3-Dimensional Bordism
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In [10], C. Rourke gave an elementary proof of the following.

THEOREM 1 (Rohlin [9], Thom [11]). Q3° =0 (every closed oriented 3-
manifold M is the oriented boundary of a compact oriented 4-manifold).

Rourke’s proof is by induction on Heegaard genus. He shows that if the
genus of M is nonzero, then M is bordant to a disjoint union of manifolds
of lower genus. The bordism is achieved by surgery on a carefully chosen
link lying in the splitting surface of a Heegaard decomposition of M.

In this paper we show how to generalize Rourke’s argument to give ele-
mentary proofs of the following two theorems.

THEOREM 2 (Rohlin [9], Thom [11]). Q9 =0 (every closed 3-manifold is
the boundary of a compact 4-manifold).

THEOREM 3 (Milnor [6; 7]). Q35P™ =0 (every closed spin 3-manifold is the
spin boundary of a compact spin 4-manifold).

Compare Lickorish [5] for Theorem 2 and Kaplan [4] for Theorem 3.

The proof of Theorem 3 (or in particular Assertion 3, which is the chief
contribution of this paper) gives an explicit construction of a family of sim-
ply-connected spin 4-manifolds with a given spin 3-manifold boundary. It
is hoped that this family will be useful in the study of smooth closed simply-
connected 4-manifolds and of invariants of 3-manifolds.

0. Preliminaries

We shall work in the smooth category. A framing t of a trivial vector bun-
dle € is a homotopy class of trivializations of ¢, that is (up to homotopy) a
list #,..., ¢, of r =rank(e) linearly independent nonvanishing sections of e.
Write t=[¢,...,¢,].

Let M be an m-manifold. A framing of the restriction of the tangent
bundle of M to a subset Z will be called a tangential framing of Z (in M). In
particular, a spin structure on M is (for m > 2) a tangential framing of
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M@ the 2-skeleton of some triangulation of M. See Milnor [7, p. 202]. M
together with a spin structure s =[sy, ..., s,,] is called a spin manifold. We
say that M is the spin boundary of a spin manifold W (with spin structure
S =[S, S1,...,S,]) if M =0W and S|M =s (i.e., (Sy,...,S,) | MP and
(815 ---» S;) are homotopic). Spin manifolds M and N are spin bordant if the
disjoint union M U(—N) is a spin boundary. (Note that a spin manifold M
hasla natural orientation—i.e., tangential framing of M(® which extends to
M ).)

Let Z be a submanifold of M with trivial normal bundle ». A framing of
v will be called a normal framing of Z (in M). If in addition Z is embedded
with trivial normal bundle in a submanifold F of M, and F has trivial nor-
mal bundle in M, then any framing of » obtained by juxtaposing normal
framings of Z in F and F in M will be called a natural framing of Z in M
(relative to F).

Now let Z be a normally framed link of spheres in M. Denote by M(Z) the
manifold obtained from M by surgery along Z. If M lies in W, then write
W for W with handles attached along Z. Observe that d(W;) = (W) (Z).
In particular, M and M(Z) are bordant, since MU(—M(Z)) = 0(M X1zy,).

If M is spin and dim(Z) > 1, then M(Z) can be given a spin structure for
which M and M(Z) are spin bordant. For example, if M is a connected sum
P #Q with splitting sphere Z, then M(Z)= P UQ inherits a spin structure
by restriction (since (P UQ)® lies in (P#Q)®), and it is easily verified that
P#Q and PUQ are spin bordant.

For Z 1-dimensional, M(Z) need not have a spin structure. There is, how-
ever, the following presumably well-known result. We state it for 3-mani-
folds (for use in our proof of Theorem 3) although it holds in higher dimen-
sions as well. A proof is given in the appendix.

DEFINITION. A normally framed circle z in a spin manifold M is spin if
its framing n is incompatible with the spin structure s on M (i.e., if t #s|z,
where t is obtained from n by adding the oriented tangent to z).

LEMMA 0. Let Z be a normally framed link of circles in a spin 3-manifold
M. If each component of Z is spin, then M(Z) has a spin structure for which
M and M(Z) are spin bordant.

