Rigidity of
Minimal Submanifolds in Spheres
in Terms of Higher Fundamental Forms

G. TotH

1. Preliminaries and Statement of Results

In this paper we will give a generalization of the DoCarmo-Wallach theory
for rigidity and nonridigity of minimal submanifolds in spheres, introducing
higher-order contact conditions for the submanifolds expressed in terms of
their higher-order fundamental forms and osculating bundles.

Given an isometric immersion F: M — S~ of a Riemannian manifold M
of dimension m into the Euclidean N-sphere S¥, we denote by §,(F), I =
1,..., pr, the Ith fundamental form of F, and by O}’: the /th osculating bundle
of F, all defined on a (maximal) nonempty open set D of M (cf. [1; 6]). For
xeDg, B/(F),: S(T.M)— @}; » 1s a linear map of the /th symmetric power
of T, M onto the fibre Of. . of O at x (also called the /th osculating space of
Fat x). Recall that 8,(F) = F, is defined on D} = M and, for x € D}, the first
osculating space (‘)}Q; » is the image of 3,(F),. The higher fundamental forms
and osculating bundles are then defined inductively by setting

Bri1(F)x(X0, oy XN = (VyoBi (F)NX T, .., XN,
X9, ..., X'eT,M, xeD},

where 1, is the orthogonal projection with kernel O, ®--- @O}, Of. , =
R-F(x), and Df*! is the set of points x € Df at which the image Of/ of
B1+1(F), has maximal dimension. 8, (F) is the highest nonvanishing funda-
mental form, and py is said to be the geometric degree of F. We have D=
M}~ , Df.. Finally, it is convenient to define the Oth fundamental form of F
to be F itself. To be consistent with (1), we also put VyoB(F) = B,(F)(X°%) =
F.(X9). Note that if M and F are analytic then D is dense in M.

Given two isometric immersions F: M — S~ and f: M — S”, we say that
[ is derived from F, written as f ~ F, if f=A-F for some linear map A:
RN L R7*LIf F is full (i.e., the image of F is not contained in a great
sphere of S%) then A is uniquely determined. If f is full then A is onto; f is
(orthogonally) equivalent to F if (N=n and) A is orthogonal.

Now let f~— Fvia f=A-F. We introduce

(fY=A"A—TeS*RNt),
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Received February 3, 1992.
Michigan Math. J. 40 (1993).

493



494 G. TotH

where " stands for matrix transpose and 7 is the identity. The condition that
f is an isometric immersion translates into { f) being perpendicular to

Zr=span{F(x)®F(x)|xe M]}
+span{F (XY OF.(Y) | X, YeT,M, xe€ M} (2)

in S2(RM*Y) (w.r.t. the standard scalar product (C, C’) = trace(C'"C),
C, C’e SE(RNTY), where ": TRY*1 5 RN*1 5 given by parallel translation.
Indeed, | f|?=1 translates into { /) being perpendicular to the first term on
the right-hand side of (2), and the second term encodes the information that
f is isometric on the tangent spaces. As in [4], we obtain that the space of
equivalence classes of full isometric immersions that are derived from F can
be parameterized by the convex body

SRF—_—[CEgFlC'I'IZO}

in §=(Zr)t. The parameterization is given by associating to (the equiva-
lence class of) f the symmetric matrix {f).
Assume now that F'is minimal. The Euler-Lagrange equation can be writ-
ten as
AMF=m-F,

to be satisfied by the induced vector-valued function F: M - R™*! where
AM is the Laplace-Beltrami operator on M. If f = F, applying A to both
sides of this equation, we obtain that f is automatically minimal. Hence Mg
parameterizes the equivalence classes of full isometric minimal immersions
that are derived from F. Moreover, M is compact if M is compact.

(Historical) REMARK. The approach and the concepts developed here
originate from the work of DoCarmo and Wallach on rigidity and nonrigid-
ity of minimal isometric immersions into spheres (cf. [1; 6]). Note also that
if M is isotropy irreducible Riemannian homogeneous and F = f) is the stan-
dard minimal immersion associated to an eigenvalue A of AY, then any full
isometric minimal immersion f: M — S" is derived from f, provided that it
induces the same metric on M as f).

