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Introduction

Let G be a connected, simply connected and completely solvable Lie group
with Lie algebra g. The dual G~ of G is parameterized by the space ¢*/G of
coadjoint orbits in the dual g* of g via the canonical Kirillov bijection K:
G" - ¢*/G.If £e G" and / € K(£), then there is an analytic subgroup H of G
and a unitary character x of H such that /y =id x (} is the Lie algebra of H)
and such that the representation p(/,§) of G induced by x belongs to the
equivalence class £. Moreover, K is a Borel isomorphism, and the measure
class on G~ which gives the canonical decomposition of the regular repre-
sentation corresponds to the pushforward to ¢g*/G of the Lebesgue measure
class on g*. On the other hand the space ¢*/G can be parameterized (generic-
ally) by an explicit algebraic submanifold X of g*. In this work we describe
the Plancherel measure for G as a measure on X and show that as suchitis a
“rational” measure. The resulting Plancherel formula generalizes the well-
known formula of L. Pukanszky for nilpotent Lie groups.

Recall the Plancherel formula obtained by Pukanszky for nilpotent Lie
groups in [6]. It is shown that there is a G-invariant Zariski open set W C g*,
and a subspace V; of ¢* such that the orbits in W are of maximal dimension,
and such that A=V,NW is a cross-section for the coadjoint orbits in W.
The Plancherel measure is realized as a measure on A. There is a rational
function r(\) on ¥V, which is nonsingular on A and such that the Plancherel
formula is given by

o(e)=| Tr(on(@NIr(V]ax,

where [p,] is the equivalence class in G* corresponding to A€ A, and d\is a
Euclidean measure on V.

The Plancherel formula for exponential Lie groups was obtained by Duflo
and Rais [4]. Of course G is not necessarily unimodular and points in G~ are
not necessarily closed. For each orbit O in g*/G, denote the corresponding
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element of G” by [pp], and the canonical measure on O by 3. The formula
here takes the form

s@)=| TGS 00($)A7E) dmy(O).
Here v is a rational function on g* such that ¥ (s/) = A(s) "1y (/), Ay ois
the operator semi-invariant for p, associated with the restriction of || to
O, and m, is the (unique) measure on ¢*/G such that {. f(/)|¥(/)|dl =
§o76(Jo f dBo) dmy(O). We shall give an explicit description of the measure
m,, by means of a cross-section for (generic orbits in) ¢*/G.

In the solvable case the set of orbits of maximal dimension, and even
the set W as defined by Pukanszky, are too large to admit a smooth cross-
section. However it is shown in [2] that if G is completely solvable then there
is a G-invariant Zariski open subset { C W, and an algebraic subset ¥ C (2,
such that X is a cross-section for the coadjoint orbits in Q that is homeo-
morphic to €/G. The set Q is a finite union of disjoint open subsets €2,
and each of the subsets X=X NQ, of X can be described as follows. There
are subspaces V; and V] of ¢* with ¢*=V,@V;, and for each Q, there is a
Zariski open subset A, of ¥ and a rational function p.: A,— V] such that
X.=graph(p,). Thus, projection onto ¥V parallel to V; defines a rational
diffecomorphism =.: X, — A.. The restriction of the Plancherel measure m,
to 2,./G is then realized as a measure on A,. Let d\ be a Euclidean measure
on V,. The main result of this paper is the following.

THEOREM. There is a real-valued polynomial function Py(l) on g* such
that for each Q. the restriction of my to Q./G is given by

[ (a7 O] Po(m (V)] @

This immediately yields an explicit Plancherel formula. It is

(@) =3 | Tr(Az} %00, (D ATV ON|Po(r O] AN,
€ €

where p, . is an irreducible representation corresponding to 7. !(\). The
function ¢ is as above, and A4 ) . is the operator semi-invariant for p, .
associated with || as above. If G has irreducible representations that are
square integrable (in the strict sense) then each Q, is a G-orbit, V,=(0) and
d\ is just point mass measure.

In the nilpotent case one has 2,=Q and p,=0. Thus A, =X=V,;NQis
Zariski open in A= VN W, and our formula reduces to the Plancherel for-
mula for nilpotent Lie groups derived in [6].

