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1. Introduction

A round soap bubble solves the classical isoperimetric problem; that is, it
minimizes surface area for a given volume. From a physical point of view
the bubble minimizes total surface energy arising from surface tension in
the soap film. On the other hand, the surface energy of a crystal depends on
the surface orientation with respect to the underlying crystal lattice and is
given by some norm (or more general integrand) ¥ applied to the unit nor-
mal n. (The case of area is given by the Euclidean norm ¥(x) = |x|, so that
¥(n) =1.) In 1901, Wulff [Wu] gave a construction for the surface-energy-
minimizing shape for a given volume of material, now called the Wulff shape
By, most easily defined as the unit ball in the dual norm:

By ={x:¥*(x)=<1].

That the Wulff shape By uniquely minimizes surface energy was finally
proved in great generality by Taylor in 1975 [T1; T2], and more recently by
Fonseca and Miiller [FM]. Both proofs use the Brunn-Minkowski theorem
and the existence of the inverse Radon transform. Specifically, they showed
the following.

ISOPERIMETRIC THEOREM. Among all measurable sets O CR" with the
same volume as By, the surface energy ¥ (0R) is uniquely minimized by Q =
By (up to translation and sets of volume zero).

More general geometric and physical problems can be reinterpreted as our
isoperimetric problem, as noted for crystals on a table by Winterbottom
[Wi] and for crystals in corners by Zia, Avron, and Taylor [ZAT] (earlier
discussed by Bauer [Ba, p. 418]). For example, the least-area way to enclose
given volume inside a convex cone is a spherical cap, because the capped
cone is the Wulff shape for the energy which is 0 in the cone directions and 1
in other directions. Since proofs of {ZAT] did not appear, we further remark
that to show the summertop construction [ZAT, 2.2(c), 2.4(8)] uniquely
minimizing, note that any better perturbation of the summertop construc-
tion would yield a better perturbation of the complementary Winterbottom
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construction (see Fig. 3(c) of [ZAT]). Extending the perturbation beyond
the Winterbottom construction cannot pay off unless space can be enclosed
for negative cost, which holds only in the complete wetting cases of infinite
negative energy.

We further remark that some limiting cases listed under [ZAT, 2.2(a) or
2.4(c, B)] (when some W, or W;; “has zero volume”) actually can have be-
havior listed under other cases or a preference for wetting 2 or all 3 dihedral
corners.

The purpose of this article is to give a new proof of the isoperimetric theo-
rem which we feel is conceptually much simpler than those given by Taylor
and Fonseca-Miiller. Our proof is new even for the classical isoperimetric
theorem for the area integrand. A simple proof for this case using Steiner
symmetrization has been given by DeGiorgi [De]; however, his method will
not work for general integrands.

We also note that Dacorogna and Pfister [DP] have given a new proof of
the isoperimetric theorem in R? for Jordan domains with boundaries which
can be parametrized by Sobolev functions.

For typical crystals, ¥ is not uniformly convex and the Wulff shape is a
polyhedron. Photographs of typical crystals can be found in [HT, p. 181].

On the other hand, suppose ¥ is smooth and uniformly convex. Then the
variational problem of minimizing V¥ is elliptic, and the Wulff shape is smooth
[M1, Prop. 3.3]. For the related problem of finding a ¥-minimizing surface
of prescribed boundary, the solution is smooth except for a set of codimen-
sion 2 in the surface [AScSi, Thm. I1.7; M1]. Analogous energy-minimizing
interfaces in materials can have larger singular sets (see [M2; LM]).

Method of proof. Our basic method, applying the divergence theorem to
a certain volume-preserving map F from a candidate 2 to the Wulff shape
By, has been used by Gromov to prove the classical theorem for smoothly
bounded sets; see [Be, 12.11.4]. The mapping F was defined earlier by Knothe
[Kn] for the purpose of deriving a generalized Brunn-Minkowski inequality.
The application to general integrands is new.

