SEMILINEAR BOUNDARY VALUE PROBLEMS
FOR UNBOUNDED DOMAINS

Martin Schechter

1. Introduction. Let A be a non-negative self adjoint elliptic partial differen-
tial operator of order m on a (bounded or unbounded) domain 2 C R"”. We con-
sider the Dirichlet problem for equations of the form

(1.1) Au = f(x, u),

where f(x, u) is a function defined on 2 X R. Examples of the functions we con-
sider include

(1.2) f(x,u)=V(x)e"(W(x)cose”—1),

where V(x)=0, VelL!, WeL®. We show that for this choice of f(x,u) the
Dirichlet problem for (1.1) always has a solution (no matter what A4, m, 2 are).
The same is true for

(1.3) f(x, u)=W(x)—V(x)ue"’,

where We L' for some ¢ satisfying 1/2=<1/t<1/2+m/2 and V satisfies the as-
sumptions above. Another example is

(1.4) fOe, u)=Vx)[Wx)ur sin u¥*'—sinh u+1],

with V, W satisfying the same hypotheses as for (1.2) and Ve L' with ¢ as above.
We can also consider expressions such as

(1.5) SO, u)=W(x)—V(x)u~!,

where V, W satisfy the same assumption as for (1.3).
In some instances we find a constant Ag > 0 such that

(1.6) Au=\f(x,u)
has a solution for each X such that 0 <\ <\,. This is done for the case
1.7 S, u)=V(x)|ulfu+Wi(x),

where g= —1, Ve L, and We L’ with1/(g+2)+m/2=1/2<1/t<1/2+m/n.
Another example is

1.8 °* S, u) =Vi(x) |u|Mu+Va(x) |u|2u,

with —2 < g; <0< g,. In this case we give sufficient conditions for (1.6) to have
a non-trivial solution.

We present two methods of attack. The first is to find a stationary point of
a functional corresponding to (1.1). One of the major stumbling blocks in this
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approach is the fact that our assumptions on f(x, u) are so weak that the func-
tional is unbounded from above and below. We restrict the functional to a bounded
region in hope of obtaining a minimum. If we are successful in obtaining such
a minimum we must then show that the minimum is not located on the boundary
of the region. Details are given in Section 3.

Another approach is to replace « in (1.1) with a truncated function ¥ (u)
which satisfies | ¥, (#)| = min(|u|, k). For fixed &, the functional corresponding to

(1.9) Au = f(x, ¥ (u))

is bounded from below. We can then try to obtain a solution to (1.9) by minimiz-
ing the functional. Even when we are successful in this, we are left with the task
of showing either that the solution obtained satisfies ¥, (#) = u (highly unlikely),
or that we can obtain a sequence {u;} of solutions of (1.9) which converge in
some way to a solution of (1.1). We give the details in Section 4. Our main results
are stated in Section 2.

2. The main results. In stating our hypotheses we shall use a family of norms
depending on four parameters. Put

wa(x) =|x|*"", O<a<n,
=1-log|x|, a=n,
=1, a>n.
For a function V(x) defined on R” we define
t/r 1/t
Mot = ([ ([, o VO aatx=y)dx) dy) " (=t<c0)
[x—yl<é
2.1) 1/r
=sup(§ | V()| wa(x—y) dx) (¢ = 0),
y [x—y]<d
My r...6(V)=|V|,=the L'(R") norm of V
MO,r,t(V) =M0,r,r,l(V)-

We let M,, .. ; be the set of those V(x) such that M, , (V) < . The space H**? is
the completion of the set of test functions (C* with compact supports) with re-
spect to the norm

2.2) Lz

where F denotes the Fourier transform, ¢ its argument and F its inverse. When
s is a positive integer and 1 < p < oo, the norm (2.2) is equivalent to the sum of
L? norms of # and all its derivatives up to order s. We shall need the following
result, proved in [5; 6].

ls, p = | F(1+|£|?)/2Fu|,,

LEMMA 2.1. If1<t<oo, 1<q, r <o,
2.3) l=q/2+1/t, O=a/nr=mg/n+1—q/2—1/t,

then there is a constant C(m,n,q,a,r,t) <o such that
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@.4) [veolul?ax<con,n,g,a,r, OMe (N ulf2.
If t < oo, then
2.5) Mo, 5(V)>0 asd—0,

and multiplication by |V(x)|/9 is a compact operator from HS? to L?. If t = o,
the same will be true if we assume (2.5) and

(2.6) [V(x)|" |x—»|* "dx—>0 as |y|—oo.

