Interpolating Sets in the
Maximal Ideal Space of H®
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1. Introduction

Let H* denote the algebra of all bounded analytic functions on the open
unit disc D. Let (z,,) be a sequence of points in D. We shall call (z,,) an inter-
polating sequence if, for each bounded sequence of complex numbers (w,),
there exists a function fe H* such that f(z,)=w, for every ne N. Let
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We call é the separating constant of (z,). Carleson’s theorem [2] states that
a sequence (z,) in D is an interpolating sequence if and only if its separating
constant 6 fulfills 6> 0. The purpose of this paper is to study a natural gen-
eralization of this interpolation problem. Let M(H*) denote the maximal
ideal space of H®, that is, the space of all complex homomorphisms of 7%,
provided with the Gelfand topology. The corona theorem states that D is
dense in M(H®). For fe H®, its Gelfand transform f is a continuous func-
tion on M (H*) which extends f. When it cannot cause any confusion we will
usually omit the distinction between a function and its Gelfand transform.
As usual, the pseudohyperbolic distance p(m,, m,) for m,, mye M(H™) is
defined by

p(my, my) =supf| f(m))|: fe H, | flo=1, f(m;)=0}.
Let me M(H®). The set
Pm)y={me M(H®): p(m,m’) <1}

is called the Gleason part of m. If P(m) contains at least two points, i is
called a nontrivial point.

NOTATION. We will denote the set of all nontrivial points by G.
For EC M(H®), let C(E) denote the set of all continuous functions on E.
To generalize the interpolating problem we introduce the following concept.
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DEFINITION. Let EC M(H®) be a closed set. We shall call E an interpo-
lating set if for each function fe C(FE) there exists a function g e H* such
that the restriction g|gz=f.

One of the earliest results on interpolating sets in M(H*) is the following
one due to Homer, Colwell, and Earl [8].

THEOREM 1.1. Lef (z,) be a sequence of distinct points in D. Define E to
be the closure of {z,: ne N} in the Gelfand topology of M(H®); that is,
E={z,:neN]}. Then E is an interpolating set if and only if (z,) is an inter-
polating sequence.

By using a well-known theorem due to Hoffman [7, p. 101, Thm. 5.5] which
states that the point m e M(H ) belongs to the closure of an interpolating
sequence (z,) if and only if m e G, we immediately obtain the result that
every interpolating set £ of the form E ={z,: ne N} is contained in G. Of
course, every closed subset of E is also an interpolating set. The main result
of this paper is that these sets describe all the interpolating sets in G. An
important tool in our proofs will be the Blaschke products

B(z) = ﬁ z_J (Zj—z>

=11z \1-%2

associated with interpolating sequences (z,). These are commonly called
interpolating Blaschke products. We set 6(B) =0, where 6 is the separat-
ing constant of (z,). Let Z(f) denote the zero set in M(H*) of a function
Je H®. Then we have the following well-known results.

LEMMA 1.2 (cf. Garnett [4, p. 379, Lemma 3.3]). Let B be aﬁ interpolat-
ing Blaschke product with the zero sequence (z,). Then Z(B) ={z,: ne N}.

LEMMA 1.3. The product BB, of two interpolating Blaschke products
B, and B, is interpolating if and only if Z(B;)NZ(B,) =40.

Proof. Let (a,) and (b,) be the zero sequences of B; and B,, respectively.
First assume that B,B,is interpolating. By solving the interpolation problem
Sfla,)=0, f(b,)=1 we see that {a,: ne N}N{b,: ne N}=0. With Lemma
1.2 we obtain Z(B{) N Z(B,) =@. We will now prove the converse direc-
tion. By compactness of Z(B,) we see that there is p > 0 such that |B|(x)|=
p>0 for all xe Z(B,). Hence for every y € Z(B;) and every x € Z(B,) we
have

p(x,y)=sup{|f(x)|: fe H®, | flo=1, f(¥)=0}=|Bi(x)|=p.

In particular, we have p(a,, b,,) =p for all n,me N. By Lemma 2 in [9,
p. 338], it follows that BB, is interpolating. ]
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2. Totally Disconnected Sets in G
We need some topological results concerning interpolating sets in G.

