An Explicit Plancherel Formula for Completely Solvable Lie Groups

BRADLEY N. CURREY

Introduction

Let G be a connected, simply connected and completely solvable Lie group with Lie algebra \mathfrak{g} . The dual G of G is parameterized by the space \mathfrak{g}^*/G of coadjoint orbits in the dual \mathfrak{g}^* of \mathfrak{g} via the canonical Kirillov bijection K: G $\to \mathfrak{g}^*/G$. If $\xi \in G$ and $l \in K(\xi)$, then there is an analytic subgroup H of G and a unitary character χ of H such that $l_{|\mathfrak{h}} = \operatorname{id} \chi$ (\mathfrak{h} is the Lie algebra of H) and such that the representation $\rho(l,\mathfrak{h})$ of G induced by χ belongs to the equivalence class ξ . Moreover, K is a Borel isomorphism, and the measure class on G which gives the canonical decomposition of the regular representation corresponds to the pushforward to \mathfrak{g}^*/G of the Lebesgue measure class on \mathfrak{g}^* . On the other hand the space \mathfrak{g}^*/G can be parameterized (generically) by an explicit algebraic submanifold Σ of \mathfrak{g}^* . In this work we describe the Plancherel measure for G as a measure on Σ and show that as such it is a "rational" measure. The resulting Plancherel formula generalizes the well-known formula of L. Pukanszky for nilpotent Lie groups.

Recall the Plancherel formula obtained by Pukanszky for nilpotent Lie groups in [6]. It is shown that there is a G-invariant Zariski open set $W \subset \mathfrak{g}^*$, and a subspace V_0 of \mathfrak{g}^* , such that the orbits in W are of maximal dimension, and such that $\Lambda = V_0 \cap W$ is a cross-section for the coadjoint orbits in W. The Plancherel measure is realized as a measure on Λ . There is a rational function $r(\lambda)$ on V_0 which is nonsingular on Λ and such that the Plancherel formula is given by

$$\phi(e) = \int_{\Lambda} \operatorname{Tr}(\rho_{\lambda}(\phi)) |r(\lambda)| d\lambda,$$

where $[\rho_{\lambda}]$ is the equivalence class in G corresponding to $\lambda \in \Lambda$, and $d\lambda$ is a Euclidean measure on V_0 .

The Plancherel formula for exponential Lie groups was obtained by Duflo and Rais [4]. Of course G is not necessarily unimodular and points in G are not necessarily closed. For each orbit O in \mathfrak{g}^*/G , denote the corresponding

Received November 6, 1989. Revision received July 9, 1990. Michigan Math. J. 38 (1991).

element of $G^{\hat{}}$ by $[\rho_O]$, and the canonical measure on O by β_O . The formula here takes the form

$$\phi(e) = \int_{\mathfrak{q}^*/G} \text{Tr}(A_{\psi,O}^{-1/2} \rho_O(\phi) A_{\psi,O}^{-1/2}) \, dm_{\psi}(O).$$

Here ψ is a rational function on \mathfrak{g}^* such that $\psi(sl) = \Delta(s)^{-1}\psi(l)$, $A_{\psi,O}$ is the operator semi-invariant for ρ_O associated with the restriction of $|\psi|$ to O, and m_{ψ} is the (unique) measure on \mathfrak{g}^*/G such that $\int_{\mathfrak{g}^*} f(l)|\psi(l)| dl = \int_{\mathfrak{g}^*/G} (\int_O f \, d\beta_O) \, dm_{\psi}(O)$. We shall give an explicit description of the measure m_{ψ} by means of a cross-section for (generic orbits in) \mathfrak{g}^*/G .

In the solvable case the set of orbits of maximal dimension, and even the set W as defined by Pukanszky, are too large to admit a smooth cross-section. However it is shown in [2] that if G is completely solvable then there is a G-invariant Zariski open subset $\Omega \subset W$, and an algebraic subset $\Sigma \subset \Omega$, such that Σ is a cross-section for the coadjoint orbits in Ω that is homeomorphic to Ω/G . The set Ω is a finite union of disjoint open subsets Ω_{ϵ} , and each of the subsets $\Sigma_{\epsilon} = \Sigma \cap \Omega_{\epsilon}$ of Σ can be described as follows. There are subspaces V_0 and V_1 of g^* with $g^* = V_0 \oplus V_1$, and for each Ω_{ϵ} there is a Zariski open subset Λ_{ϵ} of V_0 and a rational function $p_{\epsilon} \colon \Lambda_{\epsilon} \to V_1$ such that $\Sigma_{\epsilon} = \operatorname{graph}(p_{\epsilon})$. Thus, projection onto V_0 parallel to V_1 defines a rational diffeomorphism $\pi_{\epsilon} \colon \Sigma_{\epsilon} \to \Lambda_{\epsilon}$. The restriction of the Plancherel measure m_{ψ} to Ω_{ϵ}/G is then realized as a measure on Λ_{ϵ} . Let $d\lambda$ be a Euclidean measure on V_0 . The main result of this paper is the following.

THEOREM. There is a real-valued polynomial function $P_0(l)$ on \mathfrak{g}^* such that for each Ω_{ϵ} the restriction of m_{ψ} to Ω_{ϵ}/G is given by

$$|\psi(\pi_{\epsilon}^{-1}(\lambda))||P_0(\pi_{\epsilon}^{-1}(\lambda))|d\lambda.$$

This immediately yields an explicit Plancherel formula. It is

$$\phi(e) = \sum_{\epsilon} \int_{\Lambda_{\epsilon}} \operatorname{Tr}(A_{\psi,\lambda,\epsilon}^{-1/2} \rho_{\lambda,\epsilon}(\phi) A_{\psi,\lambda,\epsilon}^{-1/2}) |\psi(\pi_{\epsilon}^{-1}(\lambda))| |P_0(\pi_{\epsilon}^{-1}(\lambda))| d\lambda,$$

where $\rho_{\lambda,\epsilon}$ is an irreducible representation corresponding to $\pi_{\epsilon}^{-1}(\lambda)$. The function ψ is as above, and $A_{\psi,\lambda,\epsilon}$ is the operator semi-invariant for $\rho_{\lambda,\epsilon}$ associated with $|\psi|$ as above. If G has irreducible representations that are square integrable (in the strict sense) then each Ω_{ϵ} is a G-orbit, $V_0 = (0)$ and $d\lambda$ is just point mass measure.

In the nilpotent case one has $\Omega_{\epsilon} = \Omega$ and $p_{\epsilon} = 0$. Thus $\Lambda_{\epsilon} = \Sigma = V_0 \cap \Omega$ is Zariski open in $\Lambda = V_0 \cap W$, and our formula reduces to the Plancherel formula for nilpotent Lie groups derived in [6].

