gy =g for k<

In the case of a radial limit of modulus 1 (i.e., K; = {e’*}), we fix pr=0.
Then the analyticity of each S, at e (j=1,...,k—1) gives

s 1
5l e o<

Hence the solving smgular inner function S, possesses finite angular deriva-
tive at each point e% where a radial limit of modulus 1 is pre-assigned, pro-
vided that we ensure the same for S, according to Lemma 6.

REMARK 12. Notice that, in the special case of Theorem 1, the correspond-
ing measures p; can be computed explicitly (cf. [8, Ex. 7]):

K= Pinjt )

where

. —1In 1
P13 Ik
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n; =7  with discontinuities §; + £{) (k=1,2,...), and

t:—0;
7; =5;6,, where ;¢ E and s;cot % = arg a; mod 2.

4. The Case of Continuous Singular Measures

The following section deals with analogous questions for the class of con-
tinuous singular inner functions.

COROLLARY 13. The boundary interpolation problem (2) for the radial limit
Junction can also be solved by S, where the associated singular measure p. is
continuous.

Proof. Let v be an arbitrary (nontrivial) continuous singular Borel measure
on T. S, assumes 0 and each value of modulus 1 as a radial limit (cf. the the-
orem of Caldeéron et al. in [17, Chap. VII]). Thus, if ;=0 or ;€ T we can
find z;e€ T where S;(z;) =a;. If 0 < |aj| <1 then there may be a value z;€ D
where §,(z;) = a;. Otherwise, in the case where S, omits the value a; on D,
a theorem of Seidel (see [13, p. 37, Thm. 6(ii)]) asserts that the inner func-
tion S, possesses a; as radial limit, hence once more S;(z;) = a; for a suitable
boundary point z;€ T. According to Theorem 1, there exists a singular inner
function S, with radial limits S}(e”) =z;e™" (j=1,2,...) having a finite
angular derivative at those points e/’ e E where z;e T. Then the inner func-
tion zS,(z) maps the respective radius from 0 ending at e’% onto an arc that
completely lies in a Stolz angle at z;e€ T. This ensures that the composite

function
S =38,2(z8,)

approaches the required radial limits lim, ., f(re) =a; (j=1,2,...). Asa
composition of inner functions, f again is inner [see e.g. [15, p. 323]), f
does not vanish on D and is positive at the origin, and f(0) = S,(0) > 0.
Hence we have f=S§,°(zS,) = S, with a suitable singular measure ¢ on T.
Since v is continuous, by a result in [15] (case (3) in the proof of Theorem 5.7
and Remark 6.1d), p has no discrete part, thus proving that the interpola-
tion problem (2) is always solvable in the class of purely continuous singular
inner functions. In order to guarantee well-behaved solutions of (2) with
respect to the angular derivative, let » satisfy supp» # T and choose the
points z;€ T with S;(z;) = a; such that z;¢ supp v if |a;| = 1 in the construc-
tion above. Then S, can be extended analytically to z;, and S, has finite an-
gular derivative at e’% provided that S, has a finite angular derivative at e’%.

O
REMARK 14. (i) We must leave as an open question the problem of whether
there is a similar easy composition argument that yields the more general
cluster-set result for continuous singular inner functions from the corre-
sponding discrete case (Theorem 9). Nevertheless, it should be pointed out
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that the existence of continuous singular inner functions having prescribed
radial cluster sets at finitely many points of T can be established by adapting
the constructive methods given in [8]. We will only sketch the main ideas
of the necessary modifications. Let (#;) € (0,1) be strictly decreasing with
ty— 0 and #,,,/t;y —1 as k — o, and choose ¢, > 0 such that the arcs I, =
{e'": te[t,—e, 1]} are mutually disjoint. Consider » = X, v+ 7, where
v is a continuous singular measure that assigns the mass s, = t, — ;. to I,
and 7, has the corresponding mass distribution symmetric to the real axis
compared with »,. Then it is easily seen that S, (1) = exp(—2#) (compare
Lemma 3 and Example 7 in [8]). Hence the construction in {8, §3] (with »
playing the role of 5) gives a continuous singular measure g having a pre-
scribed radial cluster set at 1. Furthermore, the closed support of the suitable
measure can be controlled by supp p € {1}UU, ([ UI;) and can be chosen
arbitrarily close to 1. The final statement now follows as in the proof of [8,
Cor. 12]—keeping in mind that our Corollary 13 allows one to interpolate
radial limits by continuous singular inner functions.

(ii) It would be interesting to know whether Nicolau’s results in [12] on
the boundary values of Blaschke products hold also for the class of singular
inner functions.
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