The Infinite Nielsen Kernels of Some
Bordered Riemann Surfaces

CLIFFORD J. EARLE

To Lipman Bers

1. Introduction

Let X be a Riemann surface of finite type (p, n, m), with m1 =1. That means
X can be conformally embedded in a closed Riemann surface Y of genus p
so that Y\ X consists of m=1 disjoint closed disks and »=0 additional
points, called the punctures of X. There is a unique bordered Riemann sur-
face X whose interior is X and whose border B is the union of m disjoint
simple loops C;, called the boundary loops of X.

Suppose X has negative Euler characteristic:

e(X)=2—2p+n+m)<0. (1.1)

Then each boundary loop C; is freely homotopic in X to a unique simple
closed Poincaré geodesic C; in X, and Cf and Cy, are disjoint if j # k. (These
geodesics are defined using the complete Poincaré metric of curvature —1
on X, which puts the boundary loops C; at infinite distance.) The Nielsen
kernel of X is the interior N(X) of the bordered Riemann surface obtained
from X by removing the m annuli bounded by the pairs of freely homotopic
loops C; and Cj, 1< j<m.

Viewed as a Riemann surface in its own right, N(X) has the same finite
type (p, n, m) as X. We can therefore iterate the construction above, form-
ing the nested sequence of Riemann surfaces

N X)) =NIN (X)) CNF X)) SN (X)=NX)C X, k=1.

Bers [2] suggested an investigation of the set

N=(X)= N N (X),
k=1
called the infinite Nielsen kernel of X. That is a hard problem. The first prog-
ress was made by Wason [11] and Halpern [5; 6]. They compared lengths
and distances of certain closed geodesics on X and N(X), and studied the
effect of iteration. Their results suggest that N (X)) is a rather thin set. That
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is indeed the case. Cao [3] has recently proved that N *(X) has no interior
points. However, more precise information remains elusive.

In this paper we compute N *(X) explicitly in a number of cases. In these
cases N*(X) turns out to be a 1-dimensional spine consisting of geodesic
arcs. Our method is to use two standard tools that have not previously been
applied to N(X). One is the annular covering surface (see [8] or [9]) asso-
ciated to a given boundary loop of X. The other is Hadamard’s three-circle
theorem. These tools provide a new characterization of N*(X), stated in
Section 3 as Theorem 1. They also provide new information about the size
of N(X), stated and proved in Section 8 as Theorem 2. Theorem 1 can be
applied directly to find N®(X) in some cases. We state the simplest appli-
cations as corollaries of Theorem 1 in Section 3. Proposition 1 in the same
section allows us to determine many additional infinite Nielsen kernels by
judicious use of branched covering maps between Riemann surfaces. The
examples in Section 4 illustrate how this technique works.

To make our methods as flexible as possible, we have used Riemann sur-
faces with orbifold structures. The facts we need about finite bordered orbi-
folds and their Nielsen kernels are reviewed in Sections 2 and 5. Section 7
introduces the annular covering surfaces, and the remainder of the paper
contains the proofs of our results.

We discovered the Riemann surface version of Theorem 1 in 1990 and
presented some applications in an Institut Mittag-Leffler technical report
[4], which is superseded by this paper. A number of people have helped us
make our applications of the theorem more systematic and effective. We are
especially grateful to John Smillie for suggesting that more examples could
be obtained by using Proposition 1 and to Mika Seppéla for helping to de-
termine the form of the orbifolds in Corollaries 1 and 2. These special orbi-
folds are the basic building blocks for all our examples.

2. Finite Bordered Orbifolds and Their Nielsen Kernels

In this section we shall define the infinite Nielsen kernel of a finite bordered
Riemann surface that has an appropriate orbifold structure. When there
are no orbifold points our definition will agree with the one given in the
introduction. The general theory of orbifolds is developed in Chapter 13
of Thurston’s notes [10]. We shall review some basic facts and definitions,
confining ourselves to the case when the underlying topological space is a
Riemann surface.