1. Preliminaries

Fix a basis $\{Z_1, Z_2, ..., Z_n\}$ of g, let $g_j = \operatorname{span}_{\mathbf{R}}\{Z_1, Z_2, ..., Z_j\}$, $1 \le j \le n$, and set $g_0 = (0)$. We choose our basis so that for each j, g_j is an ideal in g. Let $e_1, e_2, ..., e_n$ be the dual basis in g^* . For each j = 1, 2, ..., n, define

$$g_i^{\perp} = \{l \in g^* : g_i \subset \ker(l)\}$$

and let π_j denote the projection of \mathfrak{g}^* onto $\operatorname{span}_{\mathbf{R}}\{e_1, e_2, ..., e_j\}$ parallel to \mathfrak{g}_j^{\perp} . We denote $\operatorname{ad}^*(X)l$ by [X, l], $l \in \mathfrak{g}^*$, $X \in \mathfrak{g}$, and we denote the coadjoint action of G on \mathfrak{g}^* multiplicatively. Let μ_j denote the $(0, \infty)$ -valued multiplicative character of G such that $se_j = \mu_j(s)e_j \operatorname{mod}(\mathfrak{g}_j^{\perp})$ for $s \in G$, and let $\gamma_j \in \mathfrak{g}^*$ be the differential of μ_j $(1 \le j \le n)$. For each l in \mathfrak{g}^* , set $\mathfrak{g}_j^l = \{X \in \mathfrak{g} : \text{ for every } Y \in \mathfrak{g}_j, \ l([X, Y]) = 0\}$.

Fix a Euclidean measure dX on \mathfrak{g} , and let da be the left Haar measure on G such that $d(\exp X) = j_G(X)dX$, where

$$j_G(X) = \left| \frac{\det(1 - e^{-\operatorname{ad} X})}{\operatorname{ad} X} \right|.$$

Let Δ be the modular function so that for each b in G, $d(ab) = \Delta(b)da$. For each coadjoint orbit O, let β_O be the canonical measure on O (cf. [7, Lemma 6 and Prop. 4]).

In Proposition IV.4.1 of [8], it is shown that there is a nonzero rational function ψ on \mathfrak{g}^* such that $\psi(sl) = \Delta(s)^{-1}\psi(l)$, $s \in G$, $l \in \mathfrak{g}^*$. Fix one such function ψ . There is a unique measure m_{ψ} on \mathfrak{g}^*/G such that

$$\int_{\mathfrak{g}^*} \phi(l) |\psi(l)| dl = \int_{\mathfrak{g}^*/G} \left(\int_O \phi(l) d\beta_O(l) \right) dm_{\psi}(O)$$

holds for any nonnegative Borel function ϕ on \mathfrak{g}^* [4, Lemme 5.1.7]. For each O in \mathfrak{g}^*/G , let $[\pi_O]$ be the corresponding element of G and let ψ_O be the restriction of ψ to O. Let U be the set of all coadjoint orbits O such that

- (i) $|\psi(l)|^{-1}d\beta_O(l)$ defines a tempered distribution on g*,
- (ii) ψ_O is nonzero, and
- (iii) $\operatorname{Stab}_G(l)$ is nilpotent, for some (hence for every) $l \in O$.

Then the complement of U has Plancherel measure zero (cf. Lemme 5.2.2 of [4] and the remarks in 5.2.3 of [4]). The character formula for solvable groups together with the above are used to prove a Plancherel formula for general solvable type 1 groups (Proposition 5.2.4 and Théorème 5.2.7 of [4]). We summarize the main results for the completely solvable case.

THEOREM 1.1. Let G be a connected, simply connected, and completely solvable Lie group. For each O in U, let $A_{\psi,O}$ be the positive semi-invariant operator of weight Δ for π_O associated with $|\psi|$ ($A_{\psi,O}$ is constructed for $\pi_O = \rho(l, \mathfrak{h})$ with $H \subset \ker(\Delta)$ in Lemme 3.2.2 of [4], and is determined up to unitary equivalence by O and $|\psi|$ (cf. also Theorem 5 of [3])). Then there is a positive $\operatorname{Ad}(G)$ -invariant function α on \mathfrak{g} , such that if $O \in U$ then the formula

$$\operatorname{Tr}(A_{\psi,O}^{-1/2}\pi_O(\phi)A_{\psi,O}^{-1/2}) = \int_O (\alpha(\phi \circ \exp))^{\hat{}}(l)|\psi(l)|^{-1}d\beta_O(l)$$

holds for every smooth function ϕ on G with compact support. For each such ϕ one has

$$\phi(e) = \int_{\mathfrak{q}^*/G} \text{Tr}(A_{\psi,O}^{-1/2} \pi_O(\phi) A_{\psi,O}^{-1/2}) dm_{\psi}(O).$$

The results stated in Proposition 2.3 and Theorem 2.4 of [2] provide detailed information about the structure of \mathfrak{g}^*/G , and our task here is to give a description of the measure m_{ψ} in terms of this data. We summarize the relevant aspects of these results as follows.

THEOREM 1.2. Let G be a connected, simply connected, and completely solvable Lie group. There is a Zariski open subset Ω of \mathfrak{g}^* , a subset $J = \{j_1 < j_2 < \cdots < j_d\}$ of $\{1, 2, \ldots, n\}$, a subset $\varphi = \{j_{k_1} < j_{k_2} < \cdots < j_{k_t}\}$ of J, for each j in φ a real-valued rational function q_j (nonsingular and nonvanishing on Ω), and n real analytic functions P_j $(1 \le j \le n)$ in the real variables $w_1, w_2, \ldots, w_d, l_1, l_2, \ldots, l_n$, such that the following hold.

- (1) For each $\epsilon \in \{-1, 1\}^t$, the set $\Omega_{\epsilon} = \{l \in \Omega : \text{sign of } q_{j_{k_r}}(l) = \epsilon_r, 1 \le r \le t\}$ is a nonempty open subset in \mathfrak{g}^* .
- (2) Define $W \subset \mathbf{R}^d$ by $W = \prod R_k$, where $R_k = (0, \infty)$ if $j_k \in \varphi$ and $R_k = \mathbf{R}$ otherwise. Let $\epsilon \in \{-1, 1\}^t$ and for $w \in W$ define $\epsilon w \in \mathbf{R}^d$ by $(\epsilon w)_j = \epsilon_r w_j$ if $j = j_{k_r} \in \varphi$ and $(\epsilon w)_j = w_j$ otherwise. Then for each l in Ω_{ϵ} , the mapping $w \to \sum_j P_j(\epsilon w, l)e_j$ is a diffeomorphism of W with the coadjoint orbit of l. The functions P_j also have the properties:
 - (i) when l is fixed, each function $P_j(\cdot, l)$ depends only on the variables $w_1, w_2, ..., w_k$, where $j_k = \max\{j' \in J : j' \le j\}$;
 - (ii) for each l and for each $j = j_k \in J$, $P_{j_k}(w, l) = w_k(w_1, w_2, ..., w_{k-1})$, and if $j_k \notin \varphi$ then $P_{j_k} \equiv w_k$; and
 - (iii) for each j, and for each fixed w, $P_j(w, \cdot)$ is a G-invariant function on Ω .
- (3) Define subspaces V_0 and V_{φ} of \mathfrak{g}^* by $V_0 = \operatorname{span}_{\mathbb{R}}\{e_i : i \notin J\}$ and $V_{\varphi} = \operatorname{span}_{\mathbb{R}}\{e_j : j \in \varphi\}$. Then the set $\Sigma = \{l \in (V_0 + V_{\varphi}) \cap \Omega : |q_j(l)| = 1, j \in \varphi\}$ is a cross-section for the coadjoint orbits in Ω . For each j in φ , the rational function q_j is of the form $q_j(l) = l_j + p_j(l_1, l_2, ..., l_{j-1})$, where p is a rational function, and q_j is G-semi-invariant with multiplier μ_j .
- (4) For each $l \in \Omega$ let $\epsilon(l) \in \{-1, 1\}^l$ such that $l \in \Omega_{\epsilon(l)}$. Then the mapping $P: W \times \Sigma \to \Omega$, defined by $P(w, l) = \sum_j P_j(\epsilon(l)w, l)e_j$, is a diffeomorphism.