Here we outline the method for nice planar regions. Consider any pla-
nar curve enclosing a region {2 of the same area as By. Let F be an area-
preserving map from  to By carrying vertical lines linearly to vertical lines,
as shown in Figure 1. Then det DF =1 and DF is triangular:

a O
or-[7 ]
Since det DFF=ab =1, divF = a+ b = 2 by the geometric mean-arithmetic
mean inequality. Hence

¥ (0Q) = faﬂ‘ll(n) = a0 Y(n)V*(F)

zf F-n=f div F = 2 area ) = 2 area By,
a0 Q

with equality if Q@ = By,.
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Figure 1 The shaded regions have equal area

The techniques for removing all smoothness hypotheses were developed
in [Be]. This work was motivated by the investigation in [BZ], the principal
result of which rests upon the classical isoperimetric theorem for sets of fi-
nite perimeter.
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2. Sets with Finite Perimeter

This paper usually follows the notation and terminology of [F2].  will de-
note a measurable subset of R” with locally finite perimeter, n = 2. This
means that the gradient in the sense of distribution theory of the character-
istic function of Q is a locally finite Borel measure. In the terminology of
currents [F2] this means that d([R” L ) is representable by integration, which
in turn is equivalent to the current R" L Q defined by Q being an n-dimensional
locally integral current [F2, 4.2.16 & 4.5.1].

We will denote by | 4| the Lebesgue outer measure of 4 CR”. The Le-
besgue density of A at x € R" is defined by

. |ANB(x,r)|
D(A, x) = lim ,
root | B(x, 1)

where B(x,r) =R"N{z:|x—z| = r}.
The measure-theoretic boundary of A is defined to be

*A=R" ~ ({x: D(A4,x) =0}U{x: D(R" ~ A4, x) =0}) C 3A4;

0%A is Borel. One says that e R” with |v| =1 is the measure-theoretic ex-
terior normal to A at xo € R" provided that
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D({x:(x—xp)-v>0]NA,x5)=0
and
D({x: (x—xp) v <0}~ A, x9) =0.

v is unique if it exists; denote » = n(A4, x;). Clearly, x; € 3*A4. It follows from
[F2, 4.5.6 & 4.5.11] that a measurable set  has locally finite perimeter if
and only if 3¢"~!(KNd*Q) < o for every compact K, where 3"~ is (n—1)-
dimensional Hausdorff measure. Furthermore, if the perimeter of  is lo-
cally finite, then

3 1(0*Q ~ {x: n(Q, x) exists}) = 0. (1)

Finally, we remark that if 4 is not measurable then J¢"~'(KN3*4) = o for
some compact K [F2, 4.5.11].
We also note that convex sets have locally finite perimeter.

3. Norms and Integrands

For our purposes it will be convenient to define a positive, constant coeffi-
cient, parametric integrand of degree n—1 on R" to be a continuous func-
tion ¥: R” — R satisfying the conditions

Y(v) >0 for 0#veR”

Y(rv) =r¥(v) for veR" r=0.
¥ is convex if
Y(v+w)<V¥(v)+¥(w) for v,welR".

We note that a norm on R” is an integrand which is convex and even
(¥ (—v) = ¥(v)).

The energy of a parametric integrand ¥ on the boundary of a measur-
able set  with locally finite perimeter is

YO =| ¥n(Q,x)dic" 'x.
3*Q

Note that since V¥ is positive, ¥(39) < o if and only if Q has finite perimeter.
Also, it follows from the remark at the end of Section 2 that for 4 not mea-
surable, any definition of ¥(dA) which involves integration over 3*4 would
give ¥(dA) = o« because ¥ is positive.

The parametric area integrand of degree n —1 on R" is the function ¥ (v) =
|v|. In this case ¥(3Q) = 3C"~'(8*Q) is the perimeter of Q.

With each positive parametric integrand ¥ we associate the dual inte-
grand ¥* defined by

¥*(x) =supf{x-v: ¥(v) = 1j.
¥* is a convex, positive parametric integrand; denote
By = {x: ¥*(x) < 1}.
By is the crystal, or Wulff shape of ¥. We also denote ¥, = ¥**,
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LEMMA 1. Let V¥ be a positive integrand.

(i) Y=< V.
(ii) If n(By, x) exists, then
¥o(n(By, X)) = x-n(By, x) = ¥(n(By, x)). 2
In particular,
x-v=1 and VYyv)=l, 3)
where
v = ¥o(n(By, x))"'n(By, x). 4

Conversely, if ve R" satisfies (3) then v is given by (4).

Proof. (i) is a direct consequence of the definitions of ¥, and ¥*,
Assume n(By, xy) = ng exists. Then, since ¥y, = ¥**,

‘Ilo(n()) =maX[n0‘x:XEBq,} =Ny X X,,,EBB‘I,.