DEFINITION. Let EC G. If there exists p > 0 such that p(x, y) > p for all
x,yeE (x#y), we will say E is p-separated.

The following well-known lemma is an easy consequence of the open map-
ping theorem.

LEMMA 2.1. Every interpolating set E is p-separated.
The aim of this section is to prove the following theorem.

THEOREM 2.2. Let ECG be a closed p-separated set. Then E is toally
disconnected (in the Gelfand topology).

To prove this theorem we first need some lemmas.

LEMMA 2.3 (Hoffman [7, pp. 86, 106}). Lef w>0. For every ¢>0 there
exists 6 > 0 depending on e and w such that

) {me M(H%): |B(mm)|<8}C{me M(H®): p(m, Z(B)) <€)
JSor every interpolating Blaschke product B with §(B) = w.

LEMMA 2.4. Let EC G be a closed p-separated set and let B be an interpo-
lating Blaschke product. Then there exists o > 0 with the following property.
Let E,={xe E:|B(x)|<a}. Then there exists a homeomorphism ®: E,—
®(E,) C Z(B) with ®(x)=x for every xe E,NZ(B).

Proof. Since Z(B) is an interpolating set, it is 7-separated by Lemma 2.1.
Hence we may assume that £ and Z(B) are p-separated. By Lemma 2.3
there is 6 > 0 such that

()  (meM(H®): [B(m)| <8} C{me M(H®): p(m, Z(B)) < p/3].

Let0<o<éanddefine E,={xe E: |B(x)| < o}. If E,=0then there is noth-
ing to do. Otherwise, by (3) for every x € E, there exists y € Z(B) such that
p(x,y) < p/3. The point y is unique because Z(B) is p-separated. Hence we
have a mapping ®: E, - Z(B) with p(x, ®(x)) < p/3 for every xe E,. Since
E, is p-separated, ®: E,— ®(E,) is bijective. We claim that ® is a homeo-
morphism. Let x, be a net in E, converging to x. We want to show that
lim, ®(x,) =®(x). Let xg be an arbitrary subnet of x,. Since Z(B) is com-
pact, there is a subnet x, of xz such that ®(x,) converges; its limit y is a
point in Z(B). Since p(x,, ®(x,)) < p/3 for all vy, by the lower semi-continuity
of p we have that p(x, y) <p/3. This means that lim, ®(x,) =y =3(x).
Therefore every subnet ®(x;z) of ®(x,) contains a subnet $( X,) converging
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to ®(x). Hence lim, ®(x,) = ®(x) and ® is continuous. Since E, is compact,
the image ®(K) of every closed set K C E, is closed. Thus &~ !is continuous.
O

Now we are able to prove Theorem 2.2.

Proof of Theorem 2.2. Let E be a closed p-separated subset of G. We must
show that E is totally disconnected. To do this let a € E and W C E be an open
neighbourhood of a. We must prove that there is an open and closed subset V'
of E such that a e V. C W. Because a € G, there exists an interpolating Blaschke
product B that satisfies B(a) =0. Applying Lemma 2.4 we get 6 >0 and a
homeomorphism &: E, - ®(E,) C Z(B), where E, = {x € E: |B(x)| < o}.
Since «a is an interior point of E, with respect to the topology of E, we may
assume that W C E . Observe now that Z(B) is totally disconnected because
it is homeomorphic to the Stone-Cé&ch compactification BN of N, which is
totally disconnected by [5, p. 96, 6M.1]. Therefore there exists a subset U
of ®(W) which is open and closed in ®(E,) and contains @ = ®(a). Hence
V=®&"Y(U) is open and closed in E, and ae V. Since VC WC E, and W is
open and E | is closed in E, we conclude that V is open and closed with re-
spect to the topology of E. L]

By Lemma 2.1 we may apply Theorem 2.2 to interpolating sets in G. Hence
we obtain the corollary.

COROLLARY 2.5. Every interpolating set E C G is totally disconnected.

3. Interpolating Sets in G

We want to characterize the interpolating sets in G. [zuchi [9, p. 338, Thm. 1]
has shown the following result. Let E be an interpolating set of the form E =
Z(f)\D with fe H*. Then there exists an interpolating Blaschke product B
with

4) Z(B)\D =E.

