Weakly and Strongly Outer Functions
on the Bidisc

RAYMOND CHENG

0. Introduction

In previous work [1], certain classes of analytic functions on the bidisc were
shown to arise naturally in connection with a problem in prediction theory.
These were dubbed “weakly outer” and “strongly outer” functions, for it was
demonstrated that a regular stationary field has the so-called weak (strong)
commutation property if and only if its spectral density is the squared mod-
ulus of a weakly (strongly) outer function of the Hardy space H 2. Further
applications to prediction were given.

In the present article, the related function theory is explored. We shall
see that weakly and strongly outer functions exhibit some properties of the
usual outer functions. Indeed, it turns out that, within this context, many
of the classical one-variable results have multivariate analogues. Among
these are Beurling’s theorem, the Riesz factorization, and Szeg®’s infimum.

1. Preliminaries

Let D be the unit disc in the complex plane C, and let T be the unit circle. For
d=1or 2, g; denotes normalized Lebesgue measure on T<. We are concerned
with the Nevanlinna class N,(D9) as well as the Hardy classes H?(DY) of
analytic functions on D (see [3] and [7]). Such a function is associated with
its radial limit function on T¥?. For convenience, the same letter will be used
for both, and corresponding spaces will be identified. The symbol * indicates
a Fourier coefficient, and C, represents the Cauchy kernel. Thus, for d =2
and fe LY(T?),

f(m, n) — Sf(eis, eit)e—ims—int doz(e"s, e”);
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A function f in N,(T?) is said to be outer, we recall, if log| f(0)| =
§log| f| doy; in this case, f(z) =exp [(2C,—1)log|f|do,;. When d =1, a key
element in understanding the H”(D) spaces is the following.

BEURLING’S THEOREM. Letl<p<ooand fe HP(D). Then the (closed)
span in H?(D) of {2"f(2):2=0,1,2,...} is all of HP(D) if and only if f is
outer.

The analogous statement for d >1 is false, however. In the interests of re-
storing symmetry, let us consider the following definition.

1.1. DEFINITION. Let1=<p<oo, and fe H?(D?). The function f is said
to be strongly outer in HP(D?) if the span in H?(D?) of {z{"z}f(z1,2,):
m=0, n=0} is all of H?(D?).

The dependence of the defining condition on p is a major weakness; in par-
ticular, it is not clear how to extend the notion of strong outerness to all of
N,(T?). In this respect, one finds an improvement in the next definition.

1.2. DEFINITION. A function fe N,(T?) is said to be weakly outer if

(i) f(-,e™) is outer in N,(T) for almost every fixed e”;
(i) f(e’,-) is outer in N,(T) for almost every fixed e’.

The remaining sections are devoted to studying the behavior of these classes
of functions, and exhibiting some applications.

2. Elementary Properties

First, let us note that the words “weakly” and “strongly” are not ill-chosen
in Definitions 1.1 and 1.2; that is, we have the following proposition.

2.1. PROPOSITION. Lef 1< p<o and fe N.(T?).

(i) If fis strongly outer in HP(T?), then f is outer.
(ii) If f is outer, then f is weakly outer.

Proof. (i) This is the assertion of Rudin [7, Thm. 4.4.6]. (ii) See Soltani
[8, Lemma 1.3]. O

Moreover, as the examples that follow illustrate, both of the inclusions im-
plied by Proposition 2.1 are proper.

2.2. EXAMPLES. Let f(z1,2,)=2z{"+«az5, where m and n are positive
integers and || =1. Then f is weakly outer, as can be verified by inspection.
Moreover, f has zeros in the bidisc, and hence fails to be outer.

More generally, let j, and j, be inner functions on D, and put g(z;, 25) =
J1(zg) +j2(z2). For almost every fixed e, g(-,e’) takes values in a half-
plane and hence is outer; similarly, g(e”, -) is outer for almost every fixed e’.
Therefore g is weakly outer. Such g typically have zeros and fail to be outer.
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2.3. EXAMPLE. The bounded analytic function e?1+22+2)/(z1+22-2) ig gyt-
er, but for all p, 1 < p < o, it fails to be strongly outer in H?(T?). (For p=2
this is [7, 4.4.8(b)]; a straightforward modification of this argument yields
the general claim.)

2.4. EXAMPLE [7,4.4.9]. Letl<p<owand feH?(D?).If f=g¥ where
k is a positive integer and g is an analytic function with positive real part,
then f is strongly outer in H?(D?).

Although the condition for strong outerness depends on the parameter p, it
respects the inclusion relationship among the H?(T?) spaces, as the follow-
ing proposition shows.

