Extensions of Projective Varieties
and Deformations, I

S. ’VOVSKY

0. Introduction

0.1. In this paper we deal with the following question. Let ¥ C P" be a pro-
jective variety; what are the obstructions for V being a hyperplane section
of a projective variety W CP”*!? We will say that such a variety W is an
extension of V.

Of course, if W is a cone with the base V and a vertex in P”*'\P”, then V
will be its hyperplane section. The point is whether we can find such a W
that is not a cone. We will call such a W a nontrivial extension of V.

The question we have just asked has quite a long history. As early as 1909,
G. Scorza proved that if V' is a Veronese variety of dimension greater than 1
or a Segre variety other than P! x P! C P3, then V admits no nontrivial ex-
tension. Nowadays, extensions of projective varieties have been studied by
many authors (see Section 0.4 and the references in [L2]). The goal of this
paper is twofold: first, to prove a result on non-extendibility of a smooth
projective variety; and second, to give an interpretation of the obstruction
to extendibility we use in terms of deformation theory.

0.2. PRELIMINARIES. The base field will be the field C of complex num-
bers. Let V' be a smooth projective variety in P =P(E), where E is an (n+1)-
dimensional vector space. Throughout the paper P(E) denotes Proj Sym(£™),
so closed points of P(E) are lines in E. From now on, we assume that V'is
not contained in a hyperplane of P", unless stated otherwise.

Let us state some facts known as the folklore. Consider the vector bundle
(locally free sheaf) I', = (P'(O, (1)))* where P! denotes the sheaf of princi-
pal parts of the first order. The bundle I'), can be included in the following
exact sequences:

0-0p(=1)->Ty->Ty(=1)=0; (0.1)
0_’FV'_)E®OV"—)NP(E)|V(_1)_’O- (0.2)

Here, Ty denotes the tangent bundle of V and Np)| denotes the normal
bundle of the imbedding V C P(E). The rank of I' equals dimV + I; if
(I'y), C E is the fiber of T’y at the point p € V imbedded in E by the injection
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in the sequence (0.2), then P((I'y),) CP(E) is the projective tangent space
to V at p, that is, the union of all the lines passing through p and tangent to
V. Consider the Gaussian map v from V to the Grassmanian of (dim V'+1)-
dimensional vector subspaces of E sending a point p € V to the subspace of
E whose projectivization is the projective tangent space to V at p; then I},
is the pullback via vy of the “universal subbundle” on the Grassmanian.

Presumably all these notions were introduced in 1957 by M. Atiyah [A]
(in a slightly modified form). The reader may consult the beginning of [LI]
for more details.

0.3. STATEMENT OF RESULTS. Consider the homomorphism
ay: E—H°(V, Np@) v (—1))
obtained by taking H° of the sequence (0.2). Set
a(V) = dim coker (E — H(V, Np(gy v (—1))). (0.3)

Now we can state the main results of the paper.

THEOREM 0.1. IfV#P" Vis not a quadric, and a(V) =0, then V is not
a hyperplane section of a projective variety other than a cone.

The first proof of Theorem 0.1 was obtained by F. L. Zak in 1984 (unpub-
lished). Zak’s proof was based on entirely different ideas; he made use of the
theory of projective duality.

COROLLARY 1. Suppose that V#P" and V is not a quadric.

(@) If H\(V,T}) =0 then V is not a hyperplane section of a projective
variety other than a cone.

(b) If dimV =2 and H'(V, T, (=1))=0, then V is not a hyperplane sec-
tion of a projective variety other than a cone.

This corollary follows immediately from Theorem 0.1, Kodaira’s vanishing
theorem, and the exact sequences (0.1) and (0.2).

To state the next corollary we must fix some notation (cf. [CHM], [CM]).
If M and N are line bundles on a smooth curve C, let R(M, N) be the kernel
of the natural map H%(C, M)®QH*(C,N)— H°(C, M®N). Let us denote
by ¢pr,n: R(M,N) - H(C, 0oc QM®N) the map f®@g~ gdf—fdg.

COROLLARY 2. Let C be a smooth curve imbedded in a projective space
via a complete linear system. If the map ¢..,0.q) is epimorphic, then C is
not a hyperplane section of a projective surface other than a cone.

This corollary follows from Theorem 0.1 and the fact that the cokernel of
®we, 001 is dual to the cokernel of the map in the right-hand side of (0.3)
([W2]; cf. also [CM]).