The above also follows from Proposition 2.7 and Theorem 2.8 of [1]. It follows from Theorem 2.9 of [1] that the cross-section Σ is a submanifold of \mathfrak{g}^* . If (but not only if) G is nilpotent, then $\varphi = \emptyset$, in which case it is understood that $\Omega_{\epsilon} = \Omega$. For nilpotent groups, a version of the above theorem was first given by Pukanszky in Proposition II.4.1 of [8].

The procedure for constructing the objects in Theorem 1.2 resembles the proof of Proposition II.1.1 of [8]. It was shown in Lemma 1.1 of [2] that for each j in J there is a rational function $r_j: \Omega \to \mathfrak{g}$, with $r_j(l) \in \mathfrak{g}_{j-1}^l \sim \mathfrak{g}_j^l$ and

$$[r_j(l), l] = e_j \bmod (\mathfrak{g}_j^{\perp})$$

for each l in Ω . For each $j_k \in J$, k = 1, 2, ..., d, set $g_k(t_k, l) = \exp(t_k r_{j_k}(l))$ and set $g(t, l) = g_1(t_1, l) g_2(t_2, l) ... g_d(t_d, l)$, for $t \in \mathbf{R}^d$. Denote by σ_l the diffeomorphism of \mathbf{R}^d with Gl given by $\sigma_l(t) = g(t, l)l$. Write $\sigma_l(t) = \sum_i Q_i(t, l)e_i$

for $t \in \mathbf{R}^d$. The properties of the functions Q_j allow the successive definition of w_k and expression of t_k in terms of $w_1, w_2, ..., w_k, \ k = 1, 2, ..., d$. Thus in Proposition 2.3 of [2], for each l we obtained a function $\Phi(\cdot, l) : W \to \mathbf{R}^d$ such that $t_k = \Phi_k(w, l)$ is defined explicitly for each k, and the functions P_j are obtained explicitly as $P_j(\epsilon w, l) = Q_j(\Phi(w, l), l)$ for l in Ω_ϵ and $1 \le j \le n$. Thus for $l \in \Omega$ and $w \in W$, one has

$$P(w, l) = \sigma_l(\Phi(w, l)).$$

For each l in \mathfrak{g}^* let $d\beta_l$ denote the canonical measure on Gl. For l belonging to the cross-section Σ , we shall compute $d\beta_l$ in terms of the coordinates $(w_1, w_2, ..., w_d) \in W$.

Fix l in Σ . Then $\Phi(\cdot, l): W \to \mathbb{R}^d$ is an analytic diffeomorphism. Let dw denote Lebesgue measure on W. Let $P_J(l)$ denote the Pfaffian of the matrix $[l([Z_{j_r}, Z_{j_k}])]_{1 \le r, k \le d}$; then $P_J(l) \ne 0$ for each $l \in \Omega$. For each s in G, define $\mu_J(s) = \prod_{j \in J} \mu_j(s)$.

LEMMA 1.3. For each β_l -integrable function f on Gl,

$$\int_{Gl} f \, d\beta_l = (2\pi)^d |P_J(l)|^{-1} \int_W f(P(w,l)) |\mu_J(g(\Phi(w,l),l))|^{-1} \, dw.$$

Proof. The proof is a simple application of Lemma 2.1.3 of [5], from which we have that

$$\int_{\mathbf{R}^d} f \, d\beta_l = (2\pi)^d |P_j(l)|^{-1} \int_{\mathbf{R}^d} f(\sigma_l(t)) \prod_{k < r} |\mu_{j_k}(g_r(t_r, l))|^{-1} \, dt_1 \, dt_2 \dots \, dt_d$$

holds for any β_l -integrable function f on Gl. Hence for each such f, we have

$$\int_{Gl} f \, d\beta_l = (2\pi)^d |P_j(l)|^{-1} \int_W f(P(w,l)) \prod_{k < r} |\mu_{j_k}(g_r(\Phi_r(w,l),l))|^{-1} |J_{\Phi}(l)| \, dw,$$

where $J_{\Phi}(l)$ is the Jacobian matrix of $\Phi(\cdot, l)$. It remains for us to compute $|J_{\Phi}(l)|$.

For each k = 1, 2, ..., d, $\Phi_k(w, l)$ depends only on the variables $w_1, w_2, ..., w_k$. In fact, let $w = (w_1, w_2, ..., w_d) \in W$ and let $t = \Phi(w, l)$. From the construction in Proposition 2.3 of [2], if $j_k \notin \varphi$ then

$$w_k = Q_{j_k}(t, l) = \mu_{j_k}(g_1(t_1, l)g_2(t_2, l) \dots g_{k-1}(t_{k-1}, l))t_k + S(t_1, t_2, \dots, t_{k-1}, l)$$
 and hence

$$t_k = \Phi_k(w, l) = \mu_{j_k}(g_1(\Phi_1(w, l), l)g_2(\Phi_2(w, l), l) \dots g_{k-1}(\Phi_{k-1}(w, l), l))^{-1}w_k$$
modulo $(w_1, w_2, \dots, w_{k-1})$. If $j = j_k = j_{k_r} \in \varphi$, then
$$w_k = \epsilon_r(l)\mu_{j_k}(g_1(t_1, l)g_2(t_2, l) \dots g_k(t_k, l))q_j(l)^{-1}$$

$$= \mu_{j_k}(g_1(t_1, l)g_2(t_2, l) \dots g_k(t_k, l))$$

$$= \mu_{j_k}(g_1(t_1, l)g_2(t_2, l) \dots g_{k-1}(t_{k-1}, l)) \exp(t_k \epsilon_r(l)),$$

where we have used the fact that $q_i(l) = \gamma_i(r_i(l)) = \epsilon_r(l)$ since $l \in \Sigma_{\epsilon}$. Hence

$$\Phi_k(w, l) = \epsilon_r(l) \ln(w_k)$$

modulo $(w_1, w_2, ..., w_{k-1})$. It follows immediately that

$$\begin{split} |J_{\Phi}(l)| &= \prod_{j_k \in \varphi} |\mu_{j_k}(g_1(\Phi_1(w,l),l)g_2(\Phi_2(w,l),l) \dots g_{k-1}(\Phi_{k-1}(w,l),l))|^{-1} \\ &\times \prod_{j_k \in \varphi} |\mu_{j_k}(g_1(\Phi_1(w,l),l)g_2(\Phi_2(w,l),l) \dots g_k(\Phi_k(w,l),l))|^{-1}. \end{split}$$