Let F: M— SY and f: M — S” be full isometric imimersions, and let 1=
k < pr. We say that f has kth-order contact with F if D;N\Dg+@ and, for
x € DN Dg, we have

((VXOBI’(f))(Xls cony XI')’ Bl”+1(f)(Y0’ seey YI”))
= ((VXoﬁl'(F))(Xls ceey Xl,): BI"+I(F)(YO’ secy Yl”)): (3)
X0 ..., x"Y° . Y 'eT .M, 0<l"<l'<k.

ReMARrkS. 1. For k=1, the contact condition is automatically satisfied.
2. Forl'=1"=[-1<k, (3) is equivalent to

(Bl(f)(X]a ""Xl)s Bl(f)(Yl,"'i YI))
=(BUFIXY, .., XD, B(F)Y, ..., Y'). )
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3. If M, F, and f are analytic then D, N Dy is dense in M. The special case
we will be interested in is when M is Riemannian homogeneous, F is mini-
mal (hence analytic), and f — F so that f is also analytic.

THEOREM 1. Let F: M — SY and f: M — 8" be full isometric immersions
with f~ F and Dr CD and let 1 <k < pr. Then f has kth-order contact
with F if and only zf(f) e Fk=(Z5*, where

Z§ = span{B(F)(X, ..., X"y ©@B(F)(Y",...,Y") |

XL, x5y, Y eT, M, xeDp, 0<1',1"< k)
C SZ(RN+1).

It follows that, for M and F analytic, the space of equivalence classes of iso-
metric immersions f: M — S” that are derived from F and have kth-order
contact with F can be parameterized by the convex body

ME = MeNTFE C FE. (5)
We have the following rigidity theorem.

THEOREM 2. Let M be analytic and let F: M — S™ be a full analytic iso-
metric immersion. Assume that f: M — S" is a full isometric immersion de-
rived from F that has kth-order contact with F. If pr <2k +1 then f is equiv-
alent to F.

REMARK. For k=1 this is the rigidity theorem of DoCarmo and Wallach,
which states that a full analytic isometric immersion of degree < 3 is linearly
rigid.

In view of Theorem 1, Theorem 2 can be rephrased by saying that pr<2k+1
implies F% = {0} (for M and F analytic). For higher degree we have nonrigid-
ity, as the following result shows.

THEOREM 3.  Let f) : Sy — S"*) be the standard minimal immersion as-
sociated to the pth ezgenvalue Ap,=p(p+m—1) of AS", m=3, where the
subscript m/\, indicates the curvature of the metric on S ™ induced by f)\p.
Assume 2k+1<p (=pf)‘p). Then we have

dim 9§, =dim Ff, = ) dim¢ V(% 5.0, 0, (6)

r ? (a,b)eAB;a,b even

where Aﬁ C R? is the closed convex triangle with vertices (2k+2, 2k+?2),
(p, p), and (2(p—k),2k+2), and where V,\%v; % r=[|(m+1)/2|1, is the
irreducible complex SO(m+1)-module with highest weight (o, ..., 0,) rela-
tive to the standard maximal torus in SO(m+1).

Just like Theorem 2, Theorem 3 (for k£ = 1) specializes to the nonrigidity the-
orem of DoCarmo and Wallach. Note that the lower bound of the dimen-
sion in (6) can be computed by the Weyl dimension formula. In particular,
we have
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dimc Vn(12+k1+2’ 2k+2,0,...,0) > dimc(n(2k+2,2k+2)®1/4(2k+2, —2k—2)) — 8k +10.

The proofs are arranged as follows. In Section 2 we introduce the two tech-
nical tools; a method to compare, for f ~— F, the higher fundamental forms
of F and f, and the space & that encodes the information of the contact
condition. Theorem 1 is proved there and is used in Section 3 to prove rigid-
ity. In Section 4 we first specialize the treatment to M isotropy irreducible
Riemannian homogeneous, and use equivariance of the standard minimal
immersion to realize Efjlﬁ as a representation space of the acting group of
isometries on M. We then further specialize to spherical domains, and use
the decomposition of the symmetric square of the space of spherical har-
monics into irreducible components given by DoCarmo-Wallach to derive
Theorem 3. Finally, for £ =2, we work out the contact condition explicitly
and point out some connections of Em’,%p with isotropic minimal immersions.