For our purposes an orbifold structure on the Riemann surface X is a
function ¢ on X such that u(x) is a positive integer for every x in X and the
set {xeX; u(x)>1} is discrete. The points where p(x)>1 are called the
orbifold points of X. An orbifold is a Riemann surface with an orbifold
structure. The orbifold consisting of the Riemann surface X with orbifold
structure p will be denoted by (X, u), or simply by X if it is clear what orbi-
fold structure we have in mind.
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If (X, u) is an orbifold and Y is a subregion of X, the open suborbifold Y
is defined in the obvious way: the Riemann surface structure on Y is the one
it inherits from X, and the orbifold structure is the restriction of x to Y.

By definition, an orbifold covering map f: (X, u;) = (X3, n3) is a holo-
morphic map f of X; onto X, such that f is topologically a branched cover-
ing map and, for each x in X, the multiplicity of f at x is u,(f(x))/un1(x).
Thus f has no branch points if u,(f(x))=p(x) for all x. The maximum
cardinality of a fiber f~!(x) for x in X, is attained at every non-orbifold
point of X, and is called the degree of f.

The orbifolds (X, ;) and (X5, p;) are isomorphic if and only if there is
an orbifold covering map f: (X, u1) — (X5, py) of degree 1; such an f is
called an isomorphism. Two orbifold covering maps f;: (X, u;) = (X, n),
i=1,2, are equivalent if and only if there is an isomorphism ¢: (Xj, u1) =
(X3, p2) such that frep = f;.

Let G be a group of holomorphic automorphisms of a Riemann sur-
face Y. If G acts properly discontinuously on Y, the quotient space Y/G has
a unique Riemann surface structure that makes the quotient map f: Y - Y/G
holomorphic. The standard orbifold structure on Y/G is defined by putting
p(f(»)) equal to the order of the group {g € G; g(y) =y} for every y in Y.
By definition the quotient orbifold Y/G is the Riemann surface Y/G with
this standard orbifold structure.

If W is a G-invariant subregion of Y, then the quotient orbifold W/G is
an open suborbifold of Y/G. Moreover, if H is any subgroup of G, the
natural map of Y/H onto Y/G is an orbifold covering map. If Y is simply
connected, then every orbifold covering of Y/G is equivalent to one of the
above type. In particular, up to equivalence, a given orbifold (X, u) has at
most one orbifold covering by a simply connected Riemann surface with no
orbifold points (see Chapter 13 of [10]).

By definition, a finite bordered orbifold is one that is isomorphic to a
quotient orbifold A/T", where A is the open unit disk in C, I' is a finitely gen-
erated Fuchsian group acting on A, and the limit set L(I") is a Cantor set
in the unit circle S!. Equivalently (see Theorem 10.4.2 of [1] or Chapter 13
of [10]), (X, p) is a finite bordered orbifold if and only if the Riemann sur-
face X has finite type (p, n, m), m=1, the number of orbifold points is
finite, and

2p—2+n+m+ E(I—L>>O. (2.1)
xeX p(x)
Observe that (2.1) reduces to (1.1) if there are no orbifold points.

The Nielsen kernel of the finite bordered orbifold (X, u) is the open sub-
orbifold N(X, u) defined as follows. Let f be an isomorphism of a quotient
orbifold A/T" onto (X, x). Since L(I") is a Cantor set, A has a unique smallest
nonempty I'-invariant open subset that is convex with respect to Poincaré
geodesics (see Theorem 8.5.2 of [1]). That set is called the Nielsen region
N(T') of T". The quotient orbifold N(I'})/I" is an open suborbifold of A/T..
Its image under the isomorphism f is the Nielsen kernel N(X, u).
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The Riemann surface N(X, n) has the same finite type as X and contains
all the orbifold points of (X, n) (see Section 5), so we can form the Nielsen
kernel of the orbifold N(X, 1) and go on to form the nested sequence of
open suborbifolds

N*HU(X, ) = N(N¥(X, p)) C N¥(X, p) CNY(X, p) = N(X, 1) C (X, p),

k=1, each of which is an open subset of X (with the orbifold structure de-
fined by restricting ). The intersection of these subsets is the infinite Nielsen
kernel

oo

N®(X,p) = quk(X’ R).