1. Preliminaries

Fix a basis {Z,, Z,, ..., Z,} of g, let g; =spangr{Z,, Z,,..., Z;}, 1= j=<n,and
set go=(0). We choose our basis so that for each j, g; is an ideal in g. Let
e, €, --., €, be the dual basis in g*. For each j=1,2,..., n, define
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gy =1{leg*:g;Cker(/))

and let 7; denote the projection of ¢* onto spangf{ey,e,, ..., e;} parallel to
g}. We denote ad*(X)/ by [X,!], /e g*, X€eg, and we denote the coad-
joint action of G on ¢* multiplicatively. Let p; denote the (0, o)-valued
multiplicative character of G such that se; = p;(s)e; mod(g}) for se G,
and let ;€ g* be the differential of p; (1=<j=n). For each / in ¢*, set gj~=
{Xeqg:forevery Yeg;, I([X,Y])=0}.

Fix a Euclidean measure dX on g, and let da be the left Haar measure on
G such that d(exp X) = jz(X)dX, where

, det(1—e—24X)
Jo(X)= X

Let A be the modular function so that for each b in G, d(ab) = A(b)da. For
each coadjoint orbit O, let 8, be the canonical measure on O (cf. [7, Lemma
6 and Prop. 4]).

In Proposition 1V.4.1 of [8], it is shown that there is a nonzero rational
function ¥ on g¢* such that y(s/)=A(s)~'¥(/), se G, I € g*. Fix one such
function ¢. There is a unique measure m, on ¢*/G such that

|, slwla={ /G(SO 0 dﬁo(l)) dmy(0)
holds for any nonnegative Borel function ¢ on g* [4, Lemme 5.1.7]. For
each O in ¢*/G, let [7o] be the corresponding element of G" and let ¥, be
the restriction of ¥ to O. Let U be the set of all coadjoint orbits O such that

(1) |¢¥ ()| ~'dBo(l) defines a tempered distribution on g,
(ii) ¥ is nonzero, and
(iii) Stabg(/) is nilpotent, for some (hence for every) /€ O.

Then the complement of U has Plancherel measure zero (cf. Lemme 5.2.2
of [4] and the remarks in 5.2.3 of [4]). The character formula for solvable
groups together with the above are used to prove a Plancherel formula for
general solvable type 1 groups (Proposition 5.2.4 and Théoréme 5.2.7 of
[4]). We summarize the main results for the completely solvable case.

THEOREM 1.1. Let G be a connected, simply connected, and completely
solvable Lie group. For each O in U, let A, o be the positive semi-invariant
operator of weight A for wg associated with || (A, ois constructed for np=
p(l,h) with HCker(A) in Lemme 3.2.2 of [4], and is determined up to uni-
tary equivalence by O and |¢| (cf. also Theorem 5 of [3])). Then thereis a
positive Ad(G)-invariant function « on g, such that if O € U then the formula

Tr(A7 2 ro($) A7) = So(a(qboexp))“(l)ltl/(l)l “LdBo(l)

holds for every smooth function ¢ on G with compact support. For each
such ¢ one has

@)= Tz mo(8) A7) dmy(O).
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The results stated in Proposition 2.3 and Theorem 2.4 of [2] provide detailed
information about the structure of g*/G, and our task here is to give a de-
scription of the measure m, in terms of this data. We summarize the rele-
vant aspects of these results as follows.

THEOREM 1.2. Let G be a connected, simply connected, and completely
solvable Lie group. There is a Zariski open subset ! of ¢*, a subset J=
1<J2<+ <Ja) Of {1,2,..., n), asubset o= ji, < ju, <+ < ji,} of J, for
each j in ¢ a real-valued rational function q; (nonsingular and nonvanish-
ing on ), and n real analytic functions P; (1< j<n) in the real variables
Wi, Way ooy Way Iy, 1oy ... Iy, SUCh that the following hold.