1. Rourke’s Proof

Let F be a closed oriented surface and let x be a curve (i.e., a smoothly em-
bedded circle) in F. Write [x] for the class of x in H,(F'; Z,). We say that x
is essential if [x]# 0 (equivalently, if x is nonseparating). Two curves in F
are dual if they intersect transversely in exactly one point. Note that curves
which have duals are essential.

A union X of disjoint essential curves in F is called a complete system of
curves in F if F(X) is a sphere (for either normal framing of X'). Two trans-
verse complete systems are dual if they have a pair of dual components.
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REMARK 1. Every essential curve in a closed oriented surface is contained
in a complete system of curves (by the classification of surfaces).

A Heegaard diagram of genus g is a triple (F, X, Y), where X and Y are
transverse complete systems of curves in a closed oriented surface F of genus
g. Associated with the diagram is an oriented 3-manifold Fy y, obtained
from FXIyyouyx: by capping off the boundary 2-spheres (X and Y are
complete) with 3-balls. (Observe that F sits naturally in Fy y as F X {1/2}.)
Every closed oriented 3-manifold M arises in this way, and the minimal
genus of a diagram for M is called the genus of M. Note that if X and Y
are dual, then the genus of Fy y is less than the genus of F, by a standard
handle cancellation argument.
Theorem 1 follows from the following.

LEMMA 1 (Rourke). Let F be a closed oriented surface, and let X and Y
be transverse complete systems of curves in F.
(a) For any complete system of curves Z in F (transverse to X and Y and
naturally framed in Fx y),

Fxy(Z)=Fx z#Fzy.

In particular, Fy y and Fy ; UF; y are bordant.
(b) There exists a sequence Z,, ..., Z, of complete systems of curves in F,
each dual to the next, with Zo=X and Z,=Y.

Lemma 1(a) is Rourke’s Lemma 1. The proof is easy: The surgery on Fy y
replaces each framed circle z =S'x B? of Z by B?x S'. But B>x S! can be
viewed as the union of two 2-handles B2 x S. , one attached to FXx[0,1/2]xxo
and the other to Fx[1/2,1]y,,; along z X {1/2}. This yields the desired con-
nected sum with F(Z) as the splitting 2-sphere. The last statement follows
from observations in Section 0. Lemma 1(b) is immediate from the follow-
ing assertion and Remark 1.

ASSERTION 1. Let F be a closed oriented surface. If x and y are trans-
verse essential curves in F, then there exists a sequence 2, ..., 2, of essential
curves, each dual to the next, with zo=x and z,=y.

This is in essence Rourke’s Lemma 2. We prove a more general statement in
Assertion 2 below.

Proof of Theorem 1. Let M be a closed oriented 3-manifold, and let (F, X,Y)
be a Heegaard diagram for M of minimal genus g. If g =0, then M =S*=
dB*, so assume g > 0. Choose a sequence Zy, ..., Z, of complete systems as
in Lemma 1(b). Applying Lemma 1(a) inductively, we see that M =Fy y
and N=Fz, 7/U---UFz, _ - are bordant. But each Fz,_, 2 has genus less
than g (since Z;_, and Z; are dual) and so, by induction, bounds a 4-mani-
fold W;. Thus N=a(W;U--- UW,) and so M bounds.

REMARK. An isotopy class of a complete system of curves is called a cut
system. In [2], Hatcher and Thurston introduced a 2-complex X,, whose
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vertices are the cut systems on a surface of genus g, and showed (using Cerf
theory) that X, is connected and simply connected. From this they derived
a finite presentation for the mapping class group of the surface. Assertion
1 yields an elementary proof, by induction on g, of the connectedness of X,.
This, in turn, yields an even more direct proof of Theorem 1.

2. The Unoriented Case

To extend the result of Section 1 to the unoriented case, we must consider
Heegaard diagrams (F, X, Y) of genus g for nonorientable 3-manifolds (see,
e.g., Hempel [3]). F is taken to be a closed nonorientable surface of genus g
(i.e., a connected sum of g =1 Klein bottles), and X and Y are transverse
complete systems of curves on F, defined as in Section 1 with the appro-
priate modified definition of essential curves: An essential curve in F is a
nonseparating 2-sided curve x with [x]# w when g > 1, where w € H{(F; Z,)
is the dual of the first Stiefel-Whitney class of F. (The condition [x]# w is
equivalent to the nonorientability of F—x.) By the classification of surfaces,
once again, one has the following.

