Removable Singularities for
Analytic Functions

PEKKA KOSKELA

1. Introduction

The question of removable singularities for analytic functions which are of
bounded mean oscillation (in BMO) or uniformly Hélder continuous with
exponent a, 0 <a <1, (in Lip,) is well understood (see e.g., [Gn, 4.5; Kr;
Kal). In these cases a more or less complete answer can be given in terms of
the Hausdorff dimension: a compact subset E of a domain G in the complex
plane C is removable for analytic functions defined in G\ E and belonging
to BMO(G) (Lip,(G)) if and only if H'(E) =0 (H'*%(E) =0). Here H" de-
notes B-dimensional Hausdorff measure.

In this note we consider the analogous question for analytic functions
defined in G\ E and belonging to BMO(G\E) or locLip,(G\ E)—that is,
instead of assuming a regularity condition in all of G, we require only that our
analytic functions satisfy a regularity condition on G\ E. Recall that if U is
an open set in C, then a complex-valued function f belongs to BMO(U) if
there is a constant M such that

|B|~! SBlf(z) —fgldxdy<M

for each open disc B C U, where fz=|B| {3 f(z) dxdy and | B| is the area
of B. Next, suppose that 0 <« < 1. Following [GM], we say that f belongs
to locLip,(U) if there is a constant M such that

| f(2)—f(W)| < M|z—w|*

whenever z, w belong to a disc B contained in U. Finally, we recall the defi-
nition of the Minkowski dimension of a compact set KC C. For A> 0 and
r >0 write

k
MMK)= inf{kr": Kc U B(z;; r)]
i=1

and let
M*K) =lim sup MM K).

r—0
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The Minkowski dimension of X is then defined as
dim,,(K) =inf{A > 0: M}(K) < o0}.

Clearly the Minkowski dimension of X is larger than or equal to the Hausdorff
dimension of K, and it may happen that dim,,(K) > 0 even if dimg(K) =0.
On the other hand, these two dimensions coincide for a large class of com-
pact sets K including self-similar Cantor sets; we refer the reader to [MV]
for the basic properties of the Minkowski dimension. For notational clarity
we employ the following convention: when E is a relatively closed subset of
a domain G, we write dimy,(E) <A (0 <A=<2), provided dim,,(K) <A for
each compact KC E. Next, for any Borel set E we denote the projections of
E along the real and imaginary axes by Re E and Im E, respectively.

Now we are able to state our main results. Let G be a subdomain of the
complex plane, and suppose that £ is a relatively closed subset of G. Then
we have the following theorem.

THEOREM A. Let f be analytic in G\E, and let 0 <s<2. Suppose that for
each zy € E there exist r >0 and a constant C such that

|f'(z)| = Cdist(z, E)~* 1)
forall ze B(zy; r)\E. If '

dimy (E)<2—s, HYReE)=HYImE)=0,
then f has an analytic extension to G.

In the converse direction we establish the next theorem.

THEOREM B. For each domain G C C and 0<s <2, there is a compact set
EC G with

for which there exists an analytic function f defined in G\ E and satisfying (1)
in a neighborhood of E such that f does not have an analytic extension to G.

Condition (1) and the assumption on the Minkowski dimension of £ ensure
that f” is integrable over U\ E for each U CC G; see Lemma 2.1. Theorem A
will then be established using this integrability condition and the assumption
HYReE)=H!(ImE) =0. This observation is the core of this note.

From Theorems A and B we obtain Theorem C as follows.

THEOREM C. Suppose that f is an analytic function defined in G\ E which
belongs to locLip,(G\E) (resp., to BMO(G\E)). If

dimy(E)<l+a and H(ReE)=H'(ImE)=0 (dimy(E)<1),

then f has an analytic extension to G. Moreover, for each G there is a com-
pact subset E of G with
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dimy(E)=14+«a and dimg(E)=0 (dimy(E)=1,dimg(E)=0),

and an analytic function defined in G\E belonging to locLip,(G\E)
(BMO(G\FE)) which does not have an analytic extension to G.