(1) For each ee{—1,1}', the set Q. ={leQ:signof g; (I)=¢,, 1<r=1}
is @ nonempty open subset in g*. ’

(2) Define WCRY by W=TIR,, where R,=(0,) if j.€ ¢ and R,=R
otherwise. Let ee{—1,1}" and for we W define eweR? by (ew); =€, w; if
J=Jk, € ¢ and (ew);=w; otherwise. Then for each |l in ., the mapping
w— 3 Pi(ew, l)e; is a diffeomorphism of W with the coadjoint orbit of .
The functions P; also have the properties:

(1) when lis fixed, each function P;(-,1) depends only on the variables
Wi, Wa, ..o, Wy, Where jp=max{j'eJ: j'< j};
(ii) for each | and for each j=jreJ, P; (w,l)=wi(w;, Wy, ..., Wx_1),
and if j, & ¢ then P; = wy; and
(iii) for each j, and for each fixed w, Py(w, -) is a G-invariant function
on 1.

(3) Define subspaces Vy and V,, of g* by Vo=spangie;:i¢ J} and V,=
spangfe;: j€ ). Then the set L={le(Vo+V,)NQ:|q;())|=1, jeop}isa
cross-section for the coadjoint orbits in Q. For each j in ¢, the rational func-
tion q; is of the form q;(I)=1;+p;{l},15,...,1;_1), where p is a rational
Sfunction, and q; is G-semi-invariant with multiplier ;.

(4) For each 1€ Q let e(I)e {—1,1}! such that |l Q.- Then the mapping
P: Wx¥X—Q, defined by P(w,l)=2%; Pi(e(l)w, l)e;, is a diffeomorphism.

The above also follows from Proposition 2.7 and Theorem 2.8 of [1]. It fol-
lows from Theorem 2.9 of [1] that the cross-section ¥ is a submanifold of
g*. If (but not only if) G is nilpotent, then ¢ =@, in which case it is under-
stood that 2, = Q. For nilpotent groups, a version of the above theorem was
first given by Pukanszky in Proposition 11.4.1 of [8].

The procedure for constructing the objects in Theorem 1.2 resembles the
proof of Proposition II.1.1 of [8]. It was shown in Lemma 1.1 of [2] that for
each j in J there is a rational function r;: @ — g, with r;(/) e g/ _; ~ g} and

[r;(1),1]=e; mod(g}

foreach /in Q. Foreach j,eJ, k=1,2,...,d,set g;(#,!)= exp(tkrjk(l)) and
set g(t,1)=g(t;, 1) gx(t2,1)... g4(t4, 1), for t e RY. Denote by g, the diffeo-
morphism of R? with G/ given by o,(f) = g(¢,!)I. Write 0,(¢) = X;Q;(t, e
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for t € RY. The properties of the functions Q; allow the successive definition
of wy and expression of ¢, in terms of w;, w,, ..., wy, k=1,2,...,d. Thusin
Proposition 2.3 of [2], for each / we obtained a function ®(-,/): W—-R¢
such that £, = ®,(w, /) is defined explicitly for each &, and the functions P;
are obtained explicitly as P;(ew, /)= Q;(®(w,/),/) for/inQ,and 1< j=<n.
Thus for /e Q2 and w e W, one has

P(w,l)=og,(P(w,])).

For each / in g* let d3; denote the canonical measure on G!. For / belong-
ing to the cross-section X, we shall compute dg, in terms of the coordinates
(W, Wy, oo, W) €W,

Fix / in . Then ®(-,/): W— R is an analytic difffomorphism. Let dw
denote Lebesgue measure on W. Let P,;(/) denote the Pfaffian of the matrix
U(Z),, ZiD)1<r, k<a; then Py(l)#0 for each /€ Q. For each s in G, define

pr(s)=1I1jc s ni(s).

LEMMA 1.3. For each $3;-integrable function f on Gl,

|,/ dBi=@m|Py)| ! ﬁW SO, D)y (82w, 1), 1)~ aw.

Proof. The proof is a simple application of Lemma 2.1.3 of [5], from which
we have that

Lo 7 81= @Y PLOI | S0 T Iy, 0] 7 ...l

holds for any ,-integrable function f on G/. Hence for each such f, we have

| ras,
GI
=@m|PDI 7| S(PO% D) T L (2w, D, D) (D]

where J4 (/) is the Jacobian matrix of ®(-,/). It remains for us to compute

|Jo(1)].