2. Higher Fundamental Forms of the Derived Map
We begin with the following observation.

LEMMA 1. Let F: M — SY be an isometric immersion. For 1<l’<[—1, we
have
(VxoB(FNX Y, .., X, B(F)Y ..., Y )y =0 (7)

for X0, ... x4Y° .. Y 'eT,M, xeD.

Proof. We use vector fields that are defined locally near x € Dr. We have
(VB (FNX Y, oo, X, Br(FYY L, ..., YY)
= (Vxo(B(FUX, ..., X)), Bp(F)(Y, ..., YY)
=X%B(FUX, ..., X)), Br(F)Y,...,Y")
—(BUFNXY, o, X, Vo (B (FY(Y L, ..., YY),

The first term on the right-hand side is zero by orthogonality of the fun-
damental forms. By definition, Vyo(8,(F)(Y!,...,Y")) is a local section of
OP@ --@OFTL. Since I’+1 </, the second term also vanishes and the proof
is complete. ]

From now on through the rest of this section, F: M — S~ and f: M — S" are
full isometric immersions and f — Fvia f = A-F. Given a vector field v along
F, we define v to be the vector field along f by

(v =A4-0—(A-0, /).
LeEmMA 2. For any vector field X on M, we have
(Vxv)A= V(v +(A-D, [ f(X). (8)

Proof. Letw be a vector field along f. Using (A -F, w) ={f, w) =0, we have
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{(Vx ), wy=(A-(Vxv), W)
={A-X(0), W) —(A(X (D), F)F, W) =(A- X (D), w).
As for the first term on the right-hand side of (8), we compute
(Vx(v4), wy =(X (v)", W)
=(X(A-0), W) —(X(A-0, f)f), W)
={(X(A-D), W) —{A-D, [ XS, W).
Now, f.(X) =Xf and we are done. O

Using (8), f« = B;(f), and orthogonality of the fundamental forms, for /=2
we have

XUBFUX o, XA B (Y, YY)
=[VxoBi(F)(X .o, XA, B ()X, YY)
+BUEFENX oy XY VB (Y, YO, )
where the vector fields are given on an open set in DN Dg. We will refer to
(9) as the differentiation formula. Next, we show that 8,(F)(X},..., X)4

is a local section of L‘)}@---@(‘)f’, with the (‘)}-component being equal to
BI(f)(XI: "'aXI)-

THEOREM 4. Forl=1, we have on DN Dg:

(BI(F)(XI: “"XI)A: B['(f)(YI! seey YI’))

={<Bz(f)(X1,...,X’),ﬁ,,(f)(yl,...,Y’)>, I'=1:

0, I">1. (10)

Proof. We use induction with respect to /. For / =1, we have

ABI(F) =AF*=f* =61(f)

and the statement is clear. For the general induction step 1,...,7/ = /41, we
use the differentiation formula (9) to differentiate the left-hand side of (10).
Let /’=17+1. We obtain

AVxoBi(FY X, ., XA, B ()XY, ..., YT
HBIUFIX Y, oo, XA VB ()X, .., Y Y =0. 11)

According to Lemma 1, VyoB,(F)(X, ..., X") is a local section of O/*!@®
OF @O, the OF -component being equal to 8, (F)(X°,..., X"). Using
the induction hypothesis, the first term on the left-hand side of (11) may be
rewritten as

Bra(FYXY o, XD B ()Y, ..., Y. (12)

Again by Lemma 1, VxoB,(f)(Y,...,Y") is a local section of 9} '@ 0/ ®
Of ~!. Since /’=/+1, by the induction hypothesis, the O} *!- and O}-com-
ponents of the second term on the left-hand side of (11) cancel. If /’>17+1
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then the O}'_l-component also cancels since (12) vanishes. Thus, in this case
we are done with the induction and the second statement of (10) follows. It
remains to study the case /’=/+1. As noted above, only the Of component
of VyoB.1(f)(Y1,...,Y'*1) can have a nonzero contribution in

<61(F)(X‘ XA, V0B (Y, YY), (13)
Again by the induction hypothesis, the Of component of 3;(F)(X!, XxhHA
is B ()X, X"). Hence (13) may be rewritten as

<B,(f)<X‘, cees X1, V0B ()X, YY)
= —(VxoB(IX, s X1, B ()X, ., YT
= — (Bt NX, o, X1, B (X0, Y.