By Proposition 1.3 of [2], if $j \notin \varphi$ then $\gamma_j(r_j(l)) = 0$, and so from the formula above we have

$$|J_{\Phi}(l)| = \prod_{k \geq r} |\mu_{j_k}(g_r(\Phi_r(w, l), l))|^{-1}.$$

Thus
$$|J_{\Phi}(l)| \prod_{k < r} |\mu_{j_k}(g_r(\Phi_r(w, l), l))|^{-1} = |\mu_J(g(\Phi(w, l), l))|^{-1}$$
.

2. Computation of the Plancherel Measure

Fix a Euclidean measure dl on \mathfrak{g}^* suitably normalized so that, for any continuous compactly supported function f on \mathfrak{g} ,

$$f(0) = \int_{\mathfrak{g}^*} \hat{f}(l) \, dl,$$

where $\hat{f}(l) = \int_{\mathfrak{g}} f(X)e^{il(X)} dX$. Since Ω is Zariski open, the complement of Ω has measure zero, and by Theorem 1.2 we have the explicit diffeomorphism $P: W \times \Sigma \to \Omega$. The general idea is to compute $|\psi(l)| dl$ in terms of a product measure on $W \times \Sigma$, where $\psi(l)$ is a rational satisfying $\psi(sl) = \Delta(s)^{-1}\psi(l)$ for each s in G, and then to use Lemma 1.3 to read off the measure m_{ψ} as a measure on Σ . First we determine global coordinates for Σ .

If the subset φ of the index set J introduced in Theorem 1.2 is empty, then $\Sigma = V_0 \cap \Omega$ and coordinates for Σ are obtained by identifying V_0 with \mathbf{R}^{n-d} . On the other hand, suppose that $\varphi \neq \emptyset$, and let t be the number of elements in φ . Recall that, by part (1) of Theorem 1.2, for each $\epsilon \in \{-1,1\}^t$ there is a nonempty open subset Ω_{ϵ} of Ω such that Ω is the disjoint union of the sets Ω_{ϵ} . Let $\epsilon \in \{-1,1\}^t$ and set $\Sigma_{\epsilon} = \Sigma \cap \Omega_{\epsilon}$. From parts (1) and (3) of Theorem 1.2 we have

$$\Sigma_{\epsilon} = \{l \in (V_0 \oplus V_{\varphi}) \cap \Omega \colon \text{for each } j = j_{k_r} \in \varphi, \ l_j = \epsilon_r - p_j(l_1, l_2, ..., l_{j-1})\},$$

where, for each j in φ , p_j is a rational nonsingular function on Ω . From now on we assume that $\varphi \neq \emptyset$; the modifications for the case $\varphi = \emptyset$ amount to little more than dropping the subscript ϵ , and we leave them to the reader.

LEMMA 2.1. Let $\epsilon \in \{-1, 1\}^t$. Then there is a Zariski open subset Λ_{ϵ} of V_0 and a rational function $p_{\epsilon} \colon \Lambda_{\epsilon} \to V_{\varphi}$ such that $\Sigma_{\epsilon} = \operatorname{graph}(p_{\epsilon})$.

Proof. Write $\{1, ..., n\} \sim J = \{i_1 < i_2 < \cdots < i_{n-d}\}$ and for $\lambda \in V_0$ write $\lambda = \sum_{\alpha} \lambda_{\alpha} e_{i_{\alpha}}$. Define the rational function p_{ϵ} as follows. Let j be the smallest index in φ , and let i_{α} be the largest of those indices $i \notin J$ such that i < j. Then p_j is a function of the variables $\lambda_1, \lambda_2, ..., \lambda_{i_{\alpha}}$. Set $p_{\epsilon,j}(\lambda) = \epsilon_1 - p_j(\lambda_1, \lambda_2, ..., \lambda_{i_{\alpha}})$. (If j = 1, then $p_1 = 0$ and $p_{\epsilon,j}(\lambda) = \epsilon_1$.) Now let $j = j_k \in \varphi$ and assume that $p_{\epsilon,j'}(\lambda)$ is defined for all $j' \in \varphi$, j' < j. For each i < j, set $l_i(\lambda) = \lambda_{\alpha'}$ if $i = i_{\alpha'} \notin J$, $l_i(\lambda) = p_{\epsilon,j}(\lambda)$ if $i \in \varphi$, and $l_i(\lambda) = 0$ otherwise. Set

$$p_{\epsilon,j}(\lambda) = \epsilon_r - p_j(l_1(\lambda), l_2(\lambda), \dots, l_{j-1}(\lambda))$$

and

$$p_{\epsilon}(\lambda) = \sum_{j \in \varphi} p_{\epsilon,j}(\lambda) e_j.$$

Set $\Lambda_{\epsilon} = \{\lambda \in V_0 : p_{\epsilon}(\lambda) \text{ is defined at } \lambda \text{ and } (\lambda, p_{\epsilon}(\lambda)) \in \Omega\}; \Lambda_{\epsilon} \text{ is a Zariski open subset of } V_0.$ It follows from the definition of Σ_{ϵ} above that $\Sigma_{\epsilon} = \text{graph}(p_{\epsilon})$.

Thus projection of Σ_{ϵ} into V_0 parallel to V_1 defines a rational diffeomorphism π_{ϵ} of Σ_{ϵ} with Λ_{ϵ} . For $\lambda \in \Lambda_{\epsilon}$, let $O_{\lambda,\epsilon}$ denote the coadjoint orbit through $\pi_{\epsilon}^{-1}(\lambda)$, and let $\beta_{\lambda,\epsilon}$ denote the canonical measure on $O_{\lambda,\epsilon}$.

Identify V_0 with \mathbb{R}^{n-d} via the basis $\{e_i : i \in J\}$, and let $d\lambda$ denote the Lebesgue measure on V_0 . (If $V_0 = (0)$ let $d\lambda$ be point mass measure.) Define $\Theta_{\epsilon} : W \times \Lambda_{\epsilon} \to \Omega_{\epsilon}$ by $\Theta_{\epsilon}(w, \lambda) = P(w, \pi_{\epsilon}^{-1}(\lambda))$. Then Θ is a diffeomorphism, and for each integrable function f on \mathfrak{q}^* we have

$$\int_{\mathfrak{g}^*} f(l) \, dl = \int_{\Omega} f(l) \, dl = \sum_{\epsilon \in \{-1, 1\}^{\ell}} \int_{\Omega_{\epsilon}} f(l) \, dl$$

and

$$\int_{\Omega_{\epsilon}} f(l) dl = \int_{W \times \Lambda_{\epsilon}} f(\Theta_{\epsilon}(w, \lambda)) |J_{\Theta_{\epsilon}}(w, \lambda)| dw d\lambda,$$

where $J_{\Theta_{\epsilon}}(w, \lambda)$ is the Jacobian of Θ_{ϵ} . We need to compute $|J_{\Theta_{\epsilon}}(w, \lambda)|$; to do this, we shall need several preliminary results which will provide detailed information about the mapping Θ_{ϵ} .