Corollary 2 implies the following result.
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COROLLARY 3. If Cis a canonical curve of genus g and if the Wahl map
of C is epimorphic, then C cannot be a hyperplane section of a projective
surface other than a cone.

[

Here, the Wahl map is the homomorphism
W : NP H(C, we) » HY(C, w®?)

defined by s dz At dz — (s(dt/dz) —t(ds/dz)) dz> (cf. [CHM]). This corollary
generalizes slightly some results of Wahl [W1] and of Beauville and Mérin-
dol [BM].

In Section 2 we prove the following technical result which may be of some
independent interest.

PROPOSITION 2.1. Let VCP" be a smooth projective variety which is
neither a projective space nor a quadric. Then, for a generic hyperplane
H CP’, there is no nontrivial automorphism of P" that fixes all points of H
and maps V onto itself.

0.4. The cokernel of « was studied in the 1970s by Schlessinger and Pink-
ham ([S], [P1], [P2]); if V is projectively normal, then this cokernel is just
the weight —1 subspace of the tangent space 7' to the formal moduli space
of the singularity at the vertex of the cone over V. The main construction in
our proof is similar to Pinkham’s construction of sweeping out a hyperplane
through a cone [P1, Remark 7.6(iii)]. The difference is that we sweep a hyper-
plane not through a cone but through a nontrivial extension of V.

As the referee pointed out to me, under some additional assumptions The-
orem (.1 can be derived from the results of Pinkham and Schlessinger (one
should assume not only that « is epimorphic but that a// negative weight
subspaces of T vanish, i.e., H°(V, Np(g)v(—i))=0 for all i =2, and that
V is projectively normal; cf. Badescu [B]). Hence, from this point of view it
may seem necessary that the hypotheses of Theorem 0.1 contain the vanish-
ing of H(V, Npgy v (—i)) for i >1 as well. However, it turns out that the
hypotheses of our Theorem 0.1 imply this vanishing. This result can be cb-
tained by putting together a construction used by Zak in his proof of Theo-
rem 0.1 with an idea of Badescu [B, Thm. 5]. The proof will be published
elsewhere.

Corollary 1(b) is similar to some results of Fujita [F], who studied the
varieties that cannot be ample divisors rather than hyperplane sections. Fu-
jita’s results imply that a smooth projective variety V' C P" of dimension > 2
admits no nontrivial extension, provided that #(V, T, (—i)) =0 for all i >0.
Again, it may be shown that vanishing of H'(V, T}, (—1)) implies vanishing
of H'(V, Ty (—i)) for all i >1, provided that V is neither a quadric nor a
projective space.

0.5. AN OUTLINE OF THE PROOF OF THE THEOREM. Let HCP(E)be
a generic hyperplane and X =V N H. We show that if o(V') =0 then almost
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all deformations of V within the family of subvarieties of P(E) containing
X are induced by projective automorphisms of P(E) leaving every point of
H fixed. Vaguely speaking, o(V) measure “the number of nontrivial defor-
mations” of V within the family of subvarieties of P(E) containing X.

Now if WCP"*!is an extension of V, we consider the pencil of hyper-
planes in P"*! passing through H. Projecting the sections of W by the hyper-
planes of the pencil into P”, we obtain a family of subvarieties of P(E) con-
taining X. Making use of the fact that almost all subvarieties in this family
are images of V under the action of automorphisms of P(E’), we conclude
that W is a cone.

0.5. A preliminary version of this paper was deposited at VINITI (Soviet
Institute of Scientific Information) in the beginning of 1987 [L2]. There the
reader may find some straightforward but tedious proofs that we have omit-
ted from Section 1 of this paper.

0.6. ACKNOWLEDGMENTS. I express my sincere thanks to F. L. Zak,
without whose constant assistance and encouragement this work would have
never been completed. I would like to thank the referee for many useful sug-
gestions. I want to thank the Mathematics Department of the University of
Arkansas and especially Professor D. Khavinson for providing a pleasant
and congenial atmosphere during the writing of the final version of this

paper.

1. The Interpretation of (V') in
Terms of Deformation Theory

Let X be a closed subscheme of P”. We will denote by Z the Hilbert scheme
of the closed subschemes of P” containing X, that is, the scheme represent-
ing the functor

Zy: S+~ {closed subschemes of S xP" flat over S and containing S X X]}.