It follows that H = {y: y-ng = ¥y(ng)} is a supporting hyperplane of By at
Xx,;. However, H must also be the supporting hyperplane at x,, whence fol-
lows the first equality of (2).

Next observe that vy = Vy(ng) 'n, satisfies (3) with x = x,. Assume there
also exists v, # v, satisfying (3). Inasmuch as vg = v; — (v; - vg)|vo| vy is tan-
gent to dBy at x,, for small £ > 0 there exists x, € 3By such that

(x0+tv(-)L)—xI

lim

t—-0%

=0;
set x, = xo+w,. Then
w,-v+o(f) = tug - v,

= 1[|v3|* — (v +|vo| 'vp)?]

=at,
where a > 0 because |v; - |vg| ™ vg| < |v)| by Schwarz’s inequality. We note that
vp and v, are linearly independent since x,-vg =1 = x4 v;. Thus, by (3),

X0y =1+4at—o(t)>1

for ¢ positive and small, which contradicts the fact that x, e By. This com-
pletes the proof of uniqueness of v,.
Finally, ¥(vg) =1 by (i) and, since ¥*(xp) = 1, there exists v; such that

Xor vy =1=¥(v)). &)
Thus ¥,(v;) =1 by (i), hence v, satisfies (3) and we conclude v, = vy. The
second equality of (2) is now equivalent to (5). O

4. The Isoperimetric Theorem for General Norms

THEOREM. Let ¥ be a norm on R", or more generally any positive, constant
coefficient, parametric integrand of degree n — 1 (not necessarily even or con-
vex). Let By denote the unit ball or Wulff crystal
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By =[x: ¥*x) <1].

Let Q be any measurable subset of R" with finite perimeter and of the same
volume as By. Then
¥ (0Q) = ¥(dBy), 6)

with equality holding if and only if Q differs from a translate of By by a set
of volume zero.

We remark that, in view of the discussion in Sections 2 and 3, since ¥ is pos-
itive it is reasonable to interpret the left side of (6) as infinity in case Q either
is not measurable or does not have finite perimeter.

We will present the main construction and central ideas of the proof. These
can be mostly given in terms of classical real analysis. Technical geometric
measure-theoretic details involving rectifiable currents and their slices are
deferred to Section 5.

Proof. Inasmuch as ¥, < V¥, ¥5=¥* and ¥(dBy) = ¥,(0By) by (2), we
can clearly assume ¥, = ¥. We also assume that Q is Borel and that e, sat-
isfies the conclusion of Lemma 2.

For t € R define a,(¢) = |2N{x: x, < t}| and denote 4, = [Q|. For 1= k< n
define m;: R" - R¥ by 7 (xy, ..., X,) = (X, ..., Xx), and for k =2 define A;:
R¥~! R and a;,: R*" xR - R by

Ap(8) = 30" QN {x: Ty (x) = £)),
ap(§,0) = 3" FTHQN x: 1 (x) = &, X, < 1)).

(Recall that in R"™, 3C" is equal to Lebesgue measure [F2, 2.10.35].) A, and
a; are Borel functions with A;(£) < o for almost all £ by Fubini’s theorem.
Also, ay is Lipschitzian as a function of x;. Thus, by Fubini’s theorem,

da
'37:=Ak+1, k=1, ...,n-—-l, (7)

almost everywhere in R”, and
da,
0x,,

=1 (8)

almost everywhere in 2 because almost every x € { is a point of linear den-
sity 1 in w2 {m,_1(x)} [F2, 3.1.3]. (Where appropriate, we will identify A,
with Apem,_, and a; with a;°m;.) Denote

Q1 =RFIN{E: 0 < A (8) < ).

Then ¢t~ a,(t)/A, is an increasing Lipschitzian map onto [0, 1], and for 2 <
k=nand £eQ;_,, t—ai (&, t)/A,(£)is anincreasing Lipschitzian map onto
[0, 1]. Q4 _, is a Borel set and so we infer, using Fubini’s theorem and the as-
sumption |Q| < oo, that |2 ~ 771 (Q_;)| = 0. We have

k
N #71(Q;) = D xR"¥; &)
i=1
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denote Dy = {0}. Denote Qy = Q2N (D,_; XR); clearly,
|Q ~ Q| =0. : (10)
Finally, define A\, =sup{z: a,(¢t) =0}, p;=inf{s: q,(#) = A4,}, and, for teRF
Ak (&) = sup{t: ax (£, 1) =0},
pi(§) = inf{z: ap (€, 1) = A ()}