For each l in Ω , set $\rho_0(Z, l) = Z$. In [2], integers i_k , $j(i_k) \in J$ are defined for each k ($1 \le k \le d/2$), and in Lemma 1.3 of [1], a function $\rho_k : \mathfrak{g} \times \Omega \to \mathfrak{g}$ is defined for each k ($1 \le k \le d/2$) recursively. In the completely solvable case the recursion formula for ρ_k is simply

$$\rho_k(Z,l) = \rho_{k-1}(Z,l) - c_k(Z,l) \, \rho_{k-1}(Z_{i_k},l) - d_k(Z,l) \, \rho_{k-1}(Z_{j(i_k)},l),$$

where $c_k(Z, l)$ and $d_k(Z, l)$ are given by

$$c_k(Z,l) = \frac{l([Z,\rho_{k-1}(Z_{j(i_k)},l)])}{l([\rho_{k-1}(Z_{i_k},l),\rho_{k-1}(Z_{j(i_k)},l)])},$$

$$d_k(Z,l) = \frac{l([Z,\rho_{k-1}(Z_{i_k},l)])}{l([\rho_{k-1}(Z_{j(i_k)},l),\rho_{k-1}(Z_{i_k},l)])}.$$

For each Z in \mathfrak{g} , $l \to \rho_k(Z, l)$ is a rational function. As is shown in [1], the functions ρ_k have the properties that, for each l in Ω , $l([\rho_k(Z, l), W]) = l([Z, \rho_k(W, l)])$ and $\rho_k(\rho_k(Z, l), l) = \rho_k(Z, l)$ for any Z and W in \mathfrak{g} . For each k, one has $i_k < j(i_k)$ and $J = \{i_1, i_2, ..., i_{d/2}, j(i_1), j(i_2), ..., j(i_{d/2})\}$. The connection between the functions $\{\rho_k : 1 \le k \le d/2\}$ of [1] and the functions $\{r_j : j \in J\}$ of Lemma 1.1 of [2] (cf. the remarks preceding Lemma 1.3 above) is that for each k $(1 \le k \le d/2)$ and each l in Ω ,

$$r_{i_k}(l) = \frac{\rho_{k-1}(Z_{j(i_k)}, l)}{l([Z_{i_k}, \rho_{k-1}(Z_{j(i_k)}, l)])}$$

and

$$r_{j(i_k)}(l) = \frac{\rho_{k-1}(Z_{i_k}, l)}{l([Z_{j(i_k)}, \rho_{k-1}(Z_{i_k}, l)])}.$$

For each k $(1 \le k \le d/2)$ and for each i, j $(1 \le i, j \le n)$, set $p_{i,j,k}(l) = l([\rho_k(Z_i, l), Z_i])$ for $l \in \Omega$. We have the formula

$$p_{i,j,k}(l) = p_{i,j,k-1}(l) - c_k(Z_i,l) p_{i_k,j,k-1}(l) - d_k(Z_i,l) p_{j(i_k),j,k-1}(l).$$

LEMMA 2.2. For every i, j such that $1 \le i < j \le n$, and for each k, the function $p_{i,j,k}(l)$ depends only on $\pi_i(l)$.

Proof. We proceed by induction on k. Since $\rho_0 = \mathrm{id}$, the lemma holds for k = 0. Suppose that for every $1 \le i < j \le n$, the function $p_{i,j,k-1}(l)$ depends only on $\pi_i(l)$, and fix such indices i and j. We consider three cases.

- (i) $i < i_k$. Then $\rho_k(Z_i, l) = \rho_{k-1}(Z_i, l)$, and hence $p_{i,j,k}(l) = p_{i,j,k-1}(l)$.
- (ii) $i_k < i < j(i_k)$. Then $d_k(Z_i, l) = 0$, hence

$$\rho_k(Z_i, l) = \rho_{k-1}(Z_i, l) - c_k(Z_i, l) \rho_{k-1}(Z_{i_k}, l).$$

By induction, each of the functions $l \to c_k(Z_i, l)$, $p_{i_k, j, k-1}(l)$ and $p_{i, j, k-1}(l)$ depends only on $\pi_i(l)$, hence $p_{i, j, k}(l)$ does also.

- (iii) $i > j(i_k)$. Here we apply the induction hypothesis to each of the functions $l \to c_k(Z_i, l)$, $l \to d_k(Z_i, l)$, $p_{i,j,k-1}(l)$, $p_{i_k,j,k}(l)$, and $p_{j(i_k),j,k}(l)$, and thus $p_{i,j,k}(l)$ depends only on $\pi_i(l)$.
- LEMMA 2.3. Let k be a positive integer, $1 \le k \le d/2$, and let i and j be integers belonging to the set

$$\{1, 2, ..., n\} \sim \{i_1, i_2, ..., i_k, j(i_1), j(i_2), ..., j(i_k)\}, i \neq j.$$

Then there is a rational functional q(l) depending only on $\pi_{j-1}(l)$ such that $p_{i,j,k}(l) = -\gamma_j(\rho_k(Z_i,l))l_j + q(l)$. Moreover, the function $l \to \gamma_j(\rho_k(Z_i,l))$ depends only on $\pi_{j-1}(l)$.

Proof. We proceed by induction on k, the lemma being clear for the case k = 0. Suppose that k > 0 and that, for any integers i and j belonging to

$$\{1, 2, ..., n\} \sim \{i_1, i_2, ..., i_{k-1}, j(i_1), j(i_2), ..., j(i_{k-1})\}, i \neq j,$$

we have $p_{i,j,k}(l) = -\gamma_i(\rho_k(Z_i,l))l_i + q(l)$, with q(l) and $\gamma_i(\rho_k(Z_i,l))$ as in

the hypothesis. By Lemma 2.2, we may assume that i > j. As in the previous lemma, we consider three cases.