Putting this together with (11) and (12), the induction step is completed and
the first statement of (10) follows. ]

CoroLLARY 1. Let f ~ F with D;N\Dp+ 0. Then ps < pp.

Proof. Let 0£we (S)”f for some x € DN Dgp. By Theorem 4, there exists
ve (‘)pf such that the (‘)pf -component of v4 at x is w. In particular, v#0
and the claim follows. ]

We are now ready to prove Theorem 1. Assume that f« Fvia f=A-F and
that f has kth-order contact with F, 1<k < pr. We first show that, on
DsN Dg, we have

AB(FYXY, .., XY =6/() (X}, ...,.X"), O<li<k. (14)

The proof is by induction with respect to /; the cases /=0, 1 are clear. To
perform the general step 0, ...,/ = I +1 (=< k), we first observe that by Theo-
rem 4 it is enough to show that

Br(FYXC, ., XD B8N, .., Y Dy=0, 1=l'<i+1. (15)

Let x € Dy N D, and choose a normal coordinate neighborhood U in
D;N Dy centered at x. Given X9, ..., XY, ...,Y'e T, M, we extend each
of these tangent vectors to a vector ﬁeld on U by parallel transport along
geodesics emanating from x and denote the extension by the same symbol.
Thus the covariant derivative of all vector fields considered vanishes at x.
In what follows all computations are at x and, to simplify the notation, the
presence of x is suppressed. We have

Brat FNX, .., XHA, 8N, ..., YY)
=([VxoBi(F)X ", ..., XY B (X, ..., YD
— (Vo B (FUXY, ., XN 8N, ., YY), (16)
where T, is orthogonal projection to O} @ - -- @ Of. The induction hypothesis

implies that (A B,(F)(X, ..., XY, /Y =B()( X}, ..., X'), f)=0. Using
this in the second term of the right-hand side of (8) together with the induc-
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tion hypothesis (14), the first term on the right-hand side of (16) may be re-
written as
(Vo[ Bi(FIX, .o, XA, BN, .., YY)

=(VxoB(IXY, ., XD, BN, .., YT

=<VXOBI(F)(X1’ "°)XI), Bl'(F)(YI’ seey YI’)))
where, in the last equality, we used to the contact condition (4). We now
consider the second term of the right-hand side of (16). For 1</"</, de-
note by 8,-(F)(Z,..., Z") the O -component of VyoB8,(F)(X!,...,X"). By
the induction hypothesis and the contact condition (3), we obtain

B(FNZ' .o, ZNA, BN, YT

=(:31”(f)(Z19 cesy Zl”), Bl'(f)(Yls seey YII))
=(Bl”(F)(Zl’ '--’ZI”)3 31’(F)(Y1’ eeey YI,))s

so that the second term on the right-hand side of (16) takes the form
_<(VX0:31(F)(X13 seey Xl))Tla Bl’(F)(YI’ teey YI’))-
Putting this together with the result for the first term above, we obtain

(BI+1(F)(X03 ceey XI)A’ Bl’(f)(Yla ooy Yl,))
=B 1 (F)(X .0, X, B(F)Y ..., Y )=0

since !’ < /. Hence (14) follows. Now (4), (14), and orthogonality of the fun-
damental forms imply that { f) is perpendicular to all 3;(F)(X}, ..., X"y ®
Br(FYY,.., Yy for X',..., X", Y\,....Y"eT .M, 0<!’l1"<k, and xe
DN Dgp. Now Dp C le so that the same is true for x € Dy, and (f)e F¥
follows.

For the converse, we assume that {f)e EF}‘. As an intermediate step, we
again claim that (14) holds. Using induction, we need only perform the gen-
eral step 0,...,/ = /+1 (=< k). By the induction hypothesis, for 1</’</+1
we have

BrarFNX, o, XA, (NHX ., Y
=(A-Br(FYX, .., XY, B (N, ., YY)
=(A-Brp 1 (FYXO, oo, XY, A Bp(F)(Y ..., YY)
=<B[+1(F)(X0, ) Xl)s Bl’(F)(Yls seey Yl”)) = O’
where in the last equality we used {f) e FF. Theorem 4 completes the in-
duction.