We also define the functions ay, A}, ..., with Q replaced by By. Since By
is convex, for £€ (By)i_1, I~ a,‘}’(s, t)/A‘,I(’(E) is a strictly increasing map of
[/\‘}{'(E), u‘}(’(if)] onto [0, 1] which has a locally Lipschitzian inverse on (0, 1). It
follows that, for each k =1, ..., n, there exists F: D;_; X R"~**! - R such
that

ay (F(x))/A} = a\(x;)/A, (11)
for xe R" and, for 2 < k < n and xe D;_, x R"~k+1,
a;(y(Flo(x)s --'sF]?(x)) . ak(xb --oaxk) (12)

AY(FX), ..., F_ (X)) Ap(xyy ey X4_1)

Note that F,?(x) depends only on xy, ..., x;. Further, tHFlo(t, -) is continu-
ous and increasing, and is locally Lipschitzian on (A, u;), and for2 < k < n,
for e Dy _y, tHF,?(E , 1,+) is continuous and increasing, and is locally Lip-
schitzian on (A (&), ui(£)). Finally, we denote

FO=(F% .. ,F)):D, | xR- By.
We also observe that
G = (a}/A}, ..., ay/AY): By —[0,1]"
is one-to-one and Lipschitzian, hence a homeomorphism. Thus
F°=Go(a,/Ay,...,a,/A,): D1 X R > By
is Borel. We next use (7), (8), (11), and (12) to compute, for k=1, ...,n—1,
OF _ (AfF )i
oxy  Ag(AY °F9)
dF)  ApoF°
0x, A,

In order to employ the divergence theorem in Section 5 we replace F° with
a mapping having bounded derivatives. To this end we define f;, = min{n +1,
dF2/0x;}, and for k=2, ...,n and x€ Dy _; x R"~%*! get

almost everywhere in D, _; X R"~%*1 and

(13)

almost everywherein D, _; X R.

Fiet) = N(&)+ | ‘E fule, 0 dt, £ =1 (%),
+(§)

F} is clearly Lipschitzian as a function of x;. For e > 0 and x; < p, (&) we
have

f CfulE 0 dt = FO(x)—FO(E, A(£) +e),
Ai(E)+e
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hence Fj(x) < F,?(x) because F,?(g , 1) is a right continuous function of ¢ at
t = A(&), a left continuous function of ¢ at t = pu,(£¢), and F,?(E,Ak(é)) =
A7 (£). Similarly, Fy(x) < F(x) for x e R". We conclude that F = (F}, ..., F,)
is a Borel mapping of D,,_; XR into By.

Now let A be a Borel subset of 3*Q with JC"~!(A4) > 0. It is clear from (9)
and (10) that D,,_, C Q,_, and |Q,,_, ~ D,_;| = 0. Thus, by Lemma 2,

|Tp-1(A) ~ D,_i|=0 and |m,_(A4)|>0. (14)

In particular, we see that F is defined 3" ~!-almost everywhere on 8*(.
Utilizing the generalization of the relationship between the geometric and
arithmetic means we infer, using (13), that almost everywhere on D,,_; X R,
n aFO 1/n
% div FO > ( I —’<>

=1, (15)
k=1 9xg

because 4, = A{ =|Q|. Using this, we infer from the definition of F that
divF = n. Thus, by (10), the divergence theorem (21), and the definitions of
¥* and By,

n|sz|sf divF
Q

= F(x)-n(Q,x)d3C" 'x
"0

< VH(F(x)) ¥ (n(Q, x)) d3C"x
0*Q
< ¥(09). (16)

(6) is now clear because (2) implies that equality holds in (16) for the case

Now assume that equality holds in (6), hence in (16). Then divF =n,
hence F° = F because each dF/dx; = 0, and so equality holds in (15) almost
everywhere in Q. Moreover, equality holds for 3¢"~!-almost every x € 9*Q in
the generalized Schwarz inequality:

F(x)-n(Q, x) = ¥Y*(F(x)) ¥ (n(2, x)).