REMARK 2. Remark 1 holds for arbitrary closed surfaces.

The definition of Fy y is exactly as in Section 1. One readily verifies that every
closed nonorientable 3-manifold is diffeomorphic to some Fy, y. With these
definitions, Lemma 1 goes through in the nonorientable case.

LEMMA 2. Lemma 1 holds for arbitrary closed surfaces.

The proof of 1(a) is unchanged, and 1(b) is a consequence of the following
Assertion and Remark 2. (It is here that the condition [x]# w for curves in
X and Y is used.)

ASSERTION 2. Assertion 1 holds for arbitrary closed surfaces. [ This result
is used in a forthcoming paper by D. Gabai and the second author on the
classification of maps of nonorientable surfaces.]

Proof. Let x-y denote the number of points of xNy. If x-y =0, then write
x#y for any band sum of x and y along an arc disjoint from xUy. In
general, write x+y for the double point sum of x and y (with respect to
any choice of orientation), obtained from xUy by smoothing the double
points (see Figure 1). Note that [x#y]=[x+y]=[x]+[y]. Thusif x#y or

4
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Figure 1
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x +y is an essential curve and x and y are 2-sided, then x or y is essential as
well.

If x-y =0, then we show how to find an essential curve z dual to both x
and y, provided g >1. (If g=1 then x=y.) It is easy to find some curve 2
dual to both, as neither separates F. (In particular, [z]#0.) If z is 1-sided,
then a regular neighborhood of xUyUz is a twice-punctured Klein bottle
(Figure 2). It follows that F— (xUyUz) is nonorientable, since both F—x

Figure 2

and F—y are nonorientable. Thus z may be modified (by band summing
with a 1-sided curve in F—(xUyUz)) to become 2-sided. Finally, arrange
that [z]# w by using x+z in place of z if necessary.

If x-y=1, then x and y are dual and there is nothing to show.

Now assume that x-y > 1. A curve z (transverse to x and y) with x-z and
y-z both less than x-y will be called admissible. 1t suffices by induction to
find an admissible essential curve.

A component of y —x will be called a singular arc of y if its endpoints are
oppositely oriented, in the following sense: A choice of orientations on x
and y yields orientations on the endpoints of the arc, and these can be com-
pared within a regular neighborhood of x, which is orientable since x is 2-
sided. Similarly define the singular arcs of x.

Now let y; be a component of y—x and N be a regular neighborhood of
xUy,. There are evidently four possibilities for N, shown in Figure 3(a)-(d).
These can be classified by the orientability of N (distinguishing (a) and (b)
from (c) and (d)) and the singularity of y, (distinguishing (a) and (c) from
(b) and (d)).

For (a) and (b), consider the admissible 2-sided curves z and z’ shown,
with x =z #z’ in (a) and z+z’ in (b). Since x is essential, either z or z’ is as
well. For (c) we have [z]=[x], and so z is 2-sided and essential (and evi-
dently admissible). Finally, case (d) reduces to (a) or (c) by swapping roles
of x and y, as it is evident that some arc of x is singular. The proof of the
assertion is complete. Cl

Theorem 2 now follows as in Section 1, except that (in the nonorientable
case) the induction begins with genus 1 when M =S8!X5?=493(S'XB3) (cf.
Hempel [3]).
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3. The Spin Case

Let F be a closed oriented surface in a spin 3-manifold M, and let x be a
curve in F naturally framed in M (relative to F). It turns out that x is spin
if and only if [x] lies in the kernel of a certain quadratic form on H,(F; Z,).
(See, e.g., [1, pp. 54-56] for a general discussion of Z,-valued quadratic
forms.)

To be precise, set f(x)=1if x is spin, and f(x) =0 otherwise (for each
curve x in F). Extend f to a Z,-valued function on the set of all embedded
I-manifolds in F by summing over components. Now define

q(x)=f(x)+]|x| (mod2),

where |x| denotes the number of components of x. Thus a curve x is spin
if and only if g(x) =0, by definition.
The following result is essentially due to Pontryagin [8, pp. 103-106].