If I, C Opn is the sheaf of ideals of X, then this functor is isomorphic to
Grothendieck’s functor Quot;, /pwspec ¢ (see [G]), s0 Zy exists and each of
its components is a projective scheme.

PROPOSITION 1.1. (a) If VCP" is a closed subscheme of P" containing
X and if I, C Oepn is the sheaf of ideals of V, then the Zariski tangent space
to Zx at the closed point corresponding to V is Homo, (Iy/I 2,1 x,v), where
Ix vy C Oy is the sheaf of ideals of X as a subscheme of V.

(b) If V'is a nonsingular subvariety of P" and X is a hyperplane section of
V, then the same Zariski tangent space is isomorphic to H°(V, Npn v (—1)).

The proof is quite straightforward and will be omitted.
Now let H be a hyperplane in P"=P(FE). Consider the group Gy, of pro-
jective automorphisms of P” leaving all points of H fixed. Choose the basis
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{ey, ey, ..., e,y of E so that H will be the projectivization of the linear span
of vectors ey, ey, ..., e,_;. Then Gy is isomorphic to the group of linear auto-
morphisms of E with the matrix

1 0 --- ay
1 --- a;
leijl = . ’
0 . dp—y
a,

where a,#0, ¢;;=0if i>jori<j<n,and ¢;;=1if i=j<n.

PROPOSITION 1.2. The tangent space to Gy at the identity is isomorphic
to E.

Now let V be a smooth projective subvariety of P"=P(E), H a hyperplane
in P", and X =V N H. Consider the morphism ¢: Gy — Zy which acts on
closed points by sending g € G, to the point corresponding to the subscheme
g 'V CP". The formal definition of ¢ is as follows: ¢ is the G;-valued point
of Zy defined as the left-hand side of the Cartesian square

o-—-———kV

l i (1.1)

Gy X P~ P,

where i is the inclusion of V into P” and « is the morphism corresponding to
the action of Gy on P”.

The derivative of ¢ at the identity of G, is a homomorphism from the
tangent space to Gy at the identity to the Zariski tangent space to Zy at the
point corresponding to V. Propositions 1.1(b) and 1.2 imply that the former
of those spaces is E and the latter is H°(V, Npn,,(—1)).

PROPOSITION 1.3.  The derivative d¢: E — H(V, Np(g) v (—1)) coincides
with the homomorphism «y, defined in Section 0.3.

The proof of this proposition is straightforward but tedious; we omit it and
refer the reader to [L2].

Proposition 1.3 shows that, vaguely speaking, « (V) is the codimension in
Z y of the Gy-orbit of ¥, that is, the “number of nontrivial deformations of
V with a fixed hyperplane section”.

Now suppose that VCP(E)=P" is a smooth projective variety and that
H C P"is a hyperplane transversal to V. The following proposition summar-
izes what we will need in the sequel from the deformation theory.

PROPOSITION 1.4. Suppose that the following hypotheses are satisfied:

(@) there is no non-identical automorphism of P" leaving points of H
fixed and mapping V into itself, and
(b) a(V)=0;
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let {V.};es be a flat family of subvarieties of P" with a quasi-projective base
S such that all the V{’s contain X and Vs,=V for some so€ S. Then there is
a Zariski-open subset U C S containing sy and a morphism f: U — Gy such
that Vy= f(s)-V for all s e U, and f(s;) is the identity in Gy.

Proof. We begin with a simple lemma.
LEMMA 1.5. If VZP(E) then H°(V,T})=0.

Proof of the lemma. Since Ty C EQ Oy, H°Ty) c HYE® 0,) = E. Now
if v is a nonzero global section of Iy and z € P(FE) is the point corresponding
to ve E, then z € T,V for any closed point p € V, where T,V is the projective
tangent space (see Section 0.2). Hence, the dual variety V*C (P(E))* lies in
the hyperplane of (P(E))* corresponding to z. Now by the projective duality
theorem [La, Thm. 2.2], V is a cone with the vertex z, which is impossible
since V'is smooth and V # P(FE). This contradiction proves the lemma. [

The lemma and the exact sequence (0.2) imply that oy is injective. Now from
Proposition 1.3 and the hypothesis (b) it follows that d¢ is an isomorphism
at the identity of Gy and hence, since ¢ is Gy-equivariant, everywhere on
Gy. From (a) it follows that ¢ is a one-to-one map on the set of closed points.
From these two observations it follows easily that ¢: Gy — Zy is an open
inclusion.