2.5. PROPOSITION. If1< p < and f is strongly outer in HP(T?), then
forallr, 1<r<p, fisstrongly outer in H'(T?).

Proof. As ¢ varies over analytic polynomials,
inf|1+ ¢f], <inf]1+¢f],=0.

Let us turn to algebraic considerations. Recall that if f and g are outer, then
fg is outer and 1/f is outer. These easily carry over to the weakly outer case.

2.6. PROPOSITION.

(i) If f and g are weakly outer, then fg is weakly outer.
(ii) If f is weakly outer and 1/f € N,(T?), then 1/f is weakly outer.

Strong versions hold as well, each necessarily dependent on the parameters
p of the HP(T?) spaces involved.

2.7. PROPOSIT‘ION. Supposethat 1< p<oo, l1<sg<oo,and 1/p+1/qg=<1.
If fis strongly outer in HP(T?) and g is strongly outer in HY(T?), then fg s
strongly outer in H'(T?), where 1/r=1/p+1/q.

Proof. Let € > 0. There exists an analytic polynomial ¢, such that |1+ ¢, f], <
e¢/2. There exists an analytic polynomial ¢, such that

[1-drglg<e-27 1+ ] f1p) 7"
So now
inf[1+fg|, <1+, /d2¢],
=1+ ¢S], +]¢1/(d28—1)],
=[1+¢1flp+ o1 Spld28— 14
<e. il

2.8. PROPOSITION. Suppose that 1= p<o, l=sg=<oo, and 1/p+1/q<
1. If fe HP(T?) and f ~'e HY(T?), then f is strongly outer in H'(T?2), where
1/r=1/p+1/q.
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Proof. inf|1+ ¢f], <inf(| f|,|/~'—#|,), where each infimum is taken
over analytic polynomials ¢. For finite g, such ¢ are dense in H9(T?), hence
the infimum is zero. For g =, we can choose ¢, converging to f ~! bound-
edly almost everywhere, so that (f ~'—¢,,).f converges to zero in H'(T?). In
either case, we find that f is strongly outer in H"(T?). [l

It is known that outer functions enjoy the following integral representation:
A function fe N,(D?) is outer and only if

f(z)=exp S(zcz-l)cb da,,

where & is a real integrable function on T2, and ®(m, n) = 0 whenever mn <
0. In this case, ® =log| f|. Weakly outer functions, on the other hand, admit
the following structural characterization.

2.9. THEOREM. Let fe N.(T?). Then (A) fis weakly outer if and only if
(B) f(es,ei)=a(e’s) g(e’, eit)h(e’, e~i), where
(i) g(e”,e') and h(e”, e') are outer;

(ii) (log|h| )" (m, n) =0 whenever mn < 0;

(iii) a(e®) is unimodular;

@iv) h(e’:S,ef’)/a(efs)h(efs,ei‘)=b(e"') for some unimodular function

b(e").

Moreover, the representation in (B) is unique.

Proof. In any case, log| f| e L(T?, ¢,), and so we can define
8(zy,z7) =exp S(ZCZ—I) log| f| do,.

Note that g is outer, log|g|e L1(T?, g,), and (log|g|)*(m, n) =0 if mn<0.
Moreover, (log| f|)"(m, n) = (log|g|)"(m, n) whenever mn=0.

If f is weakly outer, then so is f/g. By construction, (log| f/g|)"(m,n)=0
whenever mn=0. Hence c,,,= (log| f/g|)"(m, —n) are the Fourier coeffi-
cients of log| 4|, for some outer function 4. This produces g and # satisfying
(i), (ii), and the condition | f(e*, e™)|=|g(e™, e")||h(e®, e~ )|.

Since f/g is weakly outer, the univariate outer functions f(-, e)/g(-, e)
and A(-, e™) differ by a constant unimodular factor for almost every fixed
e’, Similarly, f(e®, -)/g(e’, -) and h(-, e—) are so related. That is,

f(eis’ eit) — ) . f(eis, eit)
—_— Y = h iS’ i d = . <
g(els’elt) b(e ) (e € ) an g(els’ elf)
for some univariate unimodular functions @ and b. Thus (iii) and (iv) hold,

and f has the stated representation. Uniqueness is evident.
Conversely, let f have the form in (B). Then

fle®,eMy=a(e")g(e™, e")h(e™, e~

is outer in the variable e for almost every e’s; and

=a(e®)h(e®, e~y
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f(eis, eit) — b(e—ft)g(efs, eit)h(eis, e—it)
is outer in e” for almost every e”. Therefore, f is weakly outer. O

2.10. EXAMPLE. Consider the weakly outer function F(e”, e) = e+ e".
In this case, f(e®s,ei)=a(es)g(e’, et)h(e’s, ey, where a(e’s)=e¥,
g(e®,e)y=2, and h(e®,e )= 1(1+e"e). Note that 4 is outer and that
h(eis,eit)/a(e’s) h(e’s, ei') = ei’, a unimodular function of e,

Such a description of strongly outer functions has not been found. A neces-
sary condition, however, is provided by the following, a straightforward
extension of [7, 4.4.8(a)].