Note that our assumption H!(Re E) = H'(Im E) = 0 is satisfied if H(E) =0.
On the other hand, it is easy to construct compact sets £ with dimg(E) =2
and H'(ReE)=H'(ImE)=0. It will become clear in Section 2 that one
needs some assumption on the projections of £ in Theorems A and C. We
have not stated Theorem C in the ultimate generality. Indeed, our argument
of proof shows that one could also establish results for analytic functions in
appropriate Campanato spaces; see [Kr] for results in terms of the Haus-
dorff dimension. We prove Theorems A, B, and C in Section 2. In Section 3
we make some observations concerning quasiregular mappings.

2. Proofs of Theorems A, B, and C

We begin with a lemma in which we assume that E is a relatively closed sub-
set of G and that f is analytic in G\ E.

2.1. LEMMA. Suppose that dim,,(E)<2—s and there exists a neighbor-
hood U of zo€ E such that (1) holds for all ze U\E. Then there exists a
neighborhood V of z, such that

S |f'(2)| dxdy < .
V\E

Proof. We may assume that U C G and that U is bounded with dist(z, E) <1
foreachzeU. For j=1,2,... set

Ui={zeU:27/ =dist(z, E) <27/ *1}.
Then

| |f’(z)|dxdysES 1’| dxdy<C 329U} @)
U\E U

Next, from the definition of Minkowski dimension and our assumption
dim,,(E) <2—s, we conclude (see [MV, Lemma 3.9]) that there exist 0 <
dim,,(E) <A<2—s and a constant C, such that

|Uj| < € 27/@M, €)
From (2) and (3) we conclude that | f’| is integrable over U\E. Ll

Next we prove Theorem A. For the proof recall that d is defined by 29 =
d/0x+1id/ay.

2.2. Proor oF THEOREM A. Given a function f analytic on G\ E and satis-
fying (1), define a function g: G — C by setting g(z) = f(z) for z€ G\E and
g(z) =0 for z € E. Then, by Weyl’s lemma (cf. [Ga, 10.3]), it suffices to ver-
ify that g is locally integrable in G and
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50 g(2)3(z) dxdy =0 )

for all ¢ € C{(G).

Note first that owing to the condition H(Re E) = H(ImE) =0, g is ACL
in G, and the partial derivatives of g exist a.e. in G and coincide with those
of f. Hence Lemma 2.1 shows that the partial derivatives of g are locally in-
tegrable in G. The local integrability of g immediately follows by the Fubini
theorem from the absolute continuity of g on almost all lines parallel to the
coordinate axes.

Fix¢ € C(}(G). According to Lemma 2.1 there is an open set V' CC G such
that the partial derivatives of g are integrable over V and the closure of the
support of ¢ is contained in V. Moreover, from the first part of the proof we
observe that g is integrable over V. Applying the Fubini theorem and the
absolute continuity of g, we arrive at

| e@as@ dxdy=-| de@)9(c) axay.
G G
Since dg(z) =0 for a.e. z € G, (4) follows and the proof is complete. O

Here we produce an example to prove Theorem B; we emphasize that Theo-
rem A is void for s > 2. Clearly it suffices to make the construction for the
plane C.

2.3. Proor oF THEOREM B. We show that for each 0 < s < 2 there is a count-
able compact subset E of the unit disc D, with dim,(E)=2—s and such
that the only accumulation point of E is the origin, as well as an analytic
function f defined in C\ E with | f'(z)| = C dist(z, E)* for all z € D\ E such
that f does not extend to an analytic function defined in D.

