On Conformal Welding and Quasicircles

S. ROHDE

1. Introduction

Let C be a quasicircle (i.e., the image of a circle under a quasiconformal mapping) and let G_0 , G_∞ be the bounded and unbounded components of $\widehat{\mathbf{C}} \setminus C$. Throughout this paper we will assume that $0 \in G_0$. By ω_0 , ω_∞ we denote the harmonic measures on C, evaluated at $0, \infty$. We consider the conformal mappings $f: \mathbf{D} \to G_0$, f(0) = 0 and $g: \mathbf{D} \to G_\infty$, $g(0) = \infty$, where \mathbf{D} is the unit disc $\{|z| < 1\}$. The welding $\varphi: \mathbf{T} \to \mathbf{T}$ is defined by

(1)
$$\varphi(\zeta) = (g^{-1} \circ f)(\zeta), \quad \zeta \in \mathbf{T},$$

where **T** is the unit circle $\{|z|=1\}$. Since C is a quasicircle, the welding φ is quasisymmetric.

We are interested in quasicircles C that are "far away from being smooth." For $w_1, w_2 \in C$ let $\langle w_1, w_2 \rangle$ denote the smaller subarc of C with endpoints w_1, w_2 . We define

(2)
$$\beta(C) = \inf_{w_1, w_2 \in C} \sup_{w \in \langle w_1, w_2 \rangle} \frac{|w_1 - w| + |w_2 - w|}{|w_1 - w_2|}.$$

Clearly $\beta(C) \ge 1$, and since C is a quasicircle the right-hand side of (2) remains bounded if we replace inf by sup. If C has a tangent at some point $w \in C$, then $\beta(C) = 1$. Of course there are quasicircles C with $\beta(C) > 1$, for example the snowflake. Other examples are given in Section 3.

We will use the abbreviation dim for Hausdorff dimension.

THEOREM. Let C be a quasicircle with $\beta(C) > 1$. Then there is a set $E \subset T$ with

(3)
$$\dim E < 1$$
 and $\dim \varphi(\mathbf{T} \setminus E) < 1$.

Tukia [11] recently constructed quasisymmetric mappings φ satisfying (3). With the theorem we get a new class of examples.

The proof of the theorem relies on the following proposition.

PROPOSITION. For any quasicircle C there are positive constants c, ϵ_0 and a number $\delta \geq 0$, where δ depends only on $\beta(C)$, such that the following

Received January 18, 1990. Revision received August 13, 1990. Michigan Math. J. 38 (1991).

112 S. ROHDE

is true: If D is a disc with $D \cap C \neq \emptyset$ and diam $D \leq \epsilon_0$, then

(4)
$$\omega_0(D)\omega_\infty(D) \le c(\operatorname{diam} D)^{2+\delta}.$$

Furthermore, we have

(5)
$$\delta > 0 \quad for \ \beta(C) > 1.$$

The proposition is a generalization of the inequality

$$\omega_0(D)\omega_\infty(D) \le c(\operatorname{diam} D)^2$$
,

established in [2], where this inequality was used to show that φ is singular if C has no tangents. Hence we get a stronger form of singularity of φ if we assume that C is far away from having tangents, where this "distance" is measured by $\beta(C)$. Our proofs are similar to the proofs given in [2].

A result of Bishop shows that the condition $\beta(C) > 1$ cannot be replaced by the condition dim C > 1. An example of a quasicircle C with dim C > 1 and a Lipschitz-continuous welding φ is given in [1].

I want to thank Ch. Pommerenke for our discussions and J. L. Fernández for directing my attention to Tukia's paper [11].

REMARK. The referee pointed out that the results of this paper have been known (unpublished) to some people working in this area. He also indicated a more elementary approach to the theorem, which avoids the application of Markarov's result; the proof is outlined in Section 3.

2. Proofs

Proof of Proposition. Let D be a disc of small radius ϵ with $D \cap C \neq \emptyset$. By D_n we denote the disc concentric with D and with radius $2^n \epsilon$. Let A_n be the annulus $D_{n+1} \setminus D_n$. We will use the notion of the extremal length of a curve family and Pflugers theorem (see, e.g., [9]). For this purpose consider two fixed curves $K_0 \subset G_0$ and $K_\infty \subset G_\infty$, both enclosing the origin. Let Γ_0 (resp. Γ_∞) be the family of curves joining ∂D to K_0 (K_∞) in K_0 (K_∞). By Pflugers theorem we have

$$\omega_0(D)\omega_\infty(D) \le c_1 \exp[-\pi(\lambda(\Gamma_0) + \lambda(\Gamma_\infty))],$$

hence we are done if we prove

(6)
$$\lambda(\Gamma_0) + \lambda(\Gamma_\infty) \ge \frac{2+\delta}{\pi} \log \frac{1}{\epsilon}$$

for some constant δ .