Consider the map ¢y: S — Zy induced by the family {V;} and set U =
¥ ~1(Gy;), where we consider Gy as imbedded in Zy by ¢. Let us restrict ¥ to
U and consider  as a morphism from U to Gy. Since the pullback of the
universal family over Zy to Gy is given by the left-hand arrow of diagram
(1.1), Y(s) 'V =V, for every s € U. Set f(s) = (¥(s))~! where —1 denotes the
inverse element in Gy. The morphism f: U — Gg has the desired property.

REMARK. In the next section we will show that if a smooth variety V is
not a projective space or a quadric, then the hypothesis (a) of the proposi-
tion is true for almost all hyperplanes H C P".

2. Smooth Varieties Cannot Have
Too Many Symmetries

PROPOSITION 2.1. Let VCP" be asmooth projective variety that is neither
a projective space nor a quadric. Then, for a generic hyperplane H C P”",
there is no nontrivial automorphism of P" that fixes all points of H and
maps V onto itself.

For the proof we will need a theorem of Mori-Sumihiro and the notion of
Lefschetz pencil.

THEOREM OF MORI-SUMIHIRO [MS] (a weakened version). I[fVCP"is
a smooth projective variety which is not a projective space or a plane conic,
and if Ty is the tangent bundle of V, then H°(V, T,/ (—1)) =0.
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Proof. 1f dim V=2, then from the sequence (0.1) and the Kodaira vanish-
ing theorem it follows that H%(V, T, (1)) #0= Hoy, I'y) # 0. The latter
inequality is impossible by Lemma 1.5. | O

If dim V' =1 then the proof is even simpler, and is left to the reader.

LEFSCHETZ PENCILS. If P”"is a projective space and L CP" is a linear
subspace of codimension 2, then the pencil of hyperplanes with the axis L
consists of all hyperplanes containing L. The main result on Lefschetz pen-
cils in characteristic O is in the following theorem.

THEOREM. If VCP" is a smooth projective variety not contained in a
hyperplane, then for almost all linear subspaces L CP" of codimension 2
the pencil of hyperplanes with the axis L has the following properties:

(@) L is transversal to V;

(b) for all but a finite number of hyperplanes H O L, the intersection
HNV is a smooth variety;

(c) for those H 2 L whose intersections with V are not smooth, this in-
tersection HNV has only one singular point, and the singularity of
HNV at this point is analytically isomorphic to the singularity at the
vertex of a cone over a nonsingular projective quadric.

A pencil of hyperplanes satisfying conditions (a)-(c) is called a Lefschetz
pencil. The proof of this theorem is contained in [SGA7, Exposé 17].

Proof of Proposition 2.1. Suppose that VCP" is a smooth projective vari-
ety such that for each hyperplane H C P” there exists a nontrivial projective
automorphism gz : P"— P” such that gy |, =id and gy (V)=V. To prove
the proposition it suffices to show that such ¥ must be a projective space or
a quadric.

First note that we may assume that all the automorphisms g4 are of finite
order. Indeed, if the order of some gy were not finite, then g, would gener-
ate a subgroup G C Aut(P") of a positive dimension, all of whose elements
map V into itself and fix points of AH. The corresponding action of Lie(G)
on H°(V,T,) would give rise to a nonzero section of T}, zero on VN H, that
is, a section of 7},(—1). According to the theorem of Mori-Sumihiro, this is
only possible if V is a projective space or a plane conic (i.e., a quadric).

Now choose a generic linear subspace L CP" of codimension 2 which is
the axis of a Lefschetz pencil. A nontrivial g, cannot correspond to almost
all hyperplanes H of that pencil (otherwise such a g, would be the identity
on almost all # D L, hence on the whole of P"). So the nontrivial gg’s for
H D L generate a subgroup G C Aut(P"”) of positive dimension.

Since the gg’s are of finite order and the characteristic of the base field is 0,
the gy ’s are semi-simple. Since G contains nontrivial semi-simple elements,
it contains a subgroup isomorphic to the multiplicative group G,,,.

Since G and its subgroup G,, act trivially on L and the representations of
G,, are completely reducible, we can choose a system of homogeneous co-
ordinates (xg: -+ :Xx,_;:X,) in P" such that:
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.