Finally, ¥*(F(x)) =1 for 3" !-almost every x € 8*Q. Thus our assumption
¥, = ¥ and the uniqueness in Lemma 1 imply that

n(Q, x) = n(By, F(x)) (7)

for 3¢” ~!-almost every x € 3*Q such that n(By, F(x)) exists.
Equality in (15) implies that

almost everywhere in . From this we infer the existence of ¢; € R and Borel
functions ¢;: R* ! >R, 2 < k < n, such that
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Fi(x)=x;—c; for xe[A, mIxXR""1DQ,
and, for almost all £€ Dy _; and x; € [AL(§), pe (€)1,
Fk(gyxk!') =xk—ck(f)-

Using this and repeated application of Fubini’s theorem, one verifies that
if BC Qy and F(B) are measurable then |F(B)| =|B|. In particular, if one
assumes only that B is measurable and |B|> 0, then |F(B)|> 0. The struc-
ture of F also implies

QN | = By N g ety 4l (18)

where I ;, = n'[£), £,] for £, < £,. Indeed, application to F(QyN1;,;,) of
the iterated integral 9(F (RN I ¢,)) used above gives ]Qoﬂlgl&], which is
equal to [2N I ; | by (10). On the other hand, F(2y) C By, hence

IF( QNI ) < I(By NI hoyigy+ep)
=By N (g1, 4 el

by monotonicity. Finally, strict inequality for any choice of £, < £, would
contradict |Q| =|By].

Again consider a Borel subset A of 9*Q with 3¢"~!(A4) > 0. Since x,_;(A)
is measurable, so is B = Q¢N(m,_;(A) XR). Furthermore, |B|> 0 because
|7y ~1(A)N D, _;| > 0 by (14), hence |F(B)| > 0. Denoting

F*=(F ... Fy_1): Dy > (By)y -1,
we thus have 3"~ (F(A4)) > 0 because
Ty_1oF=F*m,_; and |F*ew,_(A)|=|m,_1°F(B)|>0.

Also, 3C""N(F(A)Nad*By) > 0 since 3C"~1(0By ~ 8*By) = 0 because By is
convex. We thus conclude that (17) holds for 3¢"~!-almost every x € 9*Q.

Note that we can assume that the centroids (centers of gravity) of Q and
By coincide. One uses (18), together with a uniform approximation of the
function x; by step functions of one variable, to verify that

O=f x,dx=f y}dy_cllB\Plz—CllB\I/l’
Q By

hence ¢; = 0.

Denote by &3, the set of ordered orthonormal bases V = (v, ..., v,) of R"
such that v, satisfies the conclusion of Lemma 2. Note that almost every
(in the sense of Haar measure on the orthogonal group) Ve ®,,. Denote by
Fy the mapping constructed as above with V replacing the standard basis.
Choose a countable subset &; C &,, such that the set of v, Ve ®, is dense
in $”~!, and such that also

3} -13*Q ~ N) =0, (19)
where N is the set of x € 3*Q for which (17) holds for F,, whenever Ve ®,.
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Fix »e S" ! such that N, = NN{x: n(Q, x) = v} # @, and denote
N,¥ = closure{y: n(By, y) = »}.

By (17) we have N,¥ # 0. Further, N¥ is the intersection of 0By with the
(unique) support hyperplane with normal » at any y € Fy (N,), hence is con-
vex. Since the constant ¢; =0 for each Ve ®,, N, lies between the two sup-
port hyperplanes H, = " !{£.} of N,¥ with normal v,. Inasmuch as the set
of such v, is dense in $”~!, we conclude that N, C N.¥. Thus

N C closure 0*By = 0By,
hence by (19) and 3¢"~1(dBy ~ 0*By) = 0 we have
3¢"10*Q ~ 9*By) = 0. (20)

On the other hand, it is well known that d(R"”L Q) is a locally rectifiable
(n—1)-current [F2, 4.5.6], hence by [F2, 4.1.28(4)] the tangent (n — 1)-vector
to d(R"LQ) at almost all xe 9d*Q is determined by 9*Q, and similarly for
d(R"L By). Thus, since d(R"LQ) = 3"~ 'A+n(2Q,-) by [F2, 4.5.6(4)], we in-
fer that n(2, x) = n(By, x) for 3¢"~-almost all xe 3*QN3*By. Next we in-
fer, using (20) and ¥(8Q) = ¥ (dBy), that 3C"~1(8*By ~ 0*Q) = 0 because ¥
is positive. Consequently, d(R"LQ) = d(R"L By), and it therefore follows
by the constancy theorem [F2, 4.1.7] that

5. Technical Details

Let Q be a measurable subset of R” with finite perimeter and |2| < co. We
first derive an extension of the Gauss-Green-Federer divergence theorem
which is suitable for our purposes. Although this version is essentially known
(see [F1] and [F2, 4.1.19]), for completeness we provide a proof using routine
application of the slicing theory for currents.