Foreach k=1,2,...,d, ®,(w, ) depends only on the variables wy, w,,...,
wy. In fact, let w=(w;, w,,...,w;) € W and let ¢ = ®(w, /). From the con-
struction in Proposition 2.3 of [2], if j, ¢ ¢ then

Wie=Q; (1, 1) =p;, (8121, ) &alt2s 1) oo 81 Ug— s D) i+ S(2, Ly vy L1, 1)
and hence
=D (W, 1) = ), (81(21(W, 1), 1) g Do (W, 1), 1) ... 8y (i1 (W, 1), 1)) '
modulo (wy, Wy, ..., Wi_y). If j=ji=ji € ¢, then

Wi =€) pn; (81(41,1) g2(12,1) ... gty ) g (™!

= p;, (81(t1, ) 82(12, 1) ... gx(ths 1))
=p; (8121, 1) 82(t2, 1) ... g 1(tr -1, 1)) exp(Lie (1)),
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where we have used the fact that g;(/) =y;(r;(/)) =¢,(/) since /e .. Hence
&, (w,l)=¢€,(1)In(wy)

modulo (wy, wy, ..., Wr_1). It follows immediately that

VoD = II |1 (8:1(1(w, 1), 1) g2 oW, 1), 1) .. gr—1(B_1(w, 1), )] 7"

JE e
X IT |, (g1(@1(W, 1), 1) 2( o (W, 1), 1) ... gi(By(w, 1), 1)) 7.
Jkee
By Proposition 1.3 of [2], if j ¢ ¢ then v;(r;(/)) =0, and so from the formula
above we have
[Je(D]= IT |n; (82, (w, 1), )| 7",

k=r

Thus |[Jo(N)] Ik < ,|p;, (82w, 1), 1) 7' = |y (g(@(w, 1), )| . O

2. Computation of the Plancherel Measure

Fix a Euclidean measure d/ on g* suitably normalized so that, for any con-
tinuous compactly supported function f on g,

fo=|_fua,

where f(/)={, f(X)e"X) dX. Since Q is Zariski open, the complement of
Q has measure zero, and by Theorem 1.2 we have the explicit diffeomorphism
P: Wx X — Q. The general idea is to compute |¢(/)| d/ in terms of a product
measure on Wx X, where ¢(/) is a rational satisfying y(s/) = A(s) "1y (/)
for each s in G, and then to use Lemma 1.3 to read off the measure m, as a
measure on X. First we determine global coordinates for X.

If the subset ¢ of the index set J introduced in Theorem 1.2 is empty, then
¥ = V,NQ and coordinates for X are obtained by identifying ¥, with R”~¢,
On the other hand, suppose that ¢ # @, and let ¢ be the number of elements
in ¢. Recall that, by part (1) of Theorem 1.2, for each ee {—1,1}! there is a
nonempty open subset 2, of Q such that Q is the disjoint union of the sets
Q.. Let ee {—1,1}" and set £, =X NQ,. From parts (1) and (3) of Theorem
1.2 we have

L={e(V,®V,)NQ: for eachj=jkre o li=e,—pily, 1oy L1},

where, for each j in ¢, p; is a rational nonsingular function on 2. From
now on we assume that ¢ 7 @; the modifications for the case ¢ =@ amount
to little more than dropping the subscript e, and we leave them to the reader.

LEMMA 2.1. Let e€ {—1,1}". Then there is a Zariski open subset A, of V,
and a rational function p.: A.— V, such that ¥ = graph(p,).
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Proof. Write {1,...,n}~J={i|<i;<---<i,_4} and for A€V, write A=
Yo A€ - Define the rational function p, as follows. Let j be the smallest index
in ¢, and let i, be the largest of those indices i ¢ J such that i < j. Then pj is
a function of the variables A, Ay, ..., N; . Set p. j(N) =€;—pj(A, Ngsoeis N ).
(If j=1, then p;=0 and p, ;(\) =¢,.) Now let j = j; € ¢ and assume that
De,j-(N) is defined for all j'e ¢, j'<j. For each i<, set [;(A)=N, if i=
ip€J, I;(N)=p. i(N) if i € ¢, and /;(\) =0 otherwise. Set