(i) L CP”is defined by the equations x,_; =x,=0; and

(i) there exist integers o and 3 such that o 0 and the action of G,,C G
on P” is given by

(2, (Xo: o 1 Xp—1: X)) = (Xg2 * oo 1 Xy 21 E9X 1 tﬁxn)s
where ¢ is an element of G, (i.e., a nonzero complex number).

Now let H be the hyperplane defined by the equation x,, =0, and set X =
VNH and Y=VNL. Since L is transversal to V, X is not contained in L.
Now take any point (x¢: -+ :X,_2:X,_;:0) in X'\ L such that not all the x;
for 0 < j <n—2 are zeros. The closure of the G-orbit of the point (xg:---:
Xp—2:X,_1:0)€eV is the set of all points with coordinates (xg:---:x,_>:
c:0) with all possible c. We have proved that if x contains a point p ¢ Y,
then it contains the line joining it with the point (0:---:0:1:0) € H. Hence
X is the cone over Y with the vertex (0:---:0:1:0). Since the pencil of
hyperplanes with the axis L is a Lefschetz pencil, the cone X must be either
smooth or have an ordinary quadratic singularity at the vertex. In the for-
mer case, X must be a linear subspace of H, hence V is a projective space;
in the latter case Y must be a quadric, hence ¥ must also be a quadric. This
completes the proof. ]

3. Proof of Theorem 0.1

We begin with two simple lemmas.

LEMMA 3.1. Let VCP" be a smooth projective variety over C, and sup-
pose that the homogeneous coordinates (xy: ---:x,) in P" are chosen in
such a way that the hyperplane H defined by the equation x,=0 is trans-
versal to V. Suppose p=(xy: -+ :x,_1:0) is a point in V(YH. Then:

(@) For each ¢ € C, complex number c #0, and positive integer m, there
exist an open disk A in the complex plane such that £ € A and a holomorphic
mapping h: A -V, written in homogeneous coordinates as h(t) = (ho(f):

cth,_((t): h,(2)), such that hi(§)=x; for 0<i<n—1and
im ()
t—§ C(t _E)m

(b) For each complex number c # 0 and positive integer m there exists a

holomorphic mapping h from the exterior of a disk in C into V such that,

when written in homogeneous coordinates in the form h(t)=(hy(t):---:
h,_1(8): h, (), h satisfies the following conditions:

=1.

lim h;(¢)=x; for 0<i<n-—1, lim ¢"h, () =c.

[t] =0 [t| - o0

Proof. 1t suffices to prove part (a) for £ =0; the rest can be reduced to that
case by a simple change of parameter. In this case, since V is transversal to
the hyperplane H, it is obvious that there exists a neighbourhood of zero A
and a holomorphic map g: A — V which is transversal to H and such that
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g(0) = (xp:+--:x,-1:0). Hence, if we write 4(z) = (go(z): -+ : £,(2)), we
have (after dividing by the appropriate power of z) g;(0) =x; for 0 <i <
n—1, and g,(z)/Az—1 as z tends to zero, where A is a nonzero constant.
Now if we make a change of parameter z = a¢" with the appropriate nonzero
constant ¢, we obtain the desired map. L]

LEMMA 3.2. If VCP"is a smooth projective variety such that a(V)=0
and V' is not a quadric or a projective space, then V is not a hypersurface.

Proof. If V is a hypersurface of degree d, the exact sequence (0.2) becomes
0-Ty -0l - 0,(d—1)—0.

Hence, o(V) = h%(Oy(d —1))—n—1; if d > 2, the right-hand side of this in-
equality is positive, contrary to the assumption «(V)=0. Hence, V cannot
be a hypersurface unless V is a quadric or a projective space. O]

Now we turn to the crucial step in the proof of Theorem 0.1. Suppose that
a smooth projective variety VCP" is a hyperplane section of a projective
variety W C P"*!, Assuming that «(V) =0 and that ¥ is not a quadric or a
projective space, we must show that W is a cone over V.

LEMMA 3.3. Suppose that H CP" is a hyperplane satisfying the following
hypotheses:

(@) X=VNH is smooth and its linear span is H, and
(b) there is no nontrivial automorphism of P" mapping V into itself and
fixing all the points of H.

Then there is a singular point p € W such that the intersection of W with the
hyperplane spanned by p and H is the cone over V(N H with the vertex p.