We want to obtain a similar result without the hypothesis E = Z( f)\ D. Note
that (4) implies E C G; hence all interpolating sets characterized by Izuchi
fulfill EC G. We choose therefore E C G as an hypothesis. This will lead to
the following result (Theorem 3.3): Every interpolating set £ C G is a closed
subset of the zero set of an interpolating Blaschke product B.

DEFINITION. Let EC M(H®). The hull h(E) of E is defined by
E)= (O Z(f).

feH®™
Z(f)DE

Let I(E)={fe H*: f|p=0}. By a well-known general result (see, e.g., [10,
p. 174, Thm. 7.3.1(iv)]) the maximal ideal space M of the factor algebra
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H*/I(E) is homeomorphic to #(E). If E is an interpolating set we know
that H*/I(E) is isomorphic to C(E). Therefore M is homeomorphic to E.
Now it is easy to see the following lemma.

LEMMA 3.1. If E is an interpolating set then h(E)=E.

DEFINITION. Let x be a zero of fe H®. The supremum of all ne N for
which there exists a factorization f=/f,f5--- f, (fre H®) with fi(x)=0
for k=1,...,nis called the order of this zero.

THEOREM 3.2. Let E be closed and h(E) C G. Then there exist finitely many
interpolating Blaschke products By, B,, ..., B, such that Z(B,--- B,) D E.

Theorem 3.2 is a corollary of a more general result of Tolokonnikov [11,
p- 94, Thm. 2]. We will, however, present a different proof of Theorem 3.2.

Proof. Let xe€ E. Define
IE)={feH: f|;=0}.

There is a function fe I(E) that has a zero of finite order at x, because
otherwise we would have P(x) C h(E)C G by Lemma 1.2 in [4, p. 403]. But
by a result due to Budde [1, p. 11, Cor. 2.10] there is no part P with PCG.
We factorize f in f'= B,S, F, where By is a Blaschke product, S, a singular
inner function, and F an outer function. Because S WF does not vanish on D,
we have for every n e N the factorization

S,F=</S,F -+ ~/S,F.
Hence every zero of S, F in M(H ) is of infinite order. This shows S, F(x) # 0
and B;(x)=0. By Hoffman [7, p. 100, Thm. 5.3] there is an interpolating
Blaschke product B, such that B,= B, B and B;(x)=0, where B, s is a
Blaschke product (this is trivial for x € D). By repeating this factorization, we

obtain interpolating Blaschke products By, ..., B, such that B,= By ,-B,--- B,
and By(x)=---=B,(x)=0and By ,# 0. We now have

f=Bs,S,FBy--- B,.

Since By ,S,F(x)#0 we can choose an open neighbourhood Uy of x,
where By, S, F does not vanish. We obtain

ENU,CZ(f)NU,=Z(B,--- B,)NU,C Z(B, -+ B,).

For every x € E we get a neighbourhood U, and finitely many interpolating
Blaschke products with this property. Since E is compact, there are finitely
many neighbourhoods U, ..., Uy which cover E. Therefore there are finitely
many interpolating Blaschke products whose zero sets also cover E. [l

I thank Raymond Mortini for showing to me the factorization argument
that is used in this proof.
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It is not possible to find a bound for the number of interpolating Blaschke
products in this theorem. This will be shown by the following remark.

REMARK. Let NeN and let (z,) be an interpolating sequence with the
separating constant 6. Let

K,={zeD: p(z,z,)<r,}

be a sequence of discs, where the radius sequence (r,) tends to zero. We
suppose that

&) r,<6/3 forall neN.
In every disc K, we choose N different points wy ,,...,Wy. ,. Let
E={w; ,:kefl,...,N},neN].

Then we have h(E) C G, and it is not possible to cover E by the union of
zero sets of N—1 interpolating Blaschke products.