We begin with the function f(z) =z !, which is analytic in the punctured
disc. Note first that for s =2 it suffices to set £ ={0}. Hence we may assume
0 <s<2. We construct our set E as a sequence accumulating at the origin
so that

| f(2)|=|z|?= Cdist(z, E)~*

for all ze D\E. To ensure this inequality, we set 7; , = 2774 k2725 for j=
1,2, ... and all positive integers k <2/?/~Y and then define

E={0}U{r; ;exp(2! /" Dixi}: k and 1 <2/357D, j=1,2,...}.
A simple calculation verifies that
dist(z, E) < C|z|*”,

and the desired growth condition for | f’(z)| follows. Moreover, E is a count-
able, compact subset of D and has the origin as its only accumulation point,
and the restriction of f to C\ E does not extend to a function analytic in D.

We are left with the estimate on the Minkowski dimension of E£. Given a
small r >0, pick m =1 such that 27"~ !<r <2~ Then
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U B(z;r) CB(0,27™2)U A,

zeE
where

A=U(B(rj p exp(2! /@5 Vizi}; 27™): k and I < 2/C5D, j < ms/2).

Hence
U B(z;r)|< 727" 4+x272m S 22Cs=D< Cq27ms,
zeE j=<ms/2
Therefore dim,(E) <2 —s by [MV, 3.1}, as desired. Cl

It is perhaps worthwhile to point out that we have proved a somewhat
stronger result than indicated in Theorems A and B. Indeed, our estimates
show that instead of the condition on the Minkowski dimension it suffices to
assume that

S dist(z, K) *dxdy <o (5)
V\K

for some neighborhood V of K for each compact KC E. The measure esti-
mates in the proof of Theorem B then show that the exponent —s is critical.

The proof of Theorem C is now immediate from Theorems A and B
and the following well-known lemma. The latter characterization is a conse-
quence of a theorem of Hardy and Littlewood [HL, pp. 426-427], and the
first characterization can be found, for example, in [AG] or in [CG, p. 693].

2.4. LEMMmA. Let U be a proper subdomain of C, and suppose that f is
analytic in U. Then f belongs to BMO(U) if and only if there is a constant
C such that

| f'(z)| =< C dist(z, U ) ™!
in U. Moreover, f belongs to locLip,(U) if and only if
| f(z)| =< Cdist(z, dU)*" L.

2.5. Proor oF THEOREM C. Observe that dim,,(E£) <1 ensures that
HY(E) =0, and, in particular, that H(Re E) = H(ImE) = 0. Hence the
claim follows from Theorems A and B and Lemma 2.4. ]

The careful reader notices that we could now state a refined version of Theo-
rem C in the spirit of the aforementioned classical results. Applying Lemma
2.4 and the reasoning preceding it, we see that we could replace the use of
the Minkowski dimension with the convergence of the integral in (5) for
s=lands=1—a.

Finally, we comment on the assumption H!(Re E) = HY(Im E) =0.

2.6. REMARK. Theorems A, B, and C do not, in general, hold without
some assumption on Re £ and Im E when dim,,(E) =1. To see this, notice
that for a line segment E, dim,,(E) = dimg(E) =1; hence such a set £ may
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separate GG, and the removability of E fails even for analytic functions which
are piecewise constant functions in G\ E.

The situation is not any better if, in addition, we require G\ E to be con-
nected. A counterexample is provided by the analytic function f(z) =z 2,
z € (B(0,2)\B(0, )\ E, where E is the interval from 1 to 2 on the real axis.

3. Quasiregular Mappings

Recently we established removability theorems for quasiregular mappings
belonging to locLip,(G\E) in a joint paper [KM] with O. Martio; quali-
tatively, part of Theorem C is a special case of our previous work. It should
be noted that the method of [KM] fails to give the sharp bounds of Theorem
C and does not apply to the case of quasiregular mappings in BMO(G\E).
Recent remarkable results of Iwaniec [Iw], (see Theorem 3.1 below) allow
us now to produce a removability theorem for quasiregular mappings in
BMO(G\E).
Recall that a continuous mapping f: G—R” is K-quasiregular if fe
Wnl,loc(G) and
max| f’(x)h|< K min| f'(x)h| (6)
|h|=1 |h|=1
holds for almost every x € D. Here f € W,,1 10c(G) means that the coordinate
functions of f belong to the local Sobolev space W,} 10c(G), and f’(x) denotes
the formal derivative of f. For the properties of quasiregular mappings, see
[BI] or [Re].
We begin by recording Theorem 3 of [Iw].