2.11. PROPOSITION. If f is strongly outer in HP(T?) for some p, 1<
p<oo, then f(+1¢, 1+ 1¢) is outer (as a function of ).

3. Other Developments

The original appearance of weakly and strongly outer functions was in a
prediction problem [1]. The main result is quoted below as an introduction
to further ramifications.

We begin by considering the space L?(u), where 1 < p <ooand p is a finite
Borel measure on T2. Every subset S of Z? generates a natural subspace of
LP(p): we define ££(S) to be the span of femstint: (m n)e S}). (If pis not
specified, it is understood to be ¢,.) Of particular interest are the “right half-
plane” R={(m, n)e Z?: m=0} and the “top half-plane” T = {(m, n) e Z*:
n=0]}. If p=2then LP(u) is a Hilbert space, and each £5(S) is the range of
a projection operator P(S).

3.1. DEFINITION. The space L%(p) is regular if Ni-qe™™- £2(R) = (0)
and N_ge™: L2(T)=(0). The space L*(u) has the weak commutation
property if P(R) commutes with P(T). The space L2(u) has the strong
commutation property if it has the weak commutation property and, in
addition, it satisfies £ﬁ(R)ﬂ£ﬁ(T)=£ﬁ(RﬂT). (See [6] for further ex-
ploration of these notions.)

3.2. THEOREM [1]. L*(p) is regular and has the weak (strong) commuta-
tion property if and only if du=|f|*da,, where f is a weakly (strongly)
outer function in H*(T?).

An immediate consequence of Theorem 3.2 is a sort of Riesz factorization
for H?(T?).

3.3. PROPOSITION. Let fe H*(T?). Then f has a factorization f= gh,
where g is strongly outer in H*(T?) and h is inner, if and only if the space
L*(| f|?do,) has the strong commutation property.



104 RAYMOND CHENG

Proof. If the factorization exists, then | f|?=|g|?. Since g is strongly outer
in H*(T?), L?*(|g|*do,) has the strong commutation property, and hence
so does L%(| f|* da).

Since f e N,(T?), the logarithm of | f| is integrable, which implies that
L2(| f|® do) is regular. If, in addition, L%(| f|* do,) has the strong commu-
tation property, then | f|>=|g|? for some strongly outer g in H?(T?). Since
g is outer, the function 4 = f/g belongs to N,(T?). Since 4 is unimodular as
well, it is inner. C

This proposition does not generalize to L?(u) with p # 2, for then the Hil-
bert space methods do not apply. But other general descriptions of weak
and strong outerness can be obtained, however. The next lemma brings in
the spaces £2(-).

3.4. LEMMA. Let 1<p<o and fe £P(R). Then f(-,e™) is outer in
Hf’(T)_ Sor almost every fixed e if and only if the span M in £P(R) of
{eims+inl f(o!S oy:m=>0, ne Z} is all of £P(R).

Proof. Necessity can be established as a simple modification of Cheng |1,
Lemma 2.2], which treats the case p=2.

For sufficiency, suppose that f(-, e”) fails to be outer in H?(T?) for each
e’ in a set A of positive measure. Consider

e=infS|1+qbf|pd02.

where- the infimum is taken over trigonometric polynomials ¢ of £7(R).
For e’ fixed, put

(e’ =inf |[1+y(e™) f(e™, e)|P doy(e™),

where (e’?) varies over analytic (univariate) polynomials. By Beurling’s
theorem, e(e’’) >0 for all e’ € A.

Now e(e'’) is obviously a bounded function. It is also measurable: The set
{e': e(e') > a} can be written N_ {e’: [|1+ ¢, () f(e®, e)|P da,(e!?) >
a}, where {y,},= is the collection of analytic polynomials with complex
rational coefficients.

Finally, observe that

GZSA e(e’!) do;> 0,

and hence M fails to be all of £LP(R). O

It follows that weakly outerness has the following Beurling-type character-
ization.

