On Conformal Welding and Quasicircles

S. ROHDE

1. Introduction

Let C be a quasicircle (i.e., the image of a circle under a quasiconformal
mapping) and let Gy, G, be the bounded and unbounded components of
C\ C. Throughout this paper we will assume that 0 € Gy. By wy, w., we de-
note the harmonic measures on C, evaluated at 0, co. We consider the con-
formal mappings f: D - Gy, f(0)=0and g: D - G, g(0) = o, where D is
the unit disc {|z| <1}. The welding ¢: T - T is defined by

M o(§) =7 f)(§), SeT,
where T is the unit circle {|z|=1}. Since C is a quasicircle, the welding ¢ is
quasisymmetric.

We are interested in quasicircles C that are “far away from being smooth.”
For w;, w, € C let {w;, w,) denote the smaller subarc of C with endpcints
wy, wy. We define

@) B(C)= inf sup ITWIFIWamwl
Wi, Wa € C we (wy,wy) |W1—W2| ‘

Clearly B(C) =1, and since C is a quasicircle the right-hand side of (2) re-
mains bounded if we replace inf by sup. If C has a tangent at some point
we C, then B(C) =1. Of course there are quasicircles C with 8(C) > 1, for
example the snowflake. Other examples are given in Section 3.

We will use the abbreviation dim for Hausdorff dimension.

THEOREM. Let C be a quasicircle with 3(C) > 1. Then thereis aset EC'T
with

3) dimE<1 and dime(T\E)<I.
Tukia [11] recently constructed quasisymmetric mappings ¢ satisfying (3).

With the theorem we get a new class of examples.
The proof of the theorem relies on the following proposition.

PROPOSITION. For any quasicircle C there are positive constanits c, €
and a number 6 =0, where 6 depends only on 3(C), such that the following
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is true: If D is a disc with DN C # @ and diam D < ¢, then

4 wo(D)we (D) < c(diam D)>*°,
Furthermore, we have
(5) 60>0 for B(C)>1.

The proposition is a generalization of the inequality
wo(D)we (D) < c(diam D)?,

established in [2], where this inequality was used to show that ¢ is singular
if C has no tangents. Hence we get a stronger form of singularity of ¢ if we
assume that C is far away from having tangents, where this “distance” is
measured by B(C). Our proofs are similar to the proofs given in [2].

A result of Bishop shows that the condition 8(C) > 1 cannot be replaced
by the condition dim C > 1. An example of a quasicircle C with dimC>1
and a Lipschitz-continuous welding ¢ is given in [1].

I want to thank Ch. Pommerenke for our discussions and J. L. Ferndndez
for directing my attention to Tukia’s paper [11].

REMARK. The referee pointed out that the results of this paper have been
known (unpublished) to some people working in this area. He also indicated
a more elementary approach to the theorem, which avoids the application
of Markarov’s result; the proof is outlined in Section 3.

2. Proofs

Proof of Proposition. Let D be a disc of small radius € with DN C #@. By
D, we denote the disc concentric with D and with radius 2"¢. Let A,, be the
annulus D, ;\D,. We will use the notion of the extremal length of a curve
family and Pflugers theorem (see, e.g., [9]). For this purpose consider two
fixed curves Ky C Gy and K, C G, both enclosing the origin. Let Iy (resp.
I',,) be the family of curves joining dD to K, (K,) in Gy (G). By Pflugers
theorem we have

wo(D)we (D) = cpexp[—m(MIp) + MT'x))],

hznce we are done if we prove

6 ATg)+ANTw) = g:—a log :

€
for some constant 6.

To prove (6), let I'{" (resp. T'Y") be the family of curves joining D, to
0D, .1 in A,NGy (A,NG,), n=1,2,...,N, where N is the largest integer
with the property that A,NKy=@ and A,N K =0 for n<N. Hence 2e is
comparable to dist(KoU K, C), and this means

0) % <c,2N.
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Furthermore,
N

(8) MTo)+MTw) = 3 IMTE)+MTE)].
n=1

Hence (6) follows from (7) and (8) if we prove

240
0

9 ML) +NMT) = log2 for each n=1,2,...,N.
In order to prove this, fix #n and consider the curve family I' =T UTY).
Then
MD) T =NMTE) T HENMTEN) Y
hence

(10) MOEN) +NTE) = 4N(T).

Since C meets D it meets every A,, and therefore there exists a subarc C’
of C lying in A4,, and joining the boundary components of A,,. Let 4}, denote
the domain 4, \ C’ and let I’ be the family of curves joining aD,, with aD, .
in A;. Clearly I'"DT so that M(I") = \(I"’). Since B(C) > 1, the domain A4,
does not contain a sector

2" <|z|<2" e, o <arg(z —z4) < B}

with 8 —« arbitrarily close to 27 (here z, is the center of D).
We apply a result of Carleson [5] to obtain

1468/2

ANIY) = log?2

for some fixed number 6 > 0, depending only on 3(C). Together with (10)
this gives the desired inequality (9). 1

Proof of Theorem. Let § be the number given by the proposition. By (5) we
have 6 > 0. We will prove (3) with the set

E = (¢ eT|limsup|f'(r&)|(1—r)¥@+8 > 0},

r—1

By a result of Makarov [7],
dimE <a(d) <1,

where a(6) is independent of f.
Let { € T\E be given. Then |f'(r¢)| < (1—r)~%@+9 for r = ro(¢). Since
C is a quasicircle, there is a constant c3, depending only on f, such that

1
(n c3(1=r)|f(ri)|=diam f(I,({)) < C—3(1—r)|f'(r§)l,

where 7,(¢) is the arc on T with midpoint ¢ and length 27 (1—r) (see [7]).
With e = diam f(Z,({)), from (11) and (1 —r)|f(r$)| < (1 — r)2/2+8) we
obtain that

wo(fU,(§)) =1—r=cse'*¥? for r=ry({).
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Together with (4) this gives

(12) 0o (SU () = cié”/z.
4

Let £=¢($) and p =1—wo (f(1,({))). Thereis a point £’e T with 1,(§') =
¢(1,({)). By the Koebe distortion theorem we have

(13) lg’(0E)|=cs|g’(pE)].