We now turn to the proof of the contact condition (3). Let 0</"<!'<k,
and consider all vector fields defined on a normal coordinate neighborhood
in DN Dy centered at x, as in the first part of the proof. Using (14) and the
assumption { f) € F¥, we compute at x:

((VxoBr(NX s XY, Bt (O, YN
=(VxoBpr ()Xo ts X1, Bt ()Y, .., YY)D
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=(X°Br(IXY ., XY, B (X, YY)
=(A-X°Br(FY X, .., X)), B (XL, ..., YY)
=(A-(VxoBr(F) X, o, XU, B (X0, YY)
=(A-(VxoBr(F)X, ..., X)), A B (FYXY O, .., YY)
=(VxoBp(FNX, ..., X1, B ()XY, ..., YY),

and (3) follows. ]
REMARK. Equation (14) implies that if f: M — S” is derived from F:
M — SN (via f=A-F) and f has kth-order contact with F then, for 0 <

I<k, Op and O’ are isomorphic over DyN Dy with fibrewise isometry (given
by A: (‘JF = (‘)f s X eDfﬂDF) In particular, for k < pr, we have

Edlm(‘)Fx Edlm(f)fx.<_n+1 xeDsND.
=0 =0

3. Rigidity

To prove Theorem 2, we assume that M is analytic and that F: M — S"Vis a
full analytic isometric immersion. In accordance with our earlier notation,
we put Z2= span{F(x)© F(x)|x € M} (cf. Theorem 1). Given x € D;NDp,
let v: (—e,€) > M be a geodesic with y(0) =x whose image lies entirely in
DyN Dp. Setting o= Foy, we first note that ¢*(0)e 0%, ®--- @ Of; , with
Or. ,-components, for various v, spanning Of. .. We first claim that

dN0)©o(0)eZfF, O0=s=<2r+l. (17)
By definition, for |f| < e we have
cP()©aeP(t)eZk, 1=0.
Differentiating, we obtain
oD eP(t)e 2.
Differentiating again, we get

or(’+2)(t)@(f“)(t) + 0(1‘*‘1)(1‘)@0(["'1)(1‘) € Z},’

so that
O.(l+2)(t)®o,(1)(t) e le;ﬂ-l.

Differentiating this, we obtain
s NN E D)+ 0D @ oD (1) e ZLH!
and, by the above, this reduces to
d "IN y©aeP(r) ezt
Repeating this procedure, we obtain in general that
s+ 2O (1), s (O e D(t) e 2L
Taking / =0, (17) follows.
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We now assume that f: M — S” is a full isometric immersion that is de-
rived from F and has kth-order contact with F. By Theorem 1, {f )eiF,’:‘;
that is, we have (f).L ZE. Using (17), we have

LS aPO)Do(0)y=(S)a(0),0P)=0, 0=</=<2k+1.  (18)
On the other hand, analyticity of F implies that, for x € Dg, we have
ég;x@ ee @@gfx= RN+1

(cf. [1]). Since the . ,-components of ¢(0) span Of. ,, combining (18) and
pr=2k-+1yields

(ra(0)=
Since ¢(0) € D;N Dy was arbitrary and D;N Dy spans RV*!, we obtain that
{f)=0. Hence f is equivalent to F, and the theorem follows. L]

COROLLARY 2. Let M be analytic and F: M — SY a full analytic isometric
immersion. Let 1 <k < pr, and assume that

N=<k+ 2 dim Of. , (19)
=0

holds for some x € Dp. Then any full isometric immersion f: M — S" de-
rived from F that has kth-order contact with F is equivalent to F.

Proof. Using analyticity of F, we have

N+1= E dim Of. , = 2 dim Of. .+ pr—k.
=0 =0

Combining this with (19), we obtain 2k +1= pr and Theorem 2 applies.
O

4. Nonrigidity

We now assume that F: M — S¥ is a full isometric immersion that is equi-
variant with respect to a homomorphism pp: G > O(N+1), where G is a
closed subgroup of the group of isometries of M. This means that, for a € G,
we have

Foq= ,OF((Z) -F.