3.5. THEOREM. Letl<p<owand fe HP(T?). Then fis weakly outer if
and only if
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(i) the span of {e"™ i f(e’s e'): (m,n) e R} in £P(R) is all of £P(R),
and
(ii) the span of {e™S*" f(e®, e™): (m,n)e T} in £P(T) is all of £P(T).

This, in turn, can be restated in terms of spaces of the form L7(-). A strong
version exists as well.

3.6. THEOREM. Let1<p<o, fe H?(T?), and du=|f|? do,. Then
(i) f is weakly outer if and only if £P(R)= f-LL(R) and L£X(T) =
S LUT);
(ii) fis strongly outer if and only if HP(T?) = f-LL(RNT).

3.7. EXAMPLE. Consider again the weakly outer function f(e”,e")=

e”+e’, and put d_p=|f|2d02. For 0<r<1, the function (re”+e")~'=

e " YR o(—re“e ") lies in £LP(R). As r increases to 1,

2__ 1—-r
1+r

Hence £P(R) = f-LP(R). Similarly, £(T)=f-LX(T).

elS_l_elt

reis+eit 0.

The next assertion is, in a sense, a partial extension of Theorem 3.2 to the
case of arbitrary p, with “weak commutation” assumed. It also gives the
extent to which strong outerness is more restrictive than weak outerness,
namely, through condition (ii).

3.8. THEOREM. Lefl1<p<oo, fe HP(T?), and du=|f|Pda,. Then fis
strongly outer in HP(T?) if and only if

(1) fis weakly outer, and
(it) LER)NELXT)=LLURNT).

Proof. If f is strongly outer in H”(T?), then f is weakly outer, that is, (i)
holds. Thus

SELRYNLE(T)) = f- SLR)N f+ LL(T)
= LP(RYNLP(T)
=LP(RNT)
= HP(T?).
Now by strong outerness H”(T?) = f- £2(RNT), yielding (ii).
If (i) and (ii) hold, then
S-L2RNT)=f-LURYN f- LLT)
= LP(R)YNLA(T)
= HP(T?).
Therefore, f is strongly outer. ]
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We now turn to a number of extremal problems. The first is to find the least-
squares error in estimating 1 by a vector in e'™s. JB&(R). This N-step predic-
tion error formula resembles its univariate analogue (see [4, §10.9]) and is a
consequence of Lemma 3.4.

3.9. PROPOSITION. Let w(e’,e") be a nqnnegati_ve integrable funct‘_ion
on T?, and define dp = wda,. If {log w(e'?, e") do,(e®) > — a.e. [0, ()],
then '

N-1 _ _
inf(l1+ 132 pe el SR = 3 [hn(e"P doe™, N=1,2,3,..,
m=
where, with
is it . 1 re+re” i0 it i
h(e , € )=11mexpigwlogw(e , € )d01(€ ),

r—1
we define

h,(e'") = Sh(em’ eifye =m0 dg (e'?).

Proof. If logw(-,e") is integrable a.e. [0, (e”)], then k and each &, do
indeed exist as shown. Note that A(-, e?) is outer in H*(T) a.e. [a, (e')],
and |h[>=w a.e. [0,]. It follows that #- £2(R) = £2(R), and hence

inf{|1+¢|22,,: ¢ € 2{V- L2(R)) = inf{| i+ ho|2: ¢ € 2]V S2R))

=inf{|h+®|%: ® e z{'- L4(R))

N-—l . .
=y Slhm(e‘eﬂzdo](e’o). O

m=0

Secondly, Theorem 3.6 makes possible these weak and strong versions of
Szegd’s infimum for H?(T?).

3.10. THEOREM. Let1<p<oo, fe H’(T?), and du=|f|? do,.
(1) If fis weakly outer, then

mf{gn F2ibit2abol? dps by and by € SE(R)N £,‘Z(T)} =10, 0)]".
(i) If f is strongly outer in HP(T?), then
inf U]l +2101+2202|P dp: ¢y and ¢, are analyticpolynomials}

=1/(0, 0 =exp | log|f|7 dos.

Proof. 1n either case, [|1+2,¢,+2,¢,5|P du={|f+z,¢f+22¢, /| do,. If
f is weakly outer, we can estimate f(0,0)— f(z;,2,) by functions of the
form z,¢, f+2z,¢, f. Hence the infimum in (i) is not greater than | f(0, 0)(.
On the other hand,
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p

SIf+Zl¢1f+Zz¢2f|p doy= S(f+21¢1f+zz¢2f) do,

=|/(0,0)/7,
yielding (i). The case (ii) is treated similarly. ]

We close with a prediction problem with d =2, analogous to the work of
Ibragimov and Solev [5] in which d = 1. Accordingly, let us define P,
P,, Q,, and Q, to be the orthogonal projection operators of L(x) onto
LAR)NLXT), LAR)YNLXT®), LXRNT), and L2(R°NT*), respectively.
We consider the traces of the products P; P, P; and Q;Q0,Q, to be measures
of linear dependence between the respective associated pairs of spaces. In
[5], the existence of such a trace was termed a “complete regularity” condi-
tion, and exact criteria in terms of u were found. For the present situation
we have the following theorem.