To prove (6), let $\Gamma_0^{(n)}$ (resp. $\Gamma_\infty^{(n)}$) be the family of curves joining ∂D_n to ∂D_{n+1} in $A_n \cap G_0$ ($A_n \cap G_\infty$), n=1,2,...,N, where N is the largest integer with the property that $A_n \cap K_0 = \emptyset$ and $A_n \cap K_\infty = \emptyset$ for $n \le N$. Hence $2^N \epsilon$ is comparable to $\operatorname{dist}(K_0 \cup K_\infty, C)$, and this means

$$\frac{1}{\epsilon} \le c_2 2^N.$$

Furthermore,

(8)
$$\lambda(\Gamma_0) + \lambda(\Gamma_\infty) \ge \sum_{n=1}^N [\lambda(\Gamma_0^{(n)}) + \lambda(\Gamma_\infty^{(n)})].$$

Hence (6) follows from (7) and (8) if we prove

(9)
$$\lambda(\Gamma_0^{(n)}) + \lambda(\Gamma_\infty^{(n)}) \ge \frac{2+\delta}{\pi} \log 2 \quad \text{for each } n = 1, 2, ..., N.$$

In order to prove this, fix n and consider the curve family $\Gamma = \Gamma_0^{(n)} \cup \Gamma_\infty^{(n)}$. Then

$$\lambda(\Gamma)^{-1} = \lambda(\Gamma_0^{(n)})^{-1} + \lambda(\Gamma_\infty^{(n)})^{-1};$$

hence

(10)
$$\lambda(\Gamma_0^{(n)}) + \lambda(\Gamma_\infty^{(n)}) \ge 4\lambda(\Gamma).$$

Since C meets D it meets every A_n , and therefore there exists a subarc C' of C lying in A_n and joining the boundary components of A_n . Let A'_n denote the domain $A_n \setminus C'$ and let Γ' be the family of curves joining ∂D_n with ∂D_{n+1} in A'_n . Clearly $\Gamma' \supset \Gamma$ so that $\lambda(\Gamma) \ge \lambda(\Gamma')$. Since $\beta(C) > 1$, the domain A'_n does not contain a sector

$$\{2^n \epsilon < |z| < 2^{n+1} \epsilon, \alpha < \arg(z - z_0) < \beta\}$$

with $\beta - \alpha$ arbitrarily close to 2π (here z_0 is the center of D).

We apply a result of Carleson [5] to obtain

$$\lambda(\Gamma') \ge \frac{1 + \delta/2}{2\pi} \log 2$$

for some fixed number $\delta > 0$, depending only on $\beta(C)$. Together with (10) this gives the desired inequality (9).

Proof of Theorem. Let δ be the number given by the proposition. By (5) we have $\delta > 0$. We will prove (3) with the set

$$E = \{ \zeta \in \mathbf{T} \mid \limsup_{r \to 1} |f'(r\zeta)| (1-r)^{\delta/(2+\delta)} > 0 \}.$$

By a result of Makarov [7],

$$\dim E \leq \alpha(\delta) < 1,$$

where $\alpha(\delta)$ is independent of f.

Let $\zeta \in \mathbf{T} \setminus E$ be given. Then $|f'(r\zeta)| < (1-r)^{-\delta/(2+\delta)}$ for $r \ge r_0(\zeta)$. Since C is a quasicircle, there is a constant c_3 , depending only on f, such that

(11)
$$c_3(1-r)|f'(r\zeta)| \le \operatorname{diam} f(I_r(\zeta)) \le \frac{1}{c_3}(1-r)|f'(r\zeta)|,$$

where $I_r(\zeta)$ is the arc on T with midpoint ζ and length $2\pi(1-r)$ (see [7]).

With $\epsilon = \operatorname{diam} f(I_r(\zeta))$, from (11) and $(1-r)|f'(r\zeta)| < (1-r)^{2/(2+\delta)}$ we obtain that

$$\omega_0(f(I_r(\zeta))) = 1 - r \ge c_4 \epsilon^{1 + \delta/2}$$
 for $r \ge r_0(\zeta)$.