PROPOSITION. q defines a quadratic form on H,(F;Z,). That is, q(x) =
q(») if [x]1=1[»], and (for x and y transverse)

(* q(x+y)=q(x)+q(y)+x-y (mod2).
In particular ( for x and y disjoint), q(x#y)=q(x)+q(y).

Note: The + on the left side of the equality in () denotes double point sum,
and - denotes geometric intersection number (see the proof of Assertion 2).

Proof. Evidently,
1 Sfx+y)y=f(x)+1(»).
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Furthermore, it is not hard to show that

Q) f(x)=|x| (mod2) if [x]=0
and
3 |x+y|=|x]+|y|+x-y (mod2).

For (2), let S be a surface in F with dS =x. Note that the mod 2 Euler
characteristic x(S) of S is the obstruction to extending the natural stable
framing of 8S to a stable framing of S. Thus f(x) = x(S). But x(S)=1a5|
(mod 2), and (2) follows.

For (3), embed x Uy in F x I with x in F X0 and y in F X 1. Now alter this
embedding to an embedding of x+y in F X I by a sequence of x-y ambient
surgeries, one for each double point of x and y in F. Each surgery changes
the number of components by one, and so (3) follows.

It is now evident that g is well defined on H,(F'; Z,). For if [x] =[y], then
[x+y]=0and x-y=0, and so

Sx)+f()=f(x+y) by (1)
=|x+y| by (2)
=|x[+|y|[+x-y by (3)
=|x[+]y].

Thus g(x)=f(x)+|x|=f(¥)+|y|=q(y) (mod2).
A similar argument using (1) and (3) establishes the quadratic identity (*).
The last statement follows since [x#y]=[x+y]. a

We call g the form induced on F by the spin structure on M. Observe thatif
M =Fy y (as in §1) then g vanishes on the components of X and Y, since
each bounds a disc away from F (cf. the proof of (2) in the Proposition). It
follows that g has Arf invariant O [1, p. 56). This motivates the following
definition.

DEFINITION. A quadratic surface (F,q) is a closed oriented surface F
together with a quadratic form g on H;(F;Z,) (as in the Proposition) of
Arf invariant 0. A curve x in (F, q) is spin if g(x) =0, and essential if it is
spin and nonseparating. A complete system of curves X in (F, q) is a union
of disjoint essential curves in (F, g) with F(X)=S2

One then has the following analogue of Remark 1 for quadratic surfaces.

REMARK 3. Any essential curve x in a quadratic surface (F, q) lies in a
complete system of curves in (F,q).

Proof. By Remark 1, x lies in a complete system Xx,...,x, in F (forget-
ting q). Suppose that g(x;) =1 for some i. Choose another complete system
Y1, .-+, Yg In F such that x;-y; =6;; (i.e., the x’s and y’s form a symplectic
basis). If g(y;) =0 then replace x; by y;. If g(y;) =1 then, since the Arf in-
variant of g is 0, there is some j # i with q(x;) = q(y;) =1([1, p. 54]). In this
case, replace x; by x;#x; and x; by y;#y; (embedded disjointly). Continue
until all the curves in the system are spin. Ll
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Theorem 3 now follows, exactly as in Section 1, from the following.

LEMMA 3. Lemma I holds for quadratic surfaces (F, q), with the follow-
ing addendum to I(a): For any spin structure on Fx y which induces q, there
are spin structures on Fx, 7 and F; y such that Fx y and Fx ;UF; y are spin
bordant.

The proof of 1(a) is unchanged. For the addendum, note that Lemma O pro-
vides a spin bordism between Fy y and Fx y(Z)=Fyx z#Fz y (with an ap-
propriate spin structure). But, as observed in Section 0, the latter is spin
bordant to Fy ;UF; y (with the inherited spin structure). Finally, 1(b) is a
consequence of the following assertion and Remark 3.

ASSERTION 3. Assertion 1 holds for quadratic surfaces (F,q).