We obtain from (11) with g, p, ¢’ instead of f, r, ¢ and from (12) that

¢y 2/(2+9)
(1—p)|g'(pe')|zcseacah(l—p)]

Together with (13) we have

|8"(pE)| = cs(1—p) Y+ for p> py(§).
Hence

o(T\E)C (¢ eT [limsup|g’(p)|(1—p)Y*+) >0},

p—1

and again (see [7]) the set on the right-hand side is of dimension < «(6) <1.
Ll

3. Examples and Remarks

(@) Let C be the Julia set of the polynomial z2+ Xz, 0 < |\| < 1. It is known
that C is a quasicircle. It has been shown in [10] that the conformal mapping
f:D — G, has the worst possible behaviour in the following sense:

(14) limsup log|/"(r$)]
r-1  Aflog[1l/(1—r)]logloglog[1/(1—r)]

(see, e.g., [8] for a detailed discussion of this and its consequences).

Jones [6] has shown that (14) also holds for quasicircles C with 3(C) > 1,
hence without using any dynamical structure on C. The starting point of
our paper was the observation that it is easy to prove a weaker form of (3)
for Julia sets by using ergodic theory. The argument is as follows: Since f
maps 0 to the attractive fixed point of p) (which is again 0), the composi-
tion f ~'op,o f is a Blaschke product of degree 2, fixing the origin. Similarly,
(g lopyog)(z) =22 It follows from [10] that

>0 for a.e.{eT

h(py, wp) <log2 = h(p), wx),

where h(p,, n) is the entropy of p, with respect to the invariant probability
measure g on C.

Now consider the repelling fixed point {; € C. The set py "({,) consists of
2" points of C, dividing C into 2" arcs I,g”). For { € C let us denote by 7,({)
the arc/ ,5”) containing ¢. Then by the Shannon-McMillan-Brieman theorem
we have
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%log wo(1,($)) = —h(p), wg), H—©, wy-a.e. on C,

hence wo(1,(¢)) = a” for some fixed number a > % for wg-a.e. { € C and
n=ny($). On the other hand, it is easy to see that w, (/,($))=2"". From
this it is not difficult to prove that there is a set £ C C with wy(E) =1 but
dimg {(F) <.

(b) Let I'|, I'; be finitely generated Fuchsian groups of the first kind and let
oa: T - T, be anisomorphism. Let ¢: T — T be a homeomorphism satisfying
@oyop =ay (yeTY). Tukia asked in [11] whether (3) is valid for ¢ if ¢ is
not a Mobius transformation (in that case it is known that ¢ is singular). We
will give a partial answer to this problem. In full generality this problem has
been solved (independently) in [3].

Let us assume that I'; has a compact fundamental domain F and let I" be
the quasi-Fuchsian group associated to (I';, I';, «). Let C be the quasicircle
invariant under I" and let f, g, Gy, G, be as above. Then ¢ = g ~!o f satisfies
poyop T=a(y) (yeI), hence (3) is valid if B(C)> 1. The Hausdorff di-
mension of C is studied in [4].

Jones [6] has shown, using Caratheodory kernel convergence, that 8(C) >
1 holds if the following condition is satisfied: There are positive constants ¢
and p such that in each hyperbolic disc (in D) of radius p there is a point z
such that [S;(z)|(1—|z[*)? = c. By assumption, ¢ is not absolutely continu-
ous and hence C is not rectifiable; it follows that | S (zo)|(1—|zo|*)*>0 at
some point z, € F. Let p be the hyperbolic diameter of F. If ze D then z =
v(z’) with z’e F and vy €T}, and y(z,) lies in the hyperbolic disc of radius
p around z. Furthermore, |S/(y(zo))|(1 — |v(z0)[*)* =|Ss(z0)|(1 — |zo[))?;
hence the condition of Jones is satisfied.

(c) We now outline the referee’s alternate proof of the theorem.

LEMMA (referee). For any quasicircle C with 3(C)>1 there is an integer
N and a € >0 such that, for any arc I CT and the N disjoint subarcs I; of
equal length, the inequality

N
2 L1 leUp |2 = (1=26) [1]2]o(D)]
holds. =

This lemma can be proven by contradiction. If the lemma were not true then
there would be a sequence ey tending to zero, and a corresponding sequence
of arcs such that equality holds in the lemma. After rescaling these arcs—
with the aid of some Md&bius transformation—to length (say) 1/2, the com-
pactness of quasisymmetric maps leads to a quasisymmetric limit function y
with associated quasicircle I'’, such that the inequality of the lemma is an
equality for some arc I and all integers N. Hence the mapping ¢+~ arg (e’
would be linear on some interval and it would follow that the corresponding
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subarc of I'’ is smooth, in contradiction to 8(I'’) = B(I"). The last inequality
is again easily proven using compactness of quasisymmetric maps.
It follows from the lemma that there is a number 6 >0 such that, with

N
_Ellljl"hp(lj)l"s (1—e)|[1]*|e(D)]*.
e

It is not difficult to show that any function ¢ satisfying the last inequality
for some fixed numbers N, ¢, 6 and any arc I has the property discussed in
our Theorem (see [3] for the details.)
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