114 S. ROHDE

Together with (4) this gives

(12)
$$\omega_{\infty}(f(I_r(\zeta))) \leq \frac{c}{c_{\lambda}} \epsilon^{1+\delta/2}.$$

Let $\xi = \varphi(\zeta)$ and $\rho = 1 - \omega_{\infty}(f(I_r(\zeta)))$. There is a point $\xi' \in T$ with $I_{\rho}(\xi') = \varphi(I_r(\zeta))$. By the Koebe distortion theorem we have

$$|g'(\rho\xi)| \ge c_5|g'(\rho\xi')|.$$

We obtain from (11) with g, ρ, ξ' instead of f, r, ζ and from (12) that

$$(1-\rho)|g'(\rho\xi')| \ge c_3\epsilon \ge c_3 \left[\frac{c_4}{c}(1-\rho)\right]^{2/(2+\delta)}$$
.

Together with (13) we have

$$|g'(\rho\xi)| \ge c_6 (1-\rho)^{-\delta/(2+\delta)}$$
 for $\rho > \rho_0(\xi)$.

Hence

$$\varphi(\mathbf{T}\setminus E)\subset\{\zeta\in\mathbf{T}\mid \limsup_{\rho\to 1}|g'(\rho\xi)|(1-\rho)^{\delta/(2+\delta)}>0\},$$

and again (see [7]) the set on the right-hand side is of dimension $\leq \alpha(\delta) < 1$.

3. Examples and Remarks

(a) Let C be the Julia set of the polynomial $z^2 + \lambda z$, $0 < |\lambda| < 1$. It is known that C is a quasicircle. It has been shown in [10] that the conformal mapping $f: \mathbf{D} \to G_0$ has the worst possible behaviour in the following sense:

(14)
$$\limsup_{r \to 1} \frac{\log |f'(r\zeta)|}{\sqrt{\log[1/(1-r)]\log\log\log[1/(1-r)]}} > 0 \quad \text{for a.e. } \zeta \in \mathbf{T}$$

(see, e.g., [8] for a detailed discussion of this and its consequences).

Jones [6] has shown that (14) also holds for quasicircles C with $\beta(C) > 1$, hence without using any dynamical structure on C. The starting point of our paper was the observation that it is easy to prove a weaker form of (3) for Julia sets by using ergodic theory. The argument is as follows: Since f maps 0 to the attractive fixed point of p_{λ} (which is again 0), the composition $f^{-1} \circ p_{\lambda} \circ f$ is a Blaschke product of degree 2, fixing the origin. Similarly, $(g^{-1} \circ p_{\lambda} \circ g)(z) = z^2$. It follows from [10] that

$$h(p_{\lambda}, \omega_0) < \log 2 = h(p_{\lambda}, \omega_{\infty}),$$

where $h(p_{\lambda}, \mu)$ is the entropy of p_{λ} with respect to the invariant probability measure μ on C.

Now consider the repelling fixed point $\zeta_0 \in C$. The set $p_{\lambda}^{-n}(\zeta_0)$ consists of 2^n points of C, dividing C into 2^n arcs $I_k^{(n)}$. For $\zeta \in C$ let us denote by $I_n(\zeta)$ the arc $I_k^{(n)}$ containing ζ . Then by the Shannon-McMillan-Brieman theorem we have

$$\frac{1}{n}\log \omega_0(I_n(\zeta)) \to -h(p_\lambda, \omega_0), \quad n \to \infty, \ \omega_0$$
-a.e. on C ,

hence $\omega_0(I_n(\zeta)) \ge a^n$ for some fixed number $a > \frac{1}{2}$ for ω_0 -a.e. $\zeta \in C$ and $n \ge n_0(\zeta)$. On the other hand, it is easy to see that $\omega_\infty(I_n(\zeta)) = 2^{-n}$. From this it is not difficult to prove that there is a set $E \subset C$ with $\omega_0(E) = 1$ but dim $g^{-1}(E) < 1$.

(b) Let Γ_1 , Γ_2 be finitely generated Fuchsian groups of the first kind and let $\alpha: \Gamma_1 \to \Gamma_2$ be an isomorphism. Let $\varphi: T \to T$ be a homeomorphism satisfying $\varphi \circ \gamma \circ \varphi^{-1} = \alpha \gamma$ ($\gamma \in \Gamma_1$). Tukia asked in [11] whether (3) is valid for φ if φ is not a Möbius transformation (in that case it is known that φ is singular). We will give a partial answer to this problem. In full generality this problem has been solved (independently) in [3].