- (i) $j < i_k$. Then $\rho_k(Z_j, l) = \rho_{k-1}(Z_j, l)$, hence $p_{i,j,k}(l) = l([\rho_k(Z_i, l), Z_j]) = l([Z_i, \rho_k(Z_j, l)]) = l([Z_i, \rho_{k-1}(Z_j, l)]) = l([\rho_{k-1}(Z_i, l), Z_j]) = p_{i,j,k-1}(l)$. The lemma follows from the induction hypothesis.
- (ii) $i_k < j < j(i_k)$. Here we have $p_{i_k,j,k-1}(l) = 0$. By Lemma 2.2, $l \rightarrow d_k(Z_i,l)$ depends only on $\pi_{i_k}(l)$, hence only on $\pi_{j-1}(l)$. If $i < j(i_k)$, then $d_k(Z_i,l) = 0$, and hence $p_{i,j,k}(l) = p_{i,j,k-1}(l)$. Suppose that $i > j(i_k)$. Then applying the induction hypothesis we have rational functions q_0 and q_1 depending only on $\pi_{i-1}(l)$ such that

$$p_{i,j,k-1}(l) = -\gamma_j(\rho_{k-1}(Z_i,l))l_j + q_0(l), p_{j(i_k),j,k-1}(l)$$

= $-\gamma_i(\rho_{k-1}(Z_{j(i_k)},l))l_j + q_1(l).$

Now

$$\begin{split} p_{i,j,k}(l) &= p_{i,j,k-1}(l) - d_k(Z_i,l) \, p_{j(i_k),j,k-1}(l) \\ &= -(\gamma_j(\rho_{k-1}(Z_i,l)) - d_k(Z_i,l) \, \gamma_j(\rho_{k-1}(Z_{j(i_k)},l))) l_j \\ &+ q_0(l) - d_k(Z_i,l) \, q_1(l) \\ &= -\gamma_j(\rho_k(Z_i,l)) l_j + q_0(l) - d_k(Z_i,l) \, q_1(l). \end{split}$$

By induction the functions $\gamma_j(\rho_{k-1}(Z_i, l))$ and $\gamma_j(\rho_{k-1}(Z_{j(i_k)}, l))$ depend only on $\pi_{j-1}(l)$, hence $\gamma_j(\rho_k(Z_i, l))$ depends only on $\pi_{j-1}(l)$. We define q(l) by $q(l) = q_0(l) - d_k(Z_i, l) q_1(l)$.

(iii) $j > j(i_k)$. In this case we have that $d_k(Z_i, l)$ and $c_k(Z_i, l)$ depend only on $\pi_{j-1}(l)$ (by Lemma 2.2). Applying the induction hypothesis to each of the functions $p_{i,j,k-1}(l)$, $p_{i_k,j,k-1}(l)$, and $p_{j(i_k),j,k-1}(l)$, we have rational functions q_0 , q_1 , and q_2 depending only on $\pi_{j-1}(l)$ such that

$$\begin{split} p_{i,j,k}(l) &= p_{i,j,k-1}(l) - c_k(Z_i,l) \, p_{i_k,j,k-1}(l) - d_k(Z_i,l) \, p_{j(i_k),j,k-1}(l) \\ &= -(\gamma_j(\rho_{k-1}(Z_i,l)) - c_k(Z_i,l) \, \gamma_j(\rho_{k-1}(Z_{i_k},l)) \\ &- d_k(Z_i,l) \, \gamma_j(\rho_{k-1}(Z_{j(i_k)},l))) l_j \\ &+ q_0(l) - c_k(Z_i,l) \, q_1(l) - d_k(Z_i,l) \, q_2(l) \\ &= -\gamma_i(\rho_k(Z_i,l)) l_i + q_0(l) - c_k(Z_i,l) \, q_1(l) - d_k(Z_i,l) \, q_2(l). \end{split}$$

By induction we see that the functions $\gamma_j(\rho_{k-1}(Z_i, l))$, $\gamma_j(\rho_{k-1}(Z_{i_k}, l))$, and $\gamma_j(\rho_{k-1}(Z_{j(i_k)}, l))$ depend only on $\pi_{j-1}(l)$, hence $\gamma_j(\rho_k(Z_i, l))$ depends only on $\pi_{j-1}(l)$. The function q(l) is then defined by

$$q(l) = q_0(l) - c_k(Z_i, l) q_1(l) - d_k(Z_i, l) q_2(l).$$

COROLLARY 2.4. Let $j_k \in J$ and let i be an integer such that $1 \le i \le j_k$ and $i \notin J$. Then $\mu_i(g_k(\Phi_k(w, l), l)) = 1$ holds for every w in W and l in Ω .

Proof. Since $i < j_k$, $l([r_{j_k}(l), Z_i]) = 0$ holds for each l in Ω . Now by definition of $r_{j_k}(l)$, there is j' in J such that for each l, $r_{j_k}(l)$ is a multiple of $\rho_{k-1}(Z_{j'}, l)$ and hence $p_{j',i,k-1} = 0$ on Ω . Since Ω is dense and open, Lemma 2.3 implies that $\gamma_i(\rho_{k-1}(Z_{j'}, l)) = 0$. Thus $\gamma_i(r_{j_k}(l)) = 0$ and $\mu_i(g_k(\Phi_k(w, l), l)) = \exp(\Phi_k(w, l)\gamma_i(r_{j_k}(l))) = 1$.

COROLLARY 2.5. Let $i \notin J$, $1 \le i \le n$. Then $P_i(w, l)$ is of the form

$$P_i(w, l) = \mu_i(g_1(\Phi_1(w, l), l)g_2(\Phi_2(w, l), l) \dots g_k(\Phi_k(w, l), l))l_i + R_i(w_1, w_2, \dots, w_k, l_1, l_2, \dots, l_{i-1}),$$

where k is such that $j_k < i < j_{k+1}$.

Proof. Here we use the following principle: If $l \to X(l)$ is a rational function from Ω into \mathfrak{g}_i such that $l \to l(X(l))$ depends only on $\pi_i(l)$, then $l \to X(l)$ depends only on $\pi_i(l)$. It follows from this and from Lemma 2.3 that, for each j in J and for any i $(1 \le i \le n)$, there is a function Y from Ω into \mathfrak{g}_{i-1} such that for each l in Ω ,

$$[r_j(l), Z_i] = -\gamma_i(r_j(l))Z_i + Y(l_1, l_2, ..., l_{i-1}).$$

Hence by Lemma 2.2 and the above, for each n there is a function Y_n from Ω into \mathfrak{g}_{i-1} such that for each l in Ω ,

$$ad^n r_i(l)(Z_i) = (-\gamma_i(r_i(l)))^n Z_i + Y_n(l_1, l_2, ..., l_{i-1}).$$

It follows that for each i $(1 \le i \le n)$, and for each $t \in \mathbb{R}^d$, $Q_i(t, l) = \sigma_l(t)(Z_i)$ depends only on $\pi_i(l)$; hence, for each r $(1 \le r \le k)$, $\Phi_r(w, l)$ depends on the variables $w_1, w_2, ..., w_r$ and $l_1, l_2, ..., l_{j_r}$ only. Hence there is a function $y = y(w_1, w_2, ..., w_k, l_1, l_2, ..., l_{i-1})$ into \mathfrak{g}_{i-1} such that

$$Ad(g_1(\Phi_1(w, l), l)g_2(\Phi_2(w, l), l) \dots g_k(\Phi_k(w, l), l))^{-1}Z_i$$

$$= \mu_i(g_1(\Phi_1(w, l), l)g_2(\Phi_2(w, l), l) \dots g_k(\Phi_k(w, l), l))Z_i$$

$$+ y(w_1, w_2, \dots, w_k, l_1, l_2, \dots, l_{i-1}).$$

From this we see that

$$P_{i}(w, l) = \sigma_{l}(\Phi(w, l))(Z_{i})$$

$$= l(\operatorname{Ad}(g_{1}(\Phi_{1}(w, l), l)g_{2}(\Phi_{2}(w, l), l) \dots g_{k}(\Phi_{k}(w, l), l))^{-1}Z_{i})$$

has the desired form.