Pe,ij(N) =€, —pi(1i(N), [L(N), ..., [;_1(N))

and
pe(x):: E pe,_]()‘)ej
jeo
Set A,.={Ne V,: p.(N) is defined at Aand (N, p.(N\)) € Q); A_is a Zariski open
subset of V. It follows from the definition of X, above that £, = graph(p,).
]

Thus projection of X, into Vjparallel to ¥V, defines a rational diffeomorphism
7. of ¥, with A.. For Ae A, let O, . denote the coadjoint orbit through
x'(N\), and let B, . denote the canonical measure on O, ..

Identify ¥, with R"~¢ via the basis {e;: i ¢ J}, and let d\ denote the Le-
besgue measure on V. (If V;=(0) let d\ be point mass measure.) Define
0. WxA,~Q, by O,(w,\)=P(w, w;!(\)). Then O is a diffeomorphism,
and for each integrable function f on g* we have

| soa={ qwa= 5 | o

ec|—1,1}¢ €
and

| rwar={ — ©.m Mo 0r Nl dwar,
Q. WxA,

where Jg (w, \) is the Jacobian of ©,. We need to compute lJee(w, N)|; to
do this, we shall need several preliminary results which will provide detailed
information about the mapping ©..

For each / in Q, set po(Z,/)=Z. In [2], integers i, j(i;) € J are defined
foreach k (1=k=d/2), and in Lemma 1.3 of [1], a function p;: gXx Q2 —gis
defined for each k (1 < k <d/2) recursively. In the completely solvable case
the recursion formula for p; is simply

PilZ, )= pp—(Z,1)—ci(Z, 1) pp(Z;,, ) = A (Z, 1) px_1(Z 3, 1)
where ¢, (Z,!) and d;(Z,!) are given by
I([Z, Pk—l(zj(ik), 31}
I pk—(Z;, 1)y pr—1(Zj(iyy, 1)
[Z, px-1(Z;,, D))
I pk—1(Zjiys 1) pk=1(Z3s DD

cx(Z,1)=

di(Z,1) =
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For each Z in g, /= p;(Z,!) is a rational function. As is shown in [1], the
functions p; have the properties that, for each / in Q, I([px(Z,]),W]) =
IUZ, pp(W,1)]) and pi(pi(Z,1),1)=pi(Z,1) for any Z and W in g. For
each k, one has i, <j(iy) and J={iy,is,...,0iq/2, J(i1),J(i2), ..., jigs2)}-
The connection between the functions {p;: 1<k <d/2} of [1] and the func-
tions {r;: jeJ} of Lemma 1.1 of [2] (cf. the remarks preceding Lemma 1.3
above) is that for each k¥ (1<=k=<d/2) and each / in Q,

Pr—1(ZjGiy, 1)
I(Z;s pk—1(Zjiy, D))

ri ()=
and
pk—l(zik: l)
l([Zj(ik)a Pk—l(Zik, ny-

For each k¥ (1=k=<d/2) and for each i,j (1<i,j=<n), set pi ()=
I([pr(Z;, 1), Z;]) for [ € Q. We have the formula

Pij, kD)= Di j k1) —c(Z;, DY Diy j kD) = Ak (Z3, D) Py, k=17 -

i) =

LEMMA 2.2. Foreveryi,jsuchthat1<i< j<n,and foreachk, the func-
tion p; ; (1) depends only on w;(I).