Proof. By Lemma 5.3 in Garnett [4, p. 310] and condition (5), we see that
the sequences (w; ,), ..., (Wy,,) are interpolating. Hence the hull of the set
(Wi, neN} is a subset of G for k=1,..., N and consequently #(E) C G.
Suppose that there are N—1 interpolating Blaschke products By, ..., By_;
such that £ C Z(B,--- By_;). Then there exists p > 0 such that each of the
sets Z(B,),..., Z(Bn_;) is p-separated. If nye N is large enough, we con-
clude that r,,< p/2. From this it is clear that each interpolating Blaschke
product B, (k=1,..., N—1) has at most one zero in K,,O. But ENK,, has N
elements, which is a contradiction. ]

It is possible to reduce the number of interpolating Blaschke products in
Theorem 3.2 under the additional assumption that E is an interpolating set.
This leads to a characterization of the interpolating sets in G, which is the
main result of this paper.

THEOREM 3.3. Let ECG. Then the following statements are equivalent.

(1) E is an interpolating set.
(ii) E'is a closed subset of the zero set of an interpolating Blaschke product.

To prove this theorem we need the following lemma.

LEMMA 3.4. Let B;and B, be two interpolating Blaschke products and let
F=Z(B,)\Z(B,). Then there exist disjoint sets A, A,,... such that F=
Ux=1Ay. These sets are open and closed in Z(B,).

Proof. Let E,={xe Z(B,): |B(x)|=1/n}. Then F=Uj_, E,. Since Z(B5)
is homeomorphic to the Stone-Céch compactification SN of N, Z(B,) is
extremally disconnected [5, p. 96, 6M.1]; this means that the closure of every
open subset of Z(B,) is open in Z(B,). Hence the interior E; of the closed
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sets E,, is open and closed in Z(B,). Observing that E,C E} ;, we see that
A,=E; \Ey (n=1,2,...) are the desired sets. L]

Now we are able to prove Theorem 3.3.

Proof of Theorem 3.3. The zero set Z(B) of an interpolating Blaschke prod-
uct B is an interpolating set. If E is a closed subset of Z(B), it is easy to see
by the Tietze extension theorem that E is interpolating. Hence (ii) implies
(i). The nontrivial direction is the converse. Let £ C G be an interpolating
set. By Lemma 2.1 there is p > 0 such that E is p-separated. We want to con-
struct an interpolating Blaschke product B with Z(B)DE.

Step 1. We show in the first step the existence of B using the additional
assumption that there are two interpolating Blaschke products B, B, with
Z(B,)UZ(B,) DE. Since Z(B,;), Z(B,) and E are interpolating sets we may
assume that they are p-separated. Let E,=FE\Z(B,) and E,= E\Z(B,). We
claim E;N E,=#. Applying Lemma 2.4 we get ¢ > 0 and a homeomorphism
&: Z(B)),— ®(Z(B,),) C Z(B,), where Z(B)),= {x € Z(B,;): | B,(x)| < ¢}. By
construction we have p(x, ®(x))=<p/3 for every xe Z(B,),. Since E,C
Z(B,) it is clear that the closure of E,\ Z(B,), is disjoint to E,. Hence we
may assume that E,C Z(B,),. Let xe E, and y € E,. Since E is p-separated
we observe that p(®(x),y) = p(x,y)— p(x, P(x))=p—p/3. Therefore we
have that

(6) P(E)VNE,=8.

Define F= Z(B,)\ Z(B,;). Since exactly the points in Z(B;)N Z(B,) are
invariant by &, we get

@) S(E)=FNO(ENZ(By)).
Clearly,
®) E,=FNE.

Choose, according to Lemma 3.4, sets A; such that F=U¥_; A;. By (6)
the sets A,N®(E;) and A, N E, are disjoint. We obtain from (7) and (8)
that A,N®(E)=A,NP(ENZ(By)) and A, N E,= A, NE are closed. Since
Z(B,) is totally disconnected, we can choose a partition of A, into disjoint
(in Z(B,)) open and closed sets A ; and Ay ,, with A;,=A4; ;UA, , and
A NS(E)C Ay yand A, NE,C Ay . Consequently,

P(E)= U ANS(E)C U Ay,
k=1 k=1
and

E,= U AyNE,C U Ay 5.
k=1 k=1

The sets A,y and A; , are disjoint for k, j € N. Since Z(B,) is extremally
disconnected we obtain
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U AN U A ,=0.
k=1 k=1

Hence
) S(E)NE,=0.

Assume now that there exists x € E; N E,. Then we have x € Z(B,) N Z(B,).
This yields x = ®(x). Since ¥ is a homeomorphism we have

x=®(x)e P(E)),

which contradicts (9). This proves our claim E;NE,=4.