REMARK. According to our definition, some finite bordered Riemann sur-
faces with no orbifold points (the unit disk, the punctured unit disk, and
the annuli) do not qualify as finite bordered orbifolds since they do not sat-
isfy (2.1). Our finite bordered orbifolds are the ones that carry a hyperbolic
structure such that the boundary loops are geodesics. It would be more pre-
cise to call them hyperbolic finite bordered orbifolds, but we preferred a
shorter name.

3. The Main Results

Our main theorem characterizes N *(X, u) by a certain minimality condi-
tion. The set N*(X, u) has properties (3.1) through (3.4) listed below, and
any proper closed subset must fail to have property (3.2), (3.3), or (3.4).

Recall that if (X, u) is a finite bordered orbifold, the Riemann surface X
has finite type (p, n, m) and a border B consisting of the disjoint simple
boundary loops C;, 1 = j <m.

THEOREM 1. The infinite Nielsen kernel of the finite bordered orbifold (X, p)
is the unique closed subset F C X that has the following four properties:

(3.1) FCNXX,p) forall k=1;

(3.2) F contains every orbifold point;

(3.3) for each boundary loop C;, there is a unique doubly connected
component V(C;) of X \F that has C; as one of its boundary
components;

(3.4) the map C;~V(C;) from the boundary loops of X to the
components of X\ F is bijective.

Theorem 1 has the following easy corollaries, which we shall prove in Sec-
tion 10.

CoRrROLLARY 1. Let X=A\{z,,...,2,}, n=0. Suppose the orbifold points
and the points z;, 1< j=<n, all lie on the real axis. Let E be the smallest
closed interval that contains all these points. Then N®(X,p)=XNE.
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Note that condition (2.1) insures that £ is a nontrivial closed interval. If a
and b are real numbers with 0 <a < b, we put

A(a,b)={zeC;a<|z|<b}.

COROLLARY 2. Choose any number r>1 and let X = A(r =, r)\{z}, ..., Zn}»

n = 0. Suppose the orbifold points and the points z; all lie on the unit circle
St Then N®(X,p)=XNSL

Our further applications of Theorem 1 rely on the following proposition,
which is essentially a restatement of the well known fact that if a subgroup
I'; has finite index in a Fuchsian group I',, then I'; and I'; have the same
limit sets and Nielsen regions. Its relevance to the problem of finding infinite
Nielsen kernels was brought to our attention by John Smillie.

ProrosiTioN 1.  Let f: (X, u) — (Y, v) be an orbifold covering map between
the finite bordered orbifolds (X, p) and (Y, v). Suppose the degree of f is
finite. Then for all x in X we have

(3.5) f(x)eN(Y, ) if and only if xe N(X, n), and
(3.6) f(x)eN®(,v) if and only if xe N®(X, pn).

The examples in the next section illustrate how to use Proposition 1 and
Corollary 1 to find a number of infinite Nielsen kernels.

REMARK. Two Fuchsian groups I'; and I'; are said to be commensurable if
the intersection I'y NI, has finite index in both of them. Let the finite bor-
dered orbifolds A/T*; and A/I', be defined by commensurable groups. If
we know N®(A/T'}) we can find N*(A/I',) by applying Proposition 1 to
the natural maps A/(I';NI',) > A/TY, i=1,2. Corollaries 1 and 2 provide
us with groups I' for which N®(A/T") is known, so we can find N*(A/I')
whenever I'’ is commensurable with one of these groups I'. These orbifolds
A/T" are the only ones whose infinite Nielsen kernels we have been able to
compute.