Proof. We proceed by induction on k. Since po=1id, the lemma holds for
k =0. Suppose that for every 1 <i < j=n, the function p; ; ,_(/) depends
only on 7;(/), and fix such indices i and j. We consider three cases.
(1) i <iy. Then p(Z;, 1) = pr_1(Z;,1), and hence p; ; (1) = p; j x-1(!).
(i1) iy <i< j(iy). Then dy(Z;, 1) =0, hence

PilZis 1) = pr—(Zi, 1) — i (Z;, 1) pre—1(Z;,, 1)

By induction, each of the functions / — ¢;(Z;, 1), Diy,jk—1() and p; ; x1(/)
depends only on m;(/), hence p; ; ,(/) does also.
(iii) i > j(iy). Here we apply the induction hypothesis to each of the func-

tions / = ¢, (Z;, 1), | > di(Z;, 1), pi,jk-1(0), Diy,j, (1), and pj;y ;1 (/), and
thus p; ; (/) depends only on ;(/). ]

LEMMA 2.3. Let k be a positive integer, 1<k=<d/2, and let i and j be
integers belonging to the set

{1323 veey n} -~ {ilsi2’"'9iksj(il)sj(i2)’"'9j(ik)}9 I¢J'

Then there is a rational functional q(1) depending only on w;_(l) such that
Di,j. k() =—vj(pi(Z;, D)) +q(l). Moreover, the function [ — v;(p(Z;,1))
depends only on w;_(1).

Proof. We proceed by induction on k&, the lemma being clear for the case
k = 0. Suppose that £ >0 and that, for any integers i/ and j belonging to

(,2,...,n}~{i,ip, ey ix_1, J1), J(iR),s eeny JUk—)}, %],
we have p; ; (1) =—v;(px(Z;, D))+ q(l), with g(/) and vy;{(px(Z;, 1)) as in
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the hypothesis. By Lemma 2.2, we may assume that i > j. As in the previous
lemma, we consider three cases. 4 k

(i) j <iy.Then py(Z;,1) = pr_1(Z;,1), hence p; ; (1) =Ip(Z;, 1), Z;])=
I([Z;, p6(Z;, N])=UZ;, p—1(Z;, D)) = U[px-1(Zis 1), Z;1) = Di j, k-1 (D).
The lemma follows from the induction hypothesis.

(i) ix <j<j(ip). Here we have p; ;. (/)=0. By Lemma 2.2, /-
d.(Z;,1) depends only on 7r,-k(l), hence only on ;_;(/). If i <j(i), then
di(Z;,1)=0, and hence p; ; (/)= p; j x—1(/). Suppose that i > j(i;). Then
applying the induction hypothesis we have rational functions g, and g, de-
pending only on m;_,(/) such that

Pij k1) == (pr_1(Z;, IN;+qo(1), Djgiyy, j k1D
= —Yj(pr-1(Zj(ipy, N+ a1 (]).
Now
Dij kD) =Di j kD) —di(Z;, D) Pjiiyy, j, k—1(1)
== (v (ok-1(Zi, 1)) — di(Z; 1) v (pr-1(Ziiyy» D]
+qo(l)—di(Z;, 1) g, (1)
=—vj(o(Z;, i+ qo(D)—di(Z;, 1 g1 (]).
By induction the functions v;(px_1(Z;,/)) and v;(px—1(ZjGi,, 1)) depend

only on m;_;(/), hence y;(px(Z;,!)) depends only on =;_,(/). We define
q(l) by q(l)=qo(l)—dr(Z;, 1) q,(]).

(iii) j > j(i). In this case we have that di(Z;,!) and c;(Z;,/) depend
only on 7;_;(/) (by Lemma 2.2). Applying the induction hypothesis to each
of the functions p; j x—1(!), pi,, j k—1(0), and p;(;,y, j, k—1(/), we have rational
functions gy, g;, and g, depending only on 7;_;(/) such that

Pij k() =Dij D)= (Zi, D Py, j k1) = A (Zi, D Py, j, ke—1(0)
= —=(vj(or-1(Z;s 1)) — i Z;, Dy vj(pr—1(Z; s 1))
—dil(Zi; D vilok—1(Zjiy IV
+qo(l)—ci(Z;, (1) —di(Z;, 1) q5(])
== (ox(Zi, D)+ qo(l) — cr(Z;, 1) g (1) — di(Z;, 1) g, (1)
By induction we see that the functions v;(px—(Z;, 1)), Yilor-1(Z;,, 1)), and

Yi(pr-1(Zj,» 1)) depend only on m;_;(/), hence v;(0x(Z;, 1)) depends only
on m;_;(/). The function g(/) is then defined by

ql)=qo(l)—ci(Z;, 1) g, (1) —di(Z;, 1) gy(1). O

COROLLARY 2.4. Let j,€Jand let i be an integer such that 1 <i < j, and
igJ. Then p;(gi(Pr(w,1),1))=1 holds for every win Wand I in Q.