The homomorphism pg, which is uniquely determined by fullness of F, de-
fines an orthogonal G-module structure on RV*! and thereby on S2(RM*1)
as well. Since G acts on M by isometries, the higher fundamental forms and
osculating bundles are also G-invariant. It follows that Z% and hence ¥ are
G-invariant subspaces of S2(RV*!). Moreover, for f —~ Fand a € G, we have

a-{fy={foaly;

in particular, 9% is a G-invariant subset of F¥.

We now assume that M = G/K is an isotropy irreducible Riemannian
homogeneous space, and that F is the standard minimal immersion f):
M — S™® defined by having its components comprise an orthonormal basis
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(/7N in the eigenspace V) of AM corresponding to A€ Spec(M). Here, V),
is endowed with the normalized L2-scalar product

A)+1
<¢, (b’) = M_— S ¢¢,' Var, ¢s ¢’E V,\’
M

vol(M)
where v, stands for the Riemannian volume element (cf. [4] for details). If
g is the original Riemannian metric on M then f) is isometric with respect to
the Riemannian metric A/m-g on M. The standard minimal immersion f,:
M — §"® j5 equivariant with respect to the homomorphism

pr: G—= O(n(A)+1)

that defines the orthogonal G-module structure on ¥, (= R"™*1) 5o that the
general setting above applies. Note also that DfA = M and hence the higher
fundamental forms and osculating bundles are *defined everywhere. Now,
any full minimal isometric immersion f: M — S” of the Riemannian metric
A/m-g on M is automatically derived from f,. This follows since, by mini-
" mality, the components of f are in V). Since M and f, are analytic, we ob-
tain that smg parameterizes the equivalence classes of full isometric minimal
immersions (of the metric A/m-g on M) that have kth-order contact with f,.

The standard minimal immersion f,: M — 8"® is equivariant with respect
to the homomorphism p,: G — O(n(A)+1) that defines the orthogonal G-
module structure on V), (= R"™+1 5o that the general setting above applies.
Note also that Dy, =M, so that the higher fundamental forms and osculat-
ing bundles are defined everywhere.

Even more specifically, we will be interested in the case when M =S8",
m=2, with A=A, =p(p+m—1)eSpec(S™), p=2. Then V), = JC4, is the
linear space of spherlcal harmonics of order p on §”, and f,\ S’"—»S"(’\P)
is the standard minimal immersion with geometric degree pf, = D- (For
m=2, f;\ : §2 - S?” is nothing but the classical Veronese map ) Setting
the origin o at (1,0, ..., 0) with corresponding isotropy subgroup SO(m) =
[11®SO(m) C SO(m+1), we have

32, | sogm = ICm—1®---DIChH,_,
so that it follows, as in [1], that
Bi(fx,)o S ST,8™) - 3C_y, 1=<I=<p,

is a surjective SO(m)-module homomorphism. In particular, o/ i 0 = = jc¢! m—1>
1<!/=<p, as SO(m)-modules. Using the standard coordinates xl, cees Xy ON
T, S™, the Ith power S/(T, ™) becomes the space of homogeneous polynom-
ials in xy, ..., X, of degree /; it also follows that this homomorphism is (up to
a constant multiple) the harmonic projection operator given explicitly in [5].
Before the proof of Theorem 3, we digress here to make some specific obser-
vations. First, according to the remark at the end of Section 2, if a full mini-
mal isometric immersion f: Sz, — S” has kth-order contact with f, , then
k < ps and
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n(\)+1=dim 3k <n+1.

This follows from the discussion above. Second, we wish to give an explicit
form of the contact condition (3) for £ =2. This amounts to the determina-
tion of the second fundamental form of 8,( /) which, for the sake of com-
pleteness, we include here in detail. First of all, we have

S2(T,8™)=S*(3CL, 1) =3Ch,_ DI, _,

as SO(m)-modules. In terms of matrices, the first term on the right-hand
side contains the constant multiples of the identity, while the second consists
of all traceless matrices. Hence

Ba(fy,): S3(3Ch—1) = ICh_y
is a constant multiple ¢, say, of the map

1
BHB—-n? trace B-1.

Using this, simple computation shows that, for X, Y, U, Ve TS, xeS", we

have
2

BaAH) XY, B H U V) = Z-(X, UXT, VY +(X, VXY, UY)