3.11. THEOREM. Let fe HXT?) and dp=|f|*do,. Suppose that f is
weakly (strongly) outer. Then the trace of PP, P, (Q,0,Q,) is finite if and

only if
S S KD U, k)< oo
Jj=1k=1

Proof. The trace of P; P, P, is given by
E <P1P2P1(f—leijs+ikt), f_leijs+ikt)L2(#)

(/,kyeRNT

= 3 (P, flelstikl polgiistikey o
(j,k)eRNT #

— 2 <F7 D (f/f)'\(m-—j, n_k)eims+int,f—leijs+ikt> ‘
(J,k)eRNT (m,n)e R°NTC L(p)

= X )y [(f/f) (m—j,n—k)
(/,kK)eRNT (m,n)eR°NTEC - _ o

.<|f|2f—letms+mt’f—leus+tkt>L2(02)]
= X > SN (G—mk—n)]?

(j,k)eRNT (m,n)e R°NTC

=¥ X JkIS) U R
j=1k=1
The second equality is established with the help of [1, Lemma 2.4], using the

weak outerness assumption. The strong case can be proved in a similar way.
1

Theorem 3.11 asserts that complete regularity holds if and only if associated
coefficients satisfy a weighted square-summability condition. This condi-
tion is a restriction on the “argument” of f, and hence on log| f|. In particu-
lar, this suggests that if do = w dpu,, where w is bounded away from zero and
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infinity, then complete regularity would be equivalent to a similar condition
on the Fourier coefficients of w. This is indeed the case.

3.12. THEOREM. Let du=wdo,, where 0<k,<w(e”,e')<k,< . For
any subsets U and V of Z2, let 7(U, V') be the trace of P(U)P(V)P(U). Then

kErU VY Y 3 Wa_glP=ki-7(U, V).
aelU fBeV

Note that no factorization assumption on w is made: the role played by the
outerness of f in Theorem 3.11 is here taken by the boundedness of log w.
Accordingly, the proof of Theorem 3.12 is more elementary. The argument
below is simplified from [2, VI. 6].

To begin, let us identify L2(s,) and /2(Z?) in the usual way, and treat
operators as matrices acting on /2(Z?). Similarly, we shall identify L2(n)
with a weighted sequence space. To do this, let multiplication by w in /2(Z?)
have the block structure

A B*
b cl

with respect to /2(U)@/%(V). Note that A and C are positive, and a Neu-
mann series argument shows that they are invertible. For o € Z?, write e, =
e'15ti%2! Then we have the next lemma.

3.13. LEMMA. The matrices for P(UYP(V) and P(V)P(U) are A~'B*
and C ~'B, respectively.

Proof. Let P be the matrix for P(V)P(U). For all «e U and peV,
([1-PWV)P(U)le,, e,»12(,)=0,

geV

Bap—< D [P(V)P(U)]m,e,,,ep>L2( =0,
#)

B—-CP=0,
P=C'B.
The other case is similar. ]

Now if A~Y2is the positive square root of 47!, then {A~2%e_ ]}, .y is an

orthonormal basis for £ﬁ(U ) (identified as /2(U) with the inner product
(A, +, )32y, Hence

(U, V)= I AA[PWU)PV)PWU)A %, A2,

aelU

= 3 (AA7B*}(C7B) A 2e,, A7 )2y,

aelU

— — 2
= ¥ |Cc7?BA ]/zeauzz(v)

aclU

=|C~2BA™"2|3
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Finally,
|C~2BA™ 123 |C VR B3| AT
Sklz' 2 z |w¢x-—6|2;
celU BeV
EU 3EV|WQ—;3|2= |BI3
gE €
: <|C??|C 2 BA 23] AV
<k3-7(U V).
This verifies Theorem 3.12. L

3.14. COROLLARY. Let dp = wda,, where 0 < k; < w(e”,e") < k, < .
Let Q,and Q, be the orthogonal projection operators of L(zﬂ) onto L(Zu)(R NT)
and L(Zy)(Rcﬂ TC), respectively. Then the trace of Q1Q,Q, is finite if and

only if

f—

w

o0 O . 2
> > mn|wy,|* <.

m=1n=1
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