3.1. TueoreM [Iw]. For each K, n, there exists an exponent p = p(K, n)<
n such that if fe W;, 10c(@) satisfies (6) then f coincides a.e. in G with a K-
quasiregular mapping of G.

Let E be a relatively closed subset of a domain £ CR”. We prove the fol-
lowing.

3.2. THEOREM. Suppose that [ is K-quasiregular in G\E and that [e€
BMO(G\E). There exists 0<A=A(K,n)<n—1 such that if dimy(E)<A
then f extends to a K-quasiregular mapping of G.

The proof of Theorem 3.2 mimics the proof of [KM, 3.11].

Proof of Theorem 3.2. Observe first from Theorem 3.1, the ACL-charac-
terization of Sobolev functions [Re, p. 20], and the argument of the proof
of Theorem B that it suffices to construct for each x € E a neighborhood V'
of x with

S |f7|P dm < o,
V\E

where p is the exponent from Theorem 3.1.
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Fix a cube Q e W, where W= {Q} is the Whitney decomposition of G\ E
into closed cubes with pairwise disjoint interiors; see [St, p. 16]. Then the
edge length /(Q) of Q is 277 for some integer j, and

Vvn2~/ < dist(Q, EU(R"\G)) =Vn22~/,

Now we use our assumption ¥ € BMO(G\E). As is well known, the John-
Nirenberg lemma yields that

(QH™" SQ'|f—fQ'|ndm =C

for each cube Q’'C G\ E, where fo.=/(Q")™" §Q' Jfdm and C; is independent
of Q’. In particular, this estimate holds for Q’=3Q whenever Q € W. Since
fis quasiregular in G\ E, we infer from the Caccioppoli-type inequality

SQ| f'dm= C21(Q)‘”S |f=fagl*dm
30
in [BI, 6.1] or in [Re, p. 299] that, for each Qe W,
S |f7|"dm = C;s
10

for some constant C; independent of Q. From the Holder inequality we
conclude that

Sgl f'|Pdm=cpfman-pi, (7)

Next, for any fixed x € E and any 0 < r <Vn/2, we have that /(Q) <1/2 for
each cube Q e W with QN B(x; r) + 4, and thus for each such x, r
o N
[ rrams3 3| (r1vam @
B(x;r\E J=1k=1YQj
where each Qj; is of edge length 27/ and Nj is the number of the cubes
Qjr € W that intersect B(x; r). Now fix 0 <r <min{d(x, dG)/2, Vn/2}. Then
[MYV, 3.9] yields .
N;=C2M, j=1,2,... (9)

for any A’ > dim,(E) for some C; independent of j. Combining (7)-(9), we
obtain

S |f/|Pdm=Cs 3 20 +P=n)
B(x;r\E ji=1

where Cs = C#’"C,. The claim follows with the choice A(n, K)=n—p. O

3.3. REMARK. Iwaniec [Iw] has proved that for each K, n there exists a
A >0 such that compact sets £ C G of Hausdorff dimension not exceeding
A are removable for bounded K-quasiregular mappings of G\ E. It follows
from his argument that the same conclusion holds for K-quasiregular map-
pings that are of bounded mean oscillation in G. Nevertheless, one can ap-
ply the argument of the proof of Theorem B to show that, for each n, the
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correct dimension for the study of removability for quasiregular mappings
in BMO(G\E) is the Minkowski dimension.

Added in proof. Riihentaus (Removable singularities for Bloch and normal
JSunctions, to appear in Czechoslov. Math. J.) has recently established re-
sults related to Theorem C.
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