Proof. Choose the homogeneous coordinates (xg: -+ :X,) in P"*!so that
P" and H are defined by x, ;=0 and x, =x,,; =0, respectively. Set X =
VNH.

Every hyperplane in P”*+! containing H can be defined either by equation
X, +1=tx, (we will call such a hyperplane H,) or by equation x,, =0 (we will
call this hyperplane H,). Let us denote by 7: P”*! - P” the projection (x,:
el X i Xpe1) = (X eeeix, 0 0).

Now, for every ¢ € C, consider the variety V; = (WNH,) CP”. The vari-
eties {V,} form a family of subvarieties of P” containing X, and it is clear
that this family is flat. By Proposition 1.4 there exists a rational map f:
A' 5 Gy, where Gy, is the group of automorphisms of P” which fix the points
of H, so that f(0) is the identity of Gy and V, = f(¢)-V for all € A' for
which f is defined. Writing f in matrix form we find that there are rational
functions ay(?), ..., a,(¢) such that ¢;(0)=0for 0= j=<n-1, a,(0) =1, and,
for each point (x4:---:x,:0) in V, the point

(x0+a0(t)x,,: :xrz—l+ar1—](t)xrz:an(f)xn: 0)

belongs to V; provided that all the a;’s are defined at ¢. Recalling the defini-
tion of V,, we obtain that for each point (xy:---:x,:0)eV and for each ¢
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for which all a;’s are defined, the point

(x0+a0(t)xn: :xn—l+an—l(t)xn: an(t)xn: tan(t)xn)

lies in W.
Now consider two cases.

Case I: Not all a;’s are polynomials.

Let m be the maximal order of poles of a;’s. Suppose it is attained at the
point £ (£ # O since all g;’s are finite at 0). If b;=1im, _, . (£ — £)"a;(¢), then all
b;’s are finite and not all of them are zero.

Now for each point (xg:---:x,_;:0:0)e VNH and each ¢ # 0, consider
a holomorphic map #: A - V from a disk A containing £ into V, given by the
formula A(t) =(ho(t): -+ h,_(t): h,(t):0),such that h;(§)=x; for0<i <
n—1and h,(t)/c(t— &)™ —1 as ¢ tends to £ (such mapping exists in view of
Lemma 3.1(a)).

For each 7 € A, the point

p(?)
= (hO(I)'i'aO(t)hn(t): see hn—l(t)+an—l(t)hn—l(t) . an(t)hn(t) . tan(t)hn(t))

belongs to W. As ¢ goes to &, p(f) tends to the point
(xo+cbg: -+ :x,_1+cb,_ :cb,: Ech,) e W. |

If b,=0, then this point lies in WN H = X, whence X is a cone with the
vertex (by: -+ :b,_;:0:0) € H. But this is impossible since X is smooth and
not a projective space. Hence b, # 0; then WN H; is a cone over X with the
vertex p=(bqy: ---:b,: £b,). Since X spans H, the dimension of the Zariski
tangent space to this cone at its vertex is #. In view of Lemma 3.2, dim W < n,
so the point p € W must be singular.

Case 2: All a;’s are polynomials.

Let us denote fa, by a, ., and let m be the maximal degree of a;, 0 < j <
n+1. Set b; =lim,|_,a;/t" for 0<j<n+1. Because dega,,, >dega,,
b,=0.

Lemma 3.1(b) and an argument similar to that given for Case 1 yield that,
for each point (xg: ---:x,_;:0:0) e X and each ¢ # 0, the point (xy+cby:
cev1X,—1+cb,_1:0:cb, ) belongs to W. If b, ; = 0then X is a cone, which
is impossible. If b, ,.; # 0 then WN H,, is a cone over X with the vertex (by:
--~:1b,_1:0:b,,,), and by the same logic as used in Case 1 we conclude that
this point is singular on W, ]

Completion of the proof of the theorem. Since WNP" is a smooth variety,
W has only a finite number of singular points. On the other hand, it follows
from Proposition 2.1 that the hypotheses of Lemma 3.3 are satisfied for
almost all of the hyperplanes A C P”. Since W has only a finite number of
singular points, it follows from Lemma 3.3 that there is a singular point
p € W such that, for almost all hyperplanes H C P”, the intersection of W
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with the hyperplane in P”*! spanned by H and p is a cone with the vertex
p. This is possible only if W is a cone with the vertex p. The theorem is

proved.
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