Lemma 2 asserts that 0*Q is in general position with respect to projection
onto almost all hyperplanes.

Di1vERGENCE THEOREM. Let F=(F|,...,F,) be a bounded Borel vector
field which is defined almost everywhere on Q, and 3C" ~'-almost everywhere
on 0*Q. Assume that, for k =1, ..., n and for almost every line |, parallel to
the x; axis, Fy |l is Lipschitzian. Then

f divF = F(x)-n(Q, x)d3C" x. (21
Q Q

Proof. As in the proof of the isoperimetric theorem, let m,_;: R" - R” be
the projection, and denote by D,,_, the set of £ R”~! such that

o @Nm{E) <
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and F, | w,},{£} is Lipschitzian. Then |2 ~ (D, _; X R)| = 0 by Fubini’s theo-
rem.
R"L Qe N°(R") and, by [F2, 4.5.6],

T=0(R"LQ)=3"""A+n(Q,-). (22)
By [F2, 4.3.2],
00>M(Tde1A---/\dxn_1)=fM(T, Ty_1, £)dE. (23)
Further,
(T, Ty-1, £ = (=1)""'(R"LQ, 7, _y, £, (249)

and (R"LQ, m,_;, £) is obtained by integration over QN {£} (suitably
oriented). Use (23) and (24) to choose £ € D,,_; such that

M@O(R"LQ, 7,_,, £)) < oo.

Inasmuch as ¢~ F}, (&, t) is Lipschitzian, we obtain

3<RHLQ, Tpn—1, E)(Fn) = (Rn LQ: Th—1s ‘E)(aFn dxn>

ax,
[ oF,
anmil g 0%,

Integrating with respect to £ and applying (22), (24), [F2, 4.3.2(1)], and
Fubini’s theorem, we obtain

F,(x)e, n(Q,x)d3I" Ix = (=1)"1(R"LQ)(F, dx;An -+~ Adx,_;)
3"Q
=f HRLQ, m,_,, £)(F,) dE
Dn—l
dF,
= -, (25)
Q axn
([F2, 4.3.2(1)] extends to the case where ¥ is bounded Borel because 7 has
finite mass.) Finally, it is clear that (25) similarly holds with n replaced by
k,1<k<n. O

LEMMA 2. Forve S""!, denote by =, the projection of R" onto the orthog-
onal complement H, of Rv. Denote

Q,=H,N{£:0< 3N (QN T, {£}) < o).
Then, for 3" -almost all ve S" !,
|7, (3*Q) ~ Q,| =0=|Q, ~ m,(3*Q)), (26)
and for each Borel subset A of 8*Q, |,(A)| > 0 if and only if 3¢"~1(A) > 0.
Proof. Inasmuch as 3¢"~1(3*Q) < oo,

NN {x:v-n(Q,x) =0)) =0 (27)
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for 3¢"~!-almost all ve S"~!. Otherwise, by Fubini’s theorem,
00> JC" I x JC" U8 T x a* QN (v, x): v-n(R, x) = 0}) > 0,

hence
Yo QN {x: 3¢" Ho: v-n(Q, x) =0} > 0}) > 0.

But 3¢"~{v: v-n(Q, x) = 0} > 0 implies n(Q, x) = 0.
Fix v satisfying (27), and let A be a Borel subset of R”. Applying (22) and
(24) with 7, replacing =, _;, we have by [F2, 4.3.2(2)]

f|u.n(9,x)|d3c"—‘x= f |71 mfelldsen!
4 A
- fH KT, £)||(A) dt

=f9 |3CRLQ, m,, £)](A) . (28)

Here T = +*n(€2,+) and w is a volume form of H,,. By (27), the first integral
vanishes if and only if 3¢"~1(4Nd*Q) = 0. This, together with (28) for A =
0*Q ~ (2, xR), implies the first equality of (26). Together with (28) it also
implies the final statement of the lemma. The second equality of (26) fol-
lows from (24). O
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