4. Some Examples

We offer four examples of Riemann surfaces X whose infinite Nielsen ker-
nels are found by using the results from Section 3. In each example we regard
X as a finite bordered orbifold with the trivial orbifold structure u(x)=1,
and we find an orbifold covering map between X and an orbifold whose
infinite Nielsen kernel we already know.

ExaMPLE 1. Let X be a pair of pants whose three boundary loops are inter-
changeable. To be concrete, put w = exp(2#i/3), choose r in the open interval
(1, 2),.and let X be the Riemann sphere with the three disjoint closed disks
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Figure 1

(zeC;lz—row/f’=r*-1}, j=1,2,3,

deleted (see Figure 1). Let G be the cyclic group of order 3 generated by the
rotation z— wz. The quotient orbifold X/G is a simply connected bordered
Riemann surface with two orbifold points (corresponding to the points 0
and oo in X'). The involution 2+~ Z of X induces a conjugate holomorphic
involution ¢ of X/G. The fixed point set of ¢ is a connected 1-dimensional
submanifold M of X/G, containing both orbifold points. Corollary 1 of
Theorem 1 tells us that N°(X/G) is the closed interval I in M joining the
two orbifold points, and Proposition 1 tells us that N°(X) is the inverse
image of I under the quotient map X — X/G. That inverse image consists of
the points 0 and oo, the negative real axis, and its images under G, as shown
in Figure 1.

ExampirE 2. Let X be the Riemann surface of type (2, 0, 1) shown in Figure
2. We assume that the reflection ¢; in the plane of the figure and the reflec-
tion ¢, in the orthogonal plane through the horizontal axis are conjugate
holomorphic involutions of X. The composite ¢;°¢, is the rotation of order
2 about the horizontal axis; let G be the group of order 2 that it generates.
The orbifold X/G is again a simply connected bordered Riemann surface,
with five orbifold points corresponding to the fixed points of ¢,°¢,. There-
flections ¢; and ¢, of X cover the same conjugate holomorphic involution ¢

Figure 2
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of X/G. Its fixed point set is again a 1-dimensional submanifold M contain-
ing all the orbifold points. Let I be the closed interval in M that joins the
orbifold points that correspond to the points x; and x5 in Figure 2. Since 7
contains all the orbifold points, Corollary 1 again tells us that N®(X/G)
equals 7, so N®(X) is again the inverse image of 7 under the quotient map
X — X/G. This time that inverse image is the union of the four simple loops
labelled a, b, ¢, and d in Figure 2.

ExampLE 3. Next we find N*(Y) for a Riemann surface Y that is a 2-fold
unbranched covering of the pairs of pants X in Example 1. Explicitly, we
set Y=y ~}(X), where y is the rational function
¢ 2+
VO =

Since ¥: Y — X has no branch points it is an orbifold covering map (with
respect to the trivial orbifold structures on X and Y'), so Proposition 1 tells
us that N°(Y) = ¢ (N> (X)). The boundary of the plane region Y consists
of four disjoint ovals, and the subset N°(Y) is shown in Figure 3.

€ CU{oo].

Figure 3

ExampLE 4. The Riemann surface X in Example 1 is mapped onto itself by
f(z) =1/z. The rational function ¢({) in Example 3 satisfies the identity

Y(1/8) = S(Y(E).