We are now able to construct the interpolating Blaschke product we are
looking for. By Corollary 2.5 we know that E is totally disconnected. Hence
there are disjoint open and closed sets H;, H,C E such that HHUH,=F
and E,C H,, E,C H,. Since H,, H, are also closed in M(H*) there are (in
M(H™)) open sets U,, U, with

(10) UDH, U,DH, and UNU,=0.

Let b, be the interpolating Blaschke product whose zero sequence consists
of the points of the zero sequence of B, that lie in U;ND. Construct b,
analogously with B, and U,. Then by Lemma 1.2 we have Z(b,)N Z(b,) =
@. Hence by Lemma 1.3 the Blaschke product B = b, b, is interpolating. The
set H, is disjoint from E,=FE\Z(B;). Hence H,C Z(b,;) and analogously
H,C Z(b,). Consequently, Z(B)yD HHUH,=E.

Step 2. Now we show the general case. By Lemma 3.1 we have A(E) =
ECG. Hence by Theorem 3.2 we have interpolating Blaschke products
By, ..., B, such that

(11) Z(B,--- B,) DE.

Clearly, Z(B,B,) D EN Z(B,B,). By Step 1 there is an interpolating Blaschke
product b such that Z(b) D EN Z(B;B,). Doing the same with bB;, it is
possible to reduce successively the number of interpolating Blaschke prod-
ucts in (11) until one is left. 0l

An analysis of the proof of the implication (i) = (ii) shows that we did not
need the hypothesis that F is interpolating. In fact, we proved the follow-
ing: Let £ be a closed, p-separated, and totally disconnected subset of G
such that #(E)C G. Then EC Z(B), where B is an interpolating Blaschke
product. On the other hand, it follows by Theorem 2.2 that any closed, p-
separated set E C G is indeed totally disconnected. Hence we obtain the fol-
lowing corollary.

COROLLARY 3.5. Let ECM(H®) be a closed and p-separated set and let
h(E)CG. Then E is an interpolating set.

If (z,) is an interpolating sequence and (w,) € /[, then (by a result due to
Earl [3]) there is a constant ¢ € C and an interpolating Blaschke product B
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such that ¢B(z,) = w,, for all ne N. So it is possible to solve the interpolation
problem by a multiple of an interpolating Blaschke product. As a corollary
of Theorem 3.3 we get a characterization of the interpolating sets E for
which the interpolation problem f |z =g for ge C(F) is also solvable by a
multiple of an interpolating Blaschke product B. We will show that these are
the sets which we characterized in Theorem 3.3.

COROLLARY 3.6. Let E be an interpolating set that contains at least two
points. Then the interpolation problem

(12) fle=g

is solvable for every ge C(E) by f=cB, where B is an interpolating Blaschke
product and ¢ a complex number, if and only EC G.

Proof. Let E¢ G. In other words, there is x€ E\G. Let ge C(E) such that
g(x)=0 but g=0. Since no interpolating Blaschke product vanishes out-
side G, there is no solution of (12) such that f=cB.

Now let ECG. Let ge C(E) be arbitrary. By Theorem 3.3 there is an
interpolating sequence (z,) in D such that

(13) EC{z,: neN}.

By the Tietze extension theorem it is possible to extend g continuously to
{z,,: ne NJ; that is, thereis g € C ({z,: n€ N}) with g|g=g. Using the result
of Earl [3] we get an interpolating Blaschke product B and c e C such that
cB(z,) = g(z,). By (13) we obtain ¢B|=g. O

In the last part of this paper we study the interpolation sets that lie in a
special subset of G. First we give a definition.

DEFINITION. An interpolating sequence (z,) is called thin if

lim IT p(zs,2) =1
k—owo j=1

Jk

We define G* to be the set of all points in M (H *) that are in the closure of a
thin interpolating sequence. G* is open. A thin interpolating Blaschke prod-
uct is a Blaschke product whose zero sequence is a thin interpolating se-
quence. For the interpolating sets in G* we get the following refinements of
the previous results.

THEOREM 3.7. Let EC G*. Then the following statements are equivalent.