We can now compute $|J_{\Theta_{\epsilon}}(w, \lambda)|$. For the remainder of the paper we simplify notation as follows. When $\epsilon \in \{-1, 1\}^t$ is fixed, and for each w in W and λ in Λ_{ϵ} , set $\Phi_{\epsilon}(w, \lambda) = \Phi(w, \pi_{\epsilon}^{-1}(\lambda))$ and $g_{\epsilon}(w, \lambda) = g(\Phi_{\epsilon}(w, \lambda), \pi_{\epsilon}^{-1}(\lambda))$.

LEMMA 2.6. Let
$$\epsilon \in \{-1,1\}^t$$
. Then $|J_{\Theta_{\epsilon}}(w,\lambda)| = \prod_{j \in J} |\mu_j(g_{\epsilon}(w,\lambda))|$.

Proof. Fix j, $1 \le j \le n$. We write $\{1, ..., n\} \sim J = \{i_1 < i_2 < \cdots < i_{n-d}\}$ and use the following notation. Set $w^{j-1} = (w_1, w_2, ..., w_{k-1})$ where k is such that $j_{k-1} < j \le j_k$, and set $\lambda^{j-1} = (\lambda_1, \lambda_2, ..., \lambda_{k-1})$ where k is such that $i_{k-1} < j \le i_k$. Write $\Theta_{\epsilon}(w, \lambda) = \sum_j \Theta_{\epsilon}(w, \lambda)_j e_j$. To see that

$$|J_{\Theta_{\epsilon}}(w,\lambda)| = \prod_{j \in J} |\mu_{j}(g_{\epsilon}(w,\lambda))|,$$

one need only look at each $\Theta_{\epsilon}(w, \lambda)_{j}$. Suppose first that $j \in J$, $j = j_{k}$. If $j \notin \varphi$, then $\Theta_{\epsilon}(w, \lambda)_{j} = w_{k}$, while if $j \in \varphi$ and $j = j_{k_{r}}$ then

$$\Theta_{\epsilon}(w, \lambda)_j = \epsilon_r w_{k_r} \mod(w^{j-1}, \lambda^{j-1}).$$

Now suppose that $j \notin J$. By Corollary 2.4, we have

$$\mu_j(g(w,l)) = \mu_j(g_1(w,l)g_2(w,l)...g_k(w,l)),$$

where $k = \max\{k': j_{k'} < j\}$. Hence by Corollary 2.5,

$$\Theta_{\epsilon}(w,\lambda)_{j} = \mu_{j}(g(w,l))\lambda_{j} \bmod (w^{j-1},\lambda^{j-1}). \qquad \Box$$

Let ψ be any rational function on g^* as in Theorem 1.1, so that

$$\psi(sl) = \Delta(s)^{-1}\psi(l)$$

for each s in G and each l in g^* .

PROPOSITION 2.7. Let $\epsilon \in \{-1,1\}^t$. Then for each continuous function f on Ω_{ϵ} having compact support, we have

$$\int_{\Omega_{\epsilon}} f(l) |\psi(l)| dl = \int_{\Lambda_{\epsilon}} \left(\int_{O_{\lambda,\epsilon}} f d\beta_{\lambda,\epsilon} \right) |\psi(\pi_{\epsilon}^{-1}(\lambda))|^{-1} |P_{J}(\pi_{\epsilon}^{-1}(\lambda))| (2\pi)^{-d} d\lambda.$$

Proof. By Lemma 2.6 we have

$$\int_{\Omega_{\epsilon}} f(l) dl = \int_{W \times \Lambda_{\epsilon}} f(\Theta_{\epsilon}(w, \lambda)) \prod_{j \in J} |\mu_{j}(g_{\epsilon}(w, \lambda))| dw d\lambda$$

for each $\epsilon \in \{-1, 1\}^t$. Now

$$\Theta_{\epsilon}(w,\lambda) = P(w,\pi_{\epsilon}^{-1}(\lambda)) = \sigma_{\pi_{\epsilon}^{-1}(\lambda)}(\Phi_{\epsilon}(w,\lambda)) = g_{\epsilon}(w,\lambda)\pi_{\epsilon}^{-1}(\lambda)$$

holds for each $w \in W$, $\lambda \in \Lambda_{\epsilon}$. Thus for each $\epsilon \in \{-1, 1\}^{t}$,

$$\Delta(g_{\epsilon}(w,\lambda))\psi(\Theta_{\epsilon}(w,\lambda))=\psi(\pi_{\epsilon}^{-1}(\lambda)).$$

Hence by Lemma 2.6 and Lemma 1.3 (and using the fact that $\Delta(g_{\epsilon}(w, \lambda)) = \prod_{j \notin J} |\mu_j(g_{\epsilon}(w, \lambda))| |\mu_J(g_{\epsilon}(w, \lambda))|$), we have

$$\int_{\Omega_{\epsilon}} f(l) |\psi(l)| dl$$

$$= \int_{W \times \Lambda_{\epsilon}} f(\Theta_{\epsilon}(w, \lambda)) |\psi(\Theta_{\epsilon}(w, \lambda))| \prod_{j \in J} |\mu_{j}(g_{\epsilon}(w, \lambda))| dw d\lambda$$

$$= \int_{\Lambda_{\epsilon}} \int_{W} (2\pi)^{d} |P_{J}(\pi_{\epsilon}^{-1}(\lambda))|^{-1} f(\Theta_{\epsilon}(w, \lambda)) |\mu_{J}(g_{\epsilon}(w, \lambda))|^{-1}$$

$$\times \Delta(g_{\epsilon}(w, \lambda)) |\psi(\Theta_{\epsilon}(w, \lambda))| |P_{J}(\pi_{\epsilon}^{-1}(\lambda))| (2\pi)^{-d} dw d\lambda$$

$$= \int_{\Lambda_{\epsilon}} \left((2\pi)^{d} |P_{J}(\pi_{\epsilon}^{-1}(\lambda))|^{-1} \int_{W} f(\Theta_{\epsilon}(w, \lambda)) |\mu_{J}(g_{\epsilon}(w, \lambda))|^{-1} dw \right)$$

$$\times |\psi(\pi_{\epsilon}^{-1}(\lambda))| |P_{J}(\pi_{\epsilon}^{-1}(\lambda))| (2\pi)^{-d} d\lambda =$$

$$= \int_{\Lambda_{\epsilon}} \left((2\pi)^{d} |P_{J}(\pi_{\epsilon}^{-1}(\lambda))|^{-1} \int_{W} f(P(w, \pi_{\epsilon}^{-1}(\lambda))) |\mu_{J}(g_{\epsilon}(w, \lambda))|^{-1} dw \right)$$

$$\times |\psi(\pi_{\epsilon}^{-1}(\lambda))| |P_{J}(\pi_{\epsilon}^{-1}(\lambda))| (2\pi)^{-d} d\lambda$$

$$= \int_{\Lambda_{\epsilon}} \left(\int_{O_{\lambda, \epsilon}} f d\beta_{\lambda, \epsilon} \right) |\psi(\pi_{\epsilon}^{-1}(\lambda))| |P_{J}(\pi_{\epsilon}^{-1}(\lambda))| (2\pi)^{-d} d\lambda.$$