Proof. Since i < ji, I([r; (!}, Z;]1) =0 holds for each / in 2. Now by defi-
nition of rjk(l), there is j” in J such that for each /, rjk(l) is a multiple of
pi—1(Z;, 1) and hence p; ; _;=0o0n . Since Q is dense and open, Lemma 2.3
implies that 'y,-(pk__l(ij, 1)) =0. Thus 7,(rjk(l)) =(0and ,u,,'(gk((l)k(w, 1), l))=
exp (P, (w, l)’Yi(”jk(l))) =1. O
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COROLLARY 2.5. Letig¢J, 1<i=<n. Then P;(w,l) is of the form

Pi(w, 1) =pi(g1(P1(w, 1), 1) g2(Pa(w, 1), 1) ... g1 (Pr(w, 1), 1))
+R,’(W1,W2, cery Wiy [1,12, "'911'—1)’

where k is such that j, <i< jii1.

Proof. Here we use the following principle: If / — X(/) is a rational function
from Q into g; such that /— /(X (/)) depends only on w;(/), then /— X(/)
depends only on =;(/). It follows from this and from Lemma 2.3 that, for
each j in J and for any i (1<i<n), there is a function Y from Q into g;_,
such that for each / in Q,

[rj(l)s Zt] = —'Yt(rj(l))zt+ Y(Il’ 12’ seey li—l)-
Hence by Lemma 2.2 and the above, for each # there is a function Y, from
Q into g;_; such that for each / in Q,
ad" ry(I)(Z) = (=i (r;(UM"Zi+ Y, (11, [y, ..y i)

It follows that for each i (1 <i<n), and for each t e RY, Q;(¢,1) = 0,(t)(Z;)
depends only on =;(/); hence, for each r (1<r<k), ®,(w,/) depends on
the variables wy, w,,..., w, and Iy, /,,...,/; only. Hence there is a function
y=y(W{, Wy, e, Wi, I, I, ..., [;_1) into g;_; such that
Ad(g (R, (W, 1), 1) g2(Ro(w, 1), 1) ... gp(Br(w,1),1))"'Z;
= 11 (@1 (W, 1), 1) g2(@2(W, 1), 1) ... 81(B W, 1), D) Z;
+y(W1, Waseee; Wi, ll’ 127 tee li—l)-

From this we see that

Pi(w, )= 0/(®(w,1))(Z))
=I(Ad(g,(®,(W, 1), 1) g2(P2(w, 1), 1) ... ge(Br(W, 1), 1)) "' Z))
has the desired form. O

We can now compute |Jo (w, N)|. For the remainder of the paper we sim-
plify notation as follows. When e € {—1, 1}is fixed, and for each w in W and
Nin A, set ®,(w,\) =®(w, 77 1(\)) and g.(w, \) = g(P.(w, \), 77 1(N)).

LEMMA 2.6. Let e {—1,1}". Then |Jg (W, N\)| = I1;¢ sl (g8 (w, N)|.

Proof. Fix j, 1= j=n. We write {1,...,n}~J={i|<i,<---<i,_4} and
use the following notation. Set w/~!= (w,, w,, ..., w,_,) where k is such
that j,_, <Jj < jx, and set N ~1=(\;, A, ..., Ax_1) where k is such that i, _; <
J=ix. Write © .(w,\)=2%; ©.(w,\),e;. To see that
|JeE(W, )\)| = H I:uj(gf(wi )\))l ’
je&J

one need only look at each ©.(w,\);. Suppose first that jeJ, j=j. If
J ¢ ¢, then © (w, \);=w;, while if j e ¢ and j=j; then
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O.(w,\);=€,w;, mod(w/~!, M),
Now suppose that j ¢ J. By Corollary 2.4, we have

#J(g(w’ l)) = :u'j(gl(w’ l)gZ(w: 1) e gk(wa l))s
where k =max{k’: j,- < j}. Hence by Corollary 2.5,
O (w,\); = pu;(g(w, ))N\; mod(w’/~, V1), O

Let ¢ be any rational function on g* as in Theorem 1.1, so that

Y(sl)=A(s) ()

for each s in G and each / in ¢*

PROPOSITION 2.7. Let e€{—1,1}. Then for each continuous function
fon Q, having compact support, we have

Jo, SOl di= XAGGO

Proof. By Lemma 2.6 we have

dex,e)lsb(vr:‘(M)l -1| P, (xS 2m) 4 M.