2
_ X, YU, V. (20)
m

The value of the constant ¢ can be easily determined from the Gauss equa-
tion, since f, induces the metric on S™ with constant curvature m/A,. We
obtain

1/2—1/m

On the other hand, for k£ =2 the contact condition is equivalent to

Bo(SNX,Y), B2 (WU, VY =(BUNANX,Y), B L)WV,
X, Y,UVeT,S", xeS™

c (21)

Combining this with (20), we obtain that a full isometric minimal immersion
Vi S,’,’,’,,\p — S”" has second-order contact with Ji, if and only if

2
Bao(SUX,Y), B SU, V)= 52—(<X, UNXY, VY +(X, VXY, U

c?
——( X, YXXU, V). (22)
m

Theorem 2 immediately yields the following.

COROLLARY 3. Let f: S,,’Z’,,\p—>S" be a full isometric minimal immersion,
and assume that (22) holds. If p <5 then f is equivalent to f,\p.
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REMARK. An isometric immersion f: M — S§” is said to be constant iso-
tropic if | 8,(f)(X, X)|?is constant on the unit sphere bundle of M (cf. [3]).
If f:Smn,—S" is an isometric minimal immersion that has second-order
contact with pr then, again by (22), f is constant isotropic. In particular,
for p=6, Theorem 3 provides an abundance of constant isotropic minimal
immersions between spheres.

Finally, we turn to the proof of Theorem 3. We give a lower estimate for the
SO(m+1)-module EF,\ (In what follows, to simplify the notation, we omit f
from the lower 1nd1ces .) By equivariance of f,\ , we have ZA = SO(m +1)- Z
where

Zk =span{®)\ 0@(‘) ", 10=1,1"<k).

Let EFA be the sum of those SO(m+1)- submodules of S2(3C2) that, when
restricted to SO(m), do not contain any irreducible component of Zk Fro-
benius reciprocity applies to this situation, yielding

5 c st
(cf. [1] or Corollary 3.2 on p. 72 in [4]). On the other hand, we have
Zk=span{3c!, _ @3l _|0<l',1"<k)}
=span(v'Qv"| v, v"€ }p,_ @+ DL, )
=S5%(3CH_1® - DICh_y)

k
=3 s,y Y  swl_®ilh_,

=0 O=<lI"<I'sk

as SO(m)-modules.
The proof of Theorem 3 will be finished if we show the following.

THEOREM 5. Let m=3 and 2k+1< p. Then we have
H= s ympeeo,
(a,b)e A%; a,b even

where the notation is as in Theorem 3.

Proof. According to the decomposition theorem of DoCarmo and Wallach
[11, for I” <!’ we have

”

K1 @Iy = X VS H750-0@ (30,7 @3C,71)  (4)

s=0

SHHXp-)= X VedteO, (25)

(c,d)e Af; ¢,d even
where we used the notation introduced in Section 1. (Note also that, for
m=4, V600 means VD@V D) A quick comparison of (24) and
(25) with (23) shows that ZX has the following two (overlapping) sets of
SO(m)-components (with multiplicity):

Vnsc,d,O,...,O)’ (C, d)EEk, (26)

and



Rigidity of Minimal Submanifolds in Spheres 505

where A, C R?is the closed convex triangle with vertices (1, 0), (k, k—1), and
(2k—1,0), and

V(6d0...0 (o dye Ak: ¢, d even.

Applying (25) to S?(3C2,,,), we obtain
SX3Che)= X Ve (28)
(a,b)eAf; a,b even
so that we must determine those V,{% 2% -9 in (28) that, when restricted to
SO(m), do not contain any V(¢ 09 in (26) and (27). This is done by the
branching rule [1]:
V579 | so0my = 22 Vs

T

where the summation runs over all 7 € Z!I"/2l! for which

o=zn=--=0.=|r| if m+l=2r+1,
and
0'12712"'21',-_12'0’,' lf m+1=2r.

Assume first that m= 5. The branching rule for the components in (26) and
(27) boils down to
a=c=b=d=0.

Comparing the possible ranges of (a, b) and (c, d), this condition is equiva-
lent to

b=2k+1,
which restricts the range of (a, b) to A?, and the theorem follows. The proof
for m=3, 4 is similar. O
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