COROLLARY 2.8. For any integrable function F on g^*/G , the formula

$$\int_{\mathfrak{g}^*/G} F(O) \, dm_{\psi}(O) = \sum_{\epsilon} \int_{\Lambda_{\epsilon}} F(O_{\lambda,\epsilon}) |\psi(\pi_{\epsilon}^{-1}(\lambda))| |P_J(\pi_{\epsilon}^{-1}(\lambda))| (2\pi)^{-d} \, d\lambda$$
holds.

Proof. The measure m_{ψ} is uniquely determined by the formula

$$\int_{\mathfrak{g}^*} f(l) |\psi(l)| dl = \int_{\mathfrak{g}^*/G} \left(\int_O f(l) d\beta_O(l) \right) dm_{\psi}(O),$$

and, by Proposition 2.7,

$$\int_{\mathfrak{g}^*} f(l) |\psi(l)| \, dl$$

$$= \sum_{\epsilon} \int_{\Omega_{\epsilon}} f(l) |\psi(l)| \, dl$$

$$= \sum_{\epsilon} \int_{\Lambda_{\epsilon}} \left(\int_{O_{\lambda, \epsilon}} f \, d\beta_{\lambda, \epsilon} \right) |\psi(\pi_{\epsilon}^{-1}(\lambda))|^{-1} |P_J(\pi_{\epsilon}^{-1}(\lambda))| (2\pi)^{-d} \, d\lambda. \qquad \Box$$

Set $[\rho_{\lambda,\epsilon}] = K^{-1}(O_{\lambda,\epsilon})$ for $\epsilon \in \{-1,1\}^t$ and $\lambda \in \Lambda_{\epsilon}$. For each nonzero rational function ψ on g^* satisfying $\psi(sl) = \Delta(s)^{-1}\psi(l)$ for s in G and l in g^* , let $A_{\psi,\lambda,\epsilon}$ denote the semi-invariant operator of weight Δ for the irreducible representation $\rho_{\lambda,\epsilon}$ corresponding to the restriction of $|\psi|$ to $O_{\lambda,\epsilon}$. From Corollary 2.8 and Theorem 1.1 the following is immediate.

- THEOREM 2.9. Let G be a connected, simply connected, and completely solvable Lie group. Let $\{Z_1, Z_2, ..., Z_n\}$ be a Jordan–Holder basis for the Lie algebra $\mathfrak g$ of G. Fix a Euclidean measure on $\mathfrak g$, and let the Haar measure da and the modular function Δ be as above. Then each of the following holds.
- (1) There is a finite collection of pairwise disjoint open subsets U_{ϵ} of $G^{\hat{}}$ and there is a subspace V_0 of \mathfrak{g}^* such that for each ϵ , U_{ϵ} is parameterized by a Zariski open subset Λ_{ϵ} of V_0 , $\bigcup U_{\epsilon}$ is dense in $G^{\hat{}}$, and the complement of $\bigcup U_{\epsilon}$ has Plancherel measure zero.
 - (2) Let ψ be any nonzero rational function on \mathfrak{g}^* satisfying

$$\psi(sl) = \Delta(s)^{-1}\psi(l)$$

for all s in G and l in \mathfrak{g}^* . For each ϵ , there is a rational function $r_{\psi,\epsilon}$ on V_0 such that for any smooth compactly supported function ϕ on G, the function

$$\lambda \to \operatorname{Tr}(A_{\psi,\lambda,\epsilon}^{-1/2}\rho_{\lambda,\epsilon}(\phi)A_{\psi,\lambda,\epsilon}^{-1/2})|r_{\psi,\epsilon}(\lambda)|$$

on Λ_{ϵ} is Lebesgue integrable. For any such ϕ one has

$$\phi(e) = \sum_{\epsilon} \int_{\Lambda_{\epsilon}} \operatorname{Tr}(A_{\psi,\lambda,\epsilon}^{-1/2} \rho_{\lambda,\epsilon}(\phi) A_{\psi,\lambda,\epsilon}^{-1/2}) |r_{\psi,\epsilon}(\lambda)| d\lambda.$$

The function $r_{\psi,\epsilon}$ is given by $r_{\psi,\epsilon}(\lambda) = \psi(\pi_{\epsilon}^{-1}(\lambda))P_J(\pi_{\epsilon}^{-1}(\lambda))(2\pi)^{-d}$, where d is the maximal dimension of orbits in \mathfrak{g}^*/G , $J = \{j_1 < j_2 < \cdots < j_d\}$ is the subset of $\{1,2,\ldots,n\}$ given in Theorem 1.2, and P_J is the Pfaffian of the skew-symmetric matrix $[l([Z_{j_r},Z_{j_k}])]_{1 \le r,k \le d}$.

References

- 1. B. Currey, *The structure of the space of coadjoint orbits of an exponential solvable Lie group*, Trans. Amer. Math. Soc., to appear.
- 2. B. Currey and R. Penney, *The structure of the space of coadjoint orbits of a completely solvable Lie group*, Michigan Math. J. 36 (1989), 309–320.
- 3. M. Duflo and C. Moore, *On the regular representation of a non-unimodular locally compact group*, J. Funct. Anal. 21 (1976), 209–243.
- 4. M. Duflo and M. Rais, *Sur l'analyse harmonique sur les groupes de Lie résolubles*, Ann. Sci. École Norm. Sup. (4) 9 (1976), 107–144.
- 5. N. V. Pedersen, *On the characters of exponential solvable Lie groups*, Ann. Sci. École Norm. Sup. (4) 17 (1984), 1–29.
- 6. L. Pukanszky, On the characters and the Plancherel formula of nilpotent Lie groups, J. Funct. Anal. 1 (1967), 255–280.
- 7. ——, On the unitary representations of exponential groups, J. Funct. Anal. 2 (1968), 73–113.
- 8. ——, *Unitary representations of solvable Lie groups*, Ann. Sci. École Norm. Sup. (4) 4 (1971), 457–608.

Department of Mathematics and Computer Science Saint Louis University Saint Louis, MO 63103