(i) E is an interpolating set.
(ii) E is a closed subset of the zero set of an interpolating Blaschke prod-
uct which is a finite product of thin interpolating Blaschke products.

Proof. In view of Theorem 3.3 it remains only to show the following. Let
E C G* be an interpolating set. By Theorem 3.2 there exists an interpolating
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Blaschke product B with Z(B) D E. Let U be an open neighbourhood of E
with UC G*. By factorization we obtain an interpolating Blaschke product
B with Z(B) C UC G*. A result due to Hedenmalm and Izuchi [6, p. 493,
Thm. 2.6] shows that B= B, --- By where By, ..., By are thin. U

It is not possible to find a bound for the number of thin interpolating Blaschke
products in Theorem 3.7. This will be shown by the following remark.

REMARK. For every ne N there exists an interpolating set E, C G* such
that at least n thin interpolating Blaschke products By, ..., B, are needed to
get Z(B,---B,)DE.

Proof. Let B be a thin interpolating Blaschke product with the zero se-
quence (z,). By a well-known result (see, e.g., Garnett [4, p. 404, Lemma
1.4]) there exist numbers r, \ satisfying 0 <r <1 and 0 <\ <1 which have
the following property: If |w|<r then

B(z)—w
1-wB(z)

is an interpolating Blaschke product. The zero sequence of (a,) of B, fulfills
p(a,, z,) <\ By Lemma 2.1 of Hedenmalm [6, p. 491], B,, is thin. Choose
n different products By, ..., Bw, with |w,|<r. Define E,= Z(By, -+ Bw,).
Clearly, E,C G*. We claim that E, is an interpolating set. Let x, ye D be
zeros of Bwj and B, respectively (j # k). Note that B(x)=w; and B(y) =
wi. Applying Schwarz-Pick’s lemma we obtain po(x,y) = p(B(x), B(y))=
p(wj, wi). Note that the p-distance of the finitely many points wy, ..., w, is
positive. Hence it follows by Lemma 2 in [9, p. 338] that B, -+ B,, isinter-
polating. Consequently, E,, is an interpolating set. Let m € Z(B)\D. Since B
is thin by Proposition 2.3 in [6, p. 491], there exist » points vy, ..., v, € P(m)
such that B(v;) =w. In other words, v, € E, for k=1, ..., n. Since every
thin interpolating Blaschke product has at most one zero in P(m) (see, e.g.,
[6, p. 491, Lemma 2.1]), we obtain the assertion. O

B,(z)=

Analogously to Corollary 3.6, we have the following result.

COROLLARY 3.8. Let E be an interpolating set that contains at least two
points. Then the interpolation problem

(14) fle=g

has for every ge C(E) a solution of the form f=cby--- by, where ce C and
by, ..., by are thin interpolating Blaschke products, if and only if EC G*.

Proof. Let E¢ G*. Then there exists a point x € E\G*. Let g e C(F) with
g(x)=0 and g=#0. Since no thin interpolating Blaschke product vanishes
on X, there is no solution of (14) of the desired form.

Now let conversely £ C G* and g e C(E). By Theorem 3.7 there exists an
interpolating Blaschke product B with Z(B) D E and B= B, --- By, where
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By, B,, ..., By are thin. By the Tietze extension theorem there exists a con-
tinuous extension g of g on Z(B). Let (z,) denote the zero sequence of the
interpolating Blaschke product B and let § = §(B). Define

_ 8
AT i

By [3], the pseudohyperbolic discs K,(z,) = {z € D: p(z, z,,) < r} are pairwise
disjoint, and there exists an interpolating Blaschke product b with a zero
sequence ({,) and a constant ¢ € C such that

Cb(Zn) = g(zn) and $nE Kr(zn)

for all neN. Let (z, ;) denote the zero sequence of By (k=1,...,N). Let
$n, k De the unique zero of b in K,.(z,, 4). By [6], the sequence (¢, 4) is thin for
k=1,..., N.Therefore we have b= b, - -- by with thin interpolating Blaschke
products by, ..., by. Since {z,,: ne N} D E, it follows that b |p=g. L]

ACKNOWLEDGMENT. The author wishes to thank the referee for his valu-
able suggestions to simplify the proof of the main theorem.
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