S|x—y!<l

We are now ready to describe the problems considered. For m a positive inte-
ger and Q an arbitrary (bounded or unbounded) domain in R?, let W= H{"%(Q)
denote the completion of Cg’(2) (the set of test functions with supports in ) in
the space H™2. Let a(u, v) be a symmetric bilinear form on W satisfying

(2.7) Ki?|ulh 2<a(u)<C*ulz,, (ueW)

where a(u) =a(u, u). The linear operator 4 associated with a(u, v) is defined as
follows. We shall say that ue D(A) and Au=f if ue W, feLi.(2), and

(2.8) a(u, ) =(f, ¢)

for all ¢ € WN L™ with compact supports in 2. Let g(x, ) be a function defined
on Q2 X R which is measurable in x for each ¥ € R. We assume that

(2.9) S(x,y)=0g(x,u)/ou

exists and is continuous in # for almost every x €  and all # € R. For each G CC Q
(i.e., G is bounded and G C Q) and M < o there is a V(x) € L'(G) such that

(2.10) | fx,u)|=V(x), xeG, |uj=M.

Furthermore, we assume that g(x, 0) e L'(Q) and that
@.11)  g(x,»)—g(x,0)=B(x,y)= X Vi(x)|u|%, xeQ, ueR,
k=1

where for each &

(2.12) Moy, ritr, (V) =0 as 60

holds for some set ay, rg, tr, gx satisfying

(2.13) 1=qx/2+1/ty, O=<oay/nry=mqy/n+1—qi/2—1/t.

if ¢4 = oo, then we assume in addition that (2.6) holds for V(x) = Vi (x), r=rg,
and o = «;. We also assume that there is an R > 0 such that

@.14) M(R)= 3 CeMoy, . (VR <o,
where
(2'15) Ck=c(msnsqksaksrk!tk)-

If 2m < n, we make one final assumption.
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We assume that for each G CC 2 there are functions cx(v), Wi(x) and con-
stants o =1 such that ¢, (v) € Ligc,

(2.16) cr(tv)/t - e (v) as0<t—0 (veR),

and

(2.17) Wi(x)eMp, o 7» 1=<k=N,

for some set B¢, px, 7, such that

(2.18) <o /241/7k, O0=PBi/npx<moy/n+1—oy/2—1/7,
and

N
g(x,y)=g(x,u+v)+ 2 cx (V) Wi(x)|ul|’*
(2.19) !
+co(v)|g(x,u)|, xeG, u,veR.

(The number N may depend on G.)
Our first result is the following.

THEOREM 2.2. Let

(2.20) No!=2 inf M(K,R)/R>.
R>0

If O<AN<N\g, then there is a u e W such that

2.21) Au=\f(x,u).

If R>0 is such that \M(K,R) < R?, then (2.21) has a solution u € W satisfying
alu) < R2.

THEOREM 2.3. Theorem 2.2 holds if we replace (2.19) with either

N
(2.22) [uf(x,u)ly =b(x,u)= Y Wi(x)|u|* (xeG, ueR)
1
or
(2.23) [uf(x,u)]l_<b(x,u) (xeG, ueR),

where h, = max(0, +h) and the Wy (x) and o, are as above.

In Theorems 2.2 and 2.3, the solution of (2.21) may be u = 0. The following
theorem gives a criterion which guarantees the existence of a non-zero solution.

THEOREM 2.4, In addition to the hypotheses of either Theorem 2.2 or The-
orem 2.3, assume that: there is an open set Qo CQ, functions w(x), wi(x) in
LY(Q0) and positive functions o(u), Bx(u) such that w(x) does not change sign
in Qo (W(x)=0);

2.24) a(u) oo, Bi(u)=0w?), 1<=k<N

as u—0; and
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N
(2.25) w(x)o(u)|ulu— ? Wi (x) Br(u) = g(x, u)—g(x,0)
holds for x e @y and |u|<1. Then (2.21) has a solu*ion u # 0 having the proper-

ties described in Theorem 2.2.

REMARK 2.5. If a(u)=|u|™% in Theorem 2.4 with 6 >0, then we can allow
w(x) to change sign in .

THEOREM 2.6. Let
A '=2lim inf M(K,;R)/R>.

R—>

Assume that 0 <\ <\, and that the hypotheses of either Theorem 2.2 or