Let us assume that Γ_1 has a compact fundamental domain F and let Γ be the quasi-Fuchsian group associated to $(\Gamma_1, \Gamma_2, \alpha)$. Let C be the quasicircle invariant under Γ and let f, g, G_0, G_∞ be as above. Then $\varphi = g^{-1} \circ f$ satisfies $\varphi \circ \gamma \circ \varphi^{-1} = \alpha(\gamma)$ ($\gamma \in \Gamma_1$), hence (3) is valid if $\beta(C) > 1$. The Hausdorff dimension of C is studied in [4].

Jones [6] has shown, using Caratheodory kernel convergence, that $\beta(C) > 1$ holds if the following condition is satisfied: There are positive constants c and ρ such that in each hyperbolic disc (in **D**) of radius ρ there is a point z such that $|S_f(z)|(1-|z|^2)^2 \ge c$. By assumption, φ is not absolutely continuous and hence C is not rectifiable; it follows that $|S_f(z_0)|(1-|z_0|^2)^2 > 0$ at some point $z_0 \in F$. Let ρ be the hyperbolic diameter of F. If $z \in \mathbf{D}$ then $z = \gamma(z')$ with $z' \in F$ and $\gamma \in \Gamma_1$, and $\gamma(z_0)$ lies in the hyperbolic disc of radius ρ around z. Furthermore, $|S_f(\gamma(z_0))|(1-|\gamma(z_0)|^2)^2 = |S_f(z_0)|(1-|z_0|^2)^2$; hence the condition of Jones is satisfied.

(c) We now outline the referee's alternate proof of the theorem.

LEMMA (referee). For any quasicircle C with $\beta(C) > 1$ there is an integer N and $a \in > 0$ such that, for any arc $I \subset T$ and the N disjoint subarcs I_j of equal length, the inequality

$$\sum_{j=1}^{N} |I_{j}|^{1/2} |\varphi(I_{j})|^{1/2} \le (1-2\epsilon) |I|^{1/2} |\varphi(I)|^{1/2}$$

holds.

This lemma can be proven by contradiction. If the lemma were not true then there would be a sequence ϵ_N tending to zero, and a corresponding sequence of arcs such that equality holds in the lemma. After rescaling these arcs—with the aid of some Möbius transformation—to length (say) 1/2, the compactness of quasisymmetric maps leads to a quasisymmetric limit function ψ with associated quasicircle Γ' , such that the inequality of the lemma is an equality for some arc I and all integers N. Hence the mapping $t \mapsto \arg \psi(e^{it})$ would be linear on some interval and it would follow that the corresponding

116 S. ROHDE

subarc of Γ' is smooth, in contradiction to $\beta(\Gamma') \ge \beta(\Gamma)$. The last inequality is again easily proven using compactness of quasisymmetric maps.

It follows from the lemma that there is a number $\delta > 0$ such that, with $\mu = (1-\delta)/2$,

$$\sum_{j=1}^{N} |I_j|^{\mu} |\varphi(I_j)|^{\mu} \leq (1-\epsilon) |I|^{\mu} |\varphi(I)|^{\mu}.$$

It is not difficult to show that any function φ satisfying the last inequality for some fixed numbers N, ϵ , δ and any arc I has the property discussed in our Theorem (see [3] for the details.)

References

- 1. C. Bishop, A counterexample in conformal welding concerning Hausdorff dimension, Michigan Math. J. 35 (1988), 151-159.
- 2. C. Bishop, L. Carleson, J. Garnett, and P. Jones, *Harmonic measures supported on curves*, Pacific J. Math. 138 (1989), 233-236.
- 3. C. Bishop and T. Steger, Representation theoretic rigidity in PSL(2, R), preprint.
- 4. R. Bowen, *Hausdorff dimension of quasicircles*, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11–25.
- 5. L. Carleson, On the distortion of sets on a Jordan curve under conformal mapping, Duke Math. J. 40 (1973), 547–559.
- 6. P. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, Lecture Notes in Math., 1384, pp. 24-68, Springer, Berlin, 1989.
- 7. N. G. Makarov, Conformal mapping and Hausdorff measures, Ark. Mat. 25 (1987), 41-89.
- 8. ——, Probability methods in the theory of conformal mappings, (Russian), Algebra i Analiz 1 (1989), 3-59.
- 9. M. Ohtsuka, *Dirichlet problem, extremal length and prime ends*, Van Nostrand Reinhold, New York, 1970.
- 10. F. Przytycki, M. Urbański, and A. Zdunik, *Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, I,* Ann. of Math. (2) 130 (1989), 1-40.
- 11. P. Tukia, *Hausdorff dimension and quasisymmetric mappings*, Math. Scand. 65 (1989), 152–160.

Tech. Univ. of Berlin Sekr. MA8-2 Strasse d. 17. Juni 136 1000 Berlin 12 Germany