A€

Jo, =1, 7O ) T itew M dway

for each e {—1, 1}*. Now
Oc(w, N) = P(W, 7 (\) = 05109 (R (W, N) = 2w, N7 (V)
holds for each we W, A€ A,. Thus for each ee {—1, 1},

A(g (W, ) (O (w, \)) = ¥ (w71(N).

Hence by Lemma 2.6 and Lemma 1.3 (and using the fact that A(g.(w, \)) =
IT; ¢ 7| (8w, N)|| (8 (W, N))]), we have

|, solvolar

=S SO W, MO (w, N)| TI |n;(g(w, \))| dwd\
WxA, jer

=| | @OUPxI 0N A® 0w, My (g, W)

X A(g (W, MY (Oc(w, M)|| Py(w (W) (27) = dw d\

=, ((2vr>d|P,<7r;‘<x>)| R CYCRVIPTEATEY b dw)

X[ W(x T O PAxT )| (27) " dh=
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=, ((27r)drp,(1r;1<x»| T PO Oy (e W) dw)
X [ IO (r 'O (2m) 4 a

= SA (SO J dﬁx,6>|¢(7r:‘(>\))|IPJ(we-l(x))p(zw)“d dX. ]
€ X\ €
COROLLARY 2.8. For any integrable function F on ¢*/G, the formula

|,/ F(©@ dmy0)=5 | (0, )W(x O] [Ps(r )] 2m) ¢ )

€

holds.

Proof. The measure m, is uniquely determined by the formula

|, folwwldr={ /GGO ) dﬁo(l)) dmy(0),

and, by Proposition 2.7,

|, FOl)al
=3 | sopola

zg XAE(SOx,E fdﬁ"’f)w(“f_l()‘))l—IIPJ(WE_I(M)I(ZW)“"d)\. m

Set [py, J=K 10, .) for ee {—1,1}' and N e A,. For each nonzero rational
function y on' ¢* satisfying y(s/) = A(s) ~'y(/) for s in G and [ in g¢*, let
Ay, denote the semi-invariant operator of weight A for the irreducible
representation p, . corresponding to the restriction of |¢| to O, .. From
Corollary 2.8 and Theorem 1.1 the following is immediate.

THEOREM 2.9. Let G be a connected, simply connected, and completely
solvable Lie group. Let {Z,,Z,,...,Z,} be a Jordan-Holder basis for the
Lie algebra g of G. Fix a Euclidean measure on g, and let the Haar measure
da and the modular function A be as above. Then each of the following
holds.

(1) There is a finite collection of pairwise disjoint open subsets U, of G~
and there is a subspace V,, of g* such that for each e, U, is parameterized by
a Zariski open subset A, of Vy, U U, is dense in G”, and the complement
of U U, has Plancherel measure zero.

(2) Let Y be any nonzero rational function on g* satisfying

w(sl)=A(s)"Y(/)

Jorallsin G andlin g*. For each e, there is a rational function ry . on V, such
that for any smooth compactly supported function ¢ on G, the function
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N> Tr(A 2 oy, () AT D)y, (V)]
on A_is Lebesgue integrable. For any such ¢ one has

2@=3 | Tr(az} %0y, (8)AZX 2 ry, V)] dN.

The function ry, . is given by ry (N) = (77 (N) Py(w 7 (V) (27) ~%, where
d is the maximal dimension of orbits in ¢*/G, J={j;<j,<::- < jy} is the
subset of {1,2,...,n} given in Theorem 1.2, and P, is the Pfaffian of the
skew-symmetric matrix [/([Z; ,Z; D]i<r k=<a-
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