Therefore the transformation g(¢) =1/¢ is a holomorphic automorphism
of Y=y ~1(X). Let G be the group of order two that it generates. The quo-
tient W =Y/G is a pair of pants, and there are no orbifold points since g({)
has no fixed points in Y. By Proposition 1, N*(W) is the image of N°(Y)
under the quotient map. Figure 4 shows W and N ®(W). It is interesting to
observe that the infinite Nielsen kernels of the pairs of pants in Figures 1 and
4 are nonisomorphic graphs, each with two vertices and three edges.
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Figure 4 '

ReEMARK. For the simplest applications of Proposition 1, we choose a Rie-
mann surface X and a subgroup G of its group of holomorphic automor-
phisms so that Corollary 1 or 2 can be used to find N*(X/G). Examples 1
and 2 are both of that form. Example 3 is more sophisticated. The orbifold
covering maps Y — X in Example 3 and X — X/G in Example 1 can be com-
posed to produce an orbifold covering map Y — X/G of degree 4. That cov-
ering map can be used to obtain N*(Y') directly from N*(X/G), but it is
not defined by a group of automorphisms of Y. Example 4 carries us still
further. The pair of pants W is a quotient orbifold of Y, so we can find
N=(W), but W itself does not cover any orbifolds to which Corollary 1 or 2
can be applied. We are forced to apply Proposition 1 twice, first to find
N=(Y), then N*(W).

Let I' be a Fuchsian group such that the quotient orbifold A/T" is iso-
morphic to the orbifold X/G in Example 1. Then I has a normal subgroup
I'; such that X = A/T"; and a subgroup I',, not normal, such that Y =A/T",.
But the best we can do for W is to find a Fuchsian group I'; so that W=
A/F3 and FﬂI‘3 =P2.

5. The Structure of N(X, p)

We shall need more precise information about the Nielsen kernel N(X, u)
and Nielsen region N(I'). The facts we need are summarized in this section,
which draws together some remarks from the opening paragraphs of Sec-
tions 8.5 and 10.4 of [1].

ProrosiTiON 2 (see [1]). The Nielsen kernel of the finite bordered orbi-
fold (X, u) contains every orbifold point. The complement of N(X, ) in
X has finitely many components, one for each boundary loop. The interior
of the component W(C;) corresponding to C; is an annulus. The boundary
of W(C;) in X is an analytic simple loop Cj, and its boundary in XUB
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is C;UC;. Moreover, C; and Cj are freely isotopic in the closed annulus
W(C;)UC;, and they each generate its fundamental group.

Here is a sketch of the proof (following [1]). We may assume that (X, x) is a
quotient orbifold A/T', so that N(X, u) is the quotient orbifold N(I')/T". We
need a more explicit description of the Nielsen region N(I'), or rather of its
complement in A.

The limit set L(I") is a Cantor set in S, so its complement in S! is the
union of countably many mutually disjoint open arcs «;. Let «/ be the Poin-
caré geodesic with the same endpoints as «;, and let H; be the closed Poin-
caré half-plane bounded by «; and «;. (Since by definition H; is a closed sub-
set of A, it contains «; but not «; or its endpoints.) The sets H; are mutually
disjoint; their union is a I'-invariant subset F(I') of A. Any compact set in
A intersects only a finite number of the H;, so F(I') is closed in A and its
connected components are the sets H; (since each H; is both open and closed
in F(I')). The complementary set A\ F(I') is the Nielsen region N(T").

The components of the complement of N(I')/T" in A/T" are the images of
the sets H; under the quotient map

m: AUS\L(I) = (AU(S'\LI)))/T.
Now w(H;) = H;/T';, where T} is the group
i={yeliv(H)=H}={yel';y(a;) = o;}.

Each group I} is infinite cyclic because the sets 7(«;) = «;/T; are the bound-
ary loops of X. It follows easily that the complement of N(I')/T" has the re-
quired form.

As for the orbifold points, they are the images under 7 of the elliptic
fixed points of I". No elliptic fixed point can belong to a set H;, for ify in I
fixes z in H; then v belongs to I';, so v is the identity. Thus, every elliptic
fixed point belongs to N(I'), as required.

REMARK. It is obvious that the Riemann surface obtained from X by re-
moving the sets W(C;) has the same finite type as X.