Proof. (Note that the assumption that ¢ has Arf invariant 0 is not used in the
proof.) We adopt the notation and terminology of the proof of Assertion 2.
Observe that if 7 and z” are dual and z 4z is essential, then z or z’ is essential.

If x-y =0, then, as in the proof of Assertion 2, there is a curve z dual to
x and y. But then z’=z+Xx is also dual to x and y, and z and z’ are dual to
each other. Since x =z+2z’ (appropriately oriented) is essential, one of z
or z’ is essential.

If x-y =1, then there is nothing to show. If x-y =2, then one can eas-
ily find a curve z dual to x and y by considering the two possibilities for a
regular neighborhood of xUy and using the fact that neither x nor y sepa-
rates. This case now proceeds as in the case when x-y =0.

Finally, assume that x -y > 2. It suffices by induction to find an admissible
essential curve. Recall that an arc (component) of x Ay =(xUy)—(xNy) is
singular if its endpoints are oppositely oriented with respect to some orien-
tation on x and y. There are two cases.

Case 1. Some arc in x Ay (say y; Cy) is nonsingular.
Then a regular neighborhood of x U y; looks like Figure 3(b). The two ad-
missible curves z and z’ shown are dual and x =z +2z’. Thus one is essential.

Case 2. All arcs in x Ay are singular.

In particular, a neighborhood of xU y,, for any arc y; in y —x, is a pair of
pants with waist parallel to x [see Figure 3(a)]. The other two components
of dP are called cuffs of x [z and z’ in Figure 3(a)], and the two cuffs of P are
said to be twins. Similarly define cuffs of y. All cuffs are evidently admissible.

Suppose that some cuff z (say, of x) is spin. Then its twin z’ is spin as well.
Indeed, x=z#z andso 0=q(x) =q(z)+q(z’). But one of the twins is non-
separating, since x is nonseparating, and so one is essential. Thus we may
assume that every cuff is nonspin.

Let y; and y, be adjacent arcs of y —x, and let N be a regular neighborhood
of xUy,Uy,. Since y; and y, are singular, N is a disc with three holes as
shown in Figure 4. Observe that all the boundary components z;, z,, 23, and
z4 of N are cuffs. Now both of the admissible curves u =z, #z; and v =z, #2z3
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Figure 4

shown in Figure 4 are spin, since the z; are nonspin. But at least one of u or v
is nonseparating because [#]+[v]=[x]#0, and so one is essential. O

REMARK. As in the remark at the end of Section 1, Assertion 2 shows
that a certain spin subcomplex of the Hatcher-Thurston complex X, is con-
nected, and this yields an even more direct proof of Theorem 3. A similar
remark can be made in the unoriented case.

Appendix. Proof of Lemma 0

Choose a component z of Z, and set W= (MXxI),.; W is obtained by
attaching a 2-handle H = B? x B? to M x I, identifying H_ = S! x B2 with
Nx1 (where N is a tubular neighborhood of z, identified with S!x B2 by
the normal framing n). Set H, =B?x S’ Note that (after smoothing cor-
ners) F'=H NH_ is a smooth torus which is the common boundary of H,
and H_ (see Figure 5).

Extend the spin structure s on M to a framing of M = M X 0, and then (by
adding the outward normal to M X 0 and extending trivially) to a tangential
framing T of M X I in W. Similarly, extend the framing n on z (after adding
the oriented tangent to z and the outward normal to M X 0) to a tangential
framing T’ of Nx 17 in W.
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Now, dropping the normals, T and T’ induce distinct tangential framings
t and t' on F in H, (since n and s are incompatible) which both extend to
H_. But there are only two such framings on F, and one also extends to H
(since m; SO(3) =Z,). Evidently t’ does not extend to H,. Indeed, using
polar coordinates (r, 8, ¢) on H, =B?x S, t'|(S2x0)=[3/36, 8/dr, 3/d¢]
does not even extend to B2 x 0. Thus t extends to H . , giving an extension of
T to (MxI)UH, =W —point, and thus (by restriction) a spin structure S
on W with S| M =s. Hence M and M(z) are spin bordant.

The lemma follows by induction on the number of components of Z. [
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