6. Proof of Proposition 1

The description of N(I') in Section 5 reduces Proposition 1 to a triviality.
Choose isomorphisms ¢: A/I' > (X, u) and Y: A/T"—(Y,v)sothat I" is a
subgroup of I'” and y ~!o fo¢ is the natural map of A/T" onto A/T". Since f
has finite degree, the index of I in I'’ is finite. Therefore the limit sets L(I")
and L(I'’) are equal, so F(I') and F(I'’) consist of exactly the same closed
half-planes H;, and N(I') = N(I'’).

To deduce (3.5) we observe that N(Y, v) = y(N(I'')/T), N(X,p) =
e(N(T)/T), and N(I') = N(I'’), which is I'’-invariant.

Finally, (3.6) is a simple consequence of (3.5), for (3.5) implies that the
restriction of f defines an orbifold covering map f: N(X, n) = N(Y, »), still
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of finite degree. We can therefore proceed inductively to prove that for every
x in X and every positive integer &,

f(x)eN¥(Y,») ifandonlyif xeNX(X,p).

Statement (3.6) follows at once. O

7. The Annular Covering Associated with a
Boundary Loop

Given a finite bordered orbifold (X, ) and a boundary loop C; of X, we
shall define an orbifold covering of (X, p) by an annulus Q(C;). (If there
are no orbifold points, ®(C;) is one of the annular covering surfaces con-
sidered in [8] and [9].) Our definition will involve some choices, but differ-
ent choices will obviously produce an equivalent covering. First we choose
an isomorphism ¢: A/T" — (X, n). According to Section 5, the component
of X\ N(X, p) that corresponds to C; has the form W(C;) = ¢(H;/T;), where
H; is a closed Poincaré half-plane and I'; is the subgroup of I" that stabilizes
a component «; of S\ L(I"). In addition, the boundary loop o;/T; of A/T
corresponds under ¢ to the loop C;.

By definition @(C;) = A/I}, and the orbifold covering f: Q(Cj) = (X, p)
is ¢om;, where m;: A/T; > A/T is the natural map. Observe that the restric-
tion of f to H;/TI'; is a homeomorphism onto W(C;).

We shall need to represent @(C;) explicitly in the form A(a, b).

ProposiTiON 3. The covering surface Q(C;) is isomorphic to an annulus
A(1, p?). The isomorphism can be so chosen that the induced orbifold cover-
ing map A(1, p?) - (X, p) maps {{€C;1< |¢| < p} homeomorphically onto
wW(Cy)).

Proof. We merely need to map A/I'; isomorphically to A(l, p?) so that
H;/T; maps onto the prescribed subset. First we map A conformally onto
the upper half-plane U so that «; goes to the positive real axis and H; goes
to {z € U; Re(z) = 0}. Under this conformal map I'; becomes the infinite cy-
clic group generated by the transformation z+— az for some a>1. Put p=
exp(72/loga). The function

¢(z) =exp(—2nilogz/loga),

with 0 < arg z < 7 in U, maps U onto A(l, p?) and induces an isomorphism of
U/T; onto A(1, p?). This isomorphism maps H;/T; onto {{ € C;1<|¢| < p},
as required. L]

8. Proof of a Theorem

We can obtain useful information about the size and the location of the
components of X\ N(X, u) by combining Proposition 3 with the classical
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three-circle theorem of Hadamard (see Theorems 18.3.2 and 18.3.4 in [7]).
As usual, W(C;) is the component that corresponds to the boundary loop C;.

THEOREM 2. Let (X, p) be a finite bordered orbifold, and let
[TAr L)X

be a holomorphic map with a continuous extension that maps the outer
boundary loop of A(r~\,r) homeomorphically onto C;. Suppose that the
multiplicity of f at z is a multiple of u(f(z)) for every z in A(r =, r). Then
S(AQ, r)) CW(C)).

Proof. Let Q(Cy) = A(1, p?) be the annular covering surface determined by
the boundary loop C;. Proposition 3 implies that the orbifold covering map
72 A(l, p2) = (X, p) has a continuous extension that maps the unit circle
homeomorphically onto C;.

By hypothesis, the given map f: A(r !, r) - X lifts to the covering space
@(C;). This means that there is a holomorphic map g: A(r =}, r) > A(1, p?)
such that f=meg and g maps the circle {z; |z| = r} homeomorphically onto
the unit circle. Define

M(t) = max{|g(2)|; |z| =1}

for r ! <t <r, and extend the function M(¢) to the closed interval [r 7L, r]
by continuity. Then M(r)=1, M(r~!)<p?, and Hadamard’s three-circle
theorem gives the inequality

1 2
logud)l ( >10g07)+40g( )10g1}<10gp
if 1 <t <r. Therefore |g(z)] <p when1<|z|<r, so g(A(1, r)) C A(1, p) and

S(A(L, r)) Cw(A(, p)) CW(C))
as required. ' O

logM(t) <

9. Proof of Theorem 1

We shall prove first that /=N “(X, n) has the stated properties. Property
(3.1) is obvious, and (3.2) is an immediate consequence of Proposition 2,
since an easy induction argument shows that N¥(X, u) contains all the orbi-
fold points for every positive integer k.

Given any boundary loop C; and positive integer %, let Wk be the com-
ponent of X\ N¥(X, u) that contams W(C;), and let V" be 1ts interior. For
fixed j, induction on k£ shows that each V-k is an annulus bounded by C; and
a simple loop Cf in X, that W} =V}UC; k CV/*1 and that the fundamental
group of V¥ is generated by C Lif k= 2. For fixed k, the sets Wf, 1< j<m,
are d13101nt and their union is X \N*(X, w.

Now put

vecy=Uvi=Uwt, 1=sj=m.
k=1 k=1
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The sets V*(C;) are clearly disjoint, open, and connected. Their union is
X\N%(X, p). In addition V' *(C;) contains W(C;), and le generates its fun-
damental group, so (3.3) and (3.4) hold. Finally, since its complement is
open, N*(X, p) is closed.

Now suppose, conversely, that the closed set F has properties (3.1) through
(3.4). Let V;=V(C;) be the component of X\F that corresponds to the
boundary loop C;. Since FCN%(X, u), the set V*(C;) defined above is
contained in V;. We must prove that V;=V*=(C;) or, equivalently, that
ViNN*(X, p) is empty.

By hypothesis, there is a (bijective) conformal map ¢ from a plane region

={{eCa<|{|<B}, O0=a<B=ox,

onto V;. Our first objective is to show that o >0 and 8 < . Once again let
Q(C;) = A1, p2) be the annular covering surface determined by C;. Since V;
contains no orbifold points and CIC V;, we can lift Y to a holomorphlc
map ¢:Q— A(l, p?) that contains the circle {we C; |w|=p} in its image.
Choose any positive numbers @ and b so that o <a < b <. The restricted
map ¢: A(a, b) - A(1, p?) is homotopically nontrivial, so the annulus theo-
rem (see Corollary 1 of Lemma 3 in [8]) implies that @ =15 < p2. We conclude
that a 718 < p?, s0 0 < o and 8 < ». We may therefore take Q to be an annu-
lus A(1, R), and we may assume that the outer boundary loop of A(1,R)
corresponds under ¥ to the loop C;. Put

Ry=sup{|¢|; Bey {NK(X,n))), k=1

Clearly, 1< R, .1 <Ry <R if k=1, and it suffices to prove that R, —1 as
k — oo,

Fix k= 1. As above, let W/ =V*UC/ be the component of X\ N*(X, u)
that contains W(C;). Observe that Wk C V; and that VAW = N¥(X, p) NV;.
In particular, N "(X p)NV;is an annulus, one of whose boundary compo-
nents is the loop C;". k Let fk map the annulus A(r; !, ry) conformally onto
N¥X, 1) NV; so that the outer boundary loop corresponds to C

Let hk_d’ fk A(rk ,rk)—>A(1 R), put

M(t) =max{|h(2)|; |z]| =1}

for rk“ '<t<ry, and again extend the function M(¢) to be continuous on
[r7 Y, ry]. This time M(r7') =1 and M(r;) < Ry, so the three-circle theorem
says that |hk(z)| <R}?if |z|=1.

Now Cf is a boundary loop of N*(X, u), and Theorem 2 (with N*(X, n)
in the role of X') says that

Sie(AW, 1)) CVANR (X, ).
Therefore
V((2)) = fir(z) € N*TU(X, p) if |z]>1,
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so if Y(hi(z)) e N¥F1(X, u) then |z| <1 and |4, (z)| < R}/*. We conclude that
Ry1<R}?, for ¢y "{NF*TY(X, p)) is a subset of Y “{(N*(X, p)), which is the
image of h;. It follows that R, — 1 as k — oo, as required. (1

10. Proof of the Corollaries

Let (X, 1) be one of the given orbifolds, and let X’ be the complement of the
set of orbifold points in X. There is a conjugate holomorphic involution
p: X — X (defined by p(z)=7Z in Corollary 1 and by p(z) =1/Z in Corollary
2) that fixes every orbifold point. The involution p maps X’ onto itself, and
its fixed point set in X’ has finitely many components. Each of them is an
open arc or interval whose endpoints are orbifold points, punctures of X,
or points on the border B. Let F’ be the union of the components with no
endpoints on B, and let F be the union of 7’ and the orbifold points. We are
to prove that F= N (X, pn), using Theorem 1.

It is obvious that F is closed in X and satisfies (3.2), and the given form
of (X, n) makes (3.3) and (3.4) equally obvious. We must verify condition
(3.1). Since every orbifold point belongs to N*(X, ), all we need to prove
is that F’ is contained in N*(X, p) for all k=1. We shall start by proving
that F'C N(X, p).

Choose an isomorphism f from a quotient orbifold A/T" onto (X, ), and
compose the natural map A—A/T" with f to obtain an orbifold covering
map w: A— (X, u). Let 8 be a component of F’, and let « be a component
of #7!(B) in A. Since the involution p fixes every orbifold point, it can be
lifted to a conjugate holomorphic involution o: A — A that fixes o pointwise.
The fixed point set of ¢ is a Poincaré geodesic L in A, and « is a component
of the set LN A/, where A’ (= n~!(X")) is the complement of the set of ellip-
tic fixed points of I in A.

We claim that « is contained in the Nielsen region N(I'). If not, then
some point Z, on « lies in one of the closed Poincaré half-planes H; defined
in Section 5. Since H; C A', at least one of the two rays from z; along L is
contained in «. If such a ray enters the interior of H;, then it terminates at a
point of S'\ L(I"), so its image in X terminates at a point of B. That is im-
possible since 8 C F’. We are forced to conclude that « lies along the bound-
ary geodesic of H;, which must therefore be the fixed point set L of the invo-
lution ¢. But that too is impossible, for A would then be the union of H; and
o(H;), and the only limit points of the group I' would be the two endpoints
of L. Thus o« C N(T'), as we claimed, so 8 (and hence F’) is contained in
N(X, ).

Next we shall prove that the involution p maps N(X, x) onto itself. Equiv-
alently, ¢ maps N(I") onto itself. To see this we observe that ooyeo~! T for
all ¥ in I". Therefore ¢ maps L(I") onto itself. Since ¢ is a Poincaré isometry,
the collection of half-planes H; is mapped onto itself. Hence so is the com-
plementary set N(TI').
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It follows at once by induction that p maps N*(X, p) onto itself and that
F'C N**l(x, p) for all k= 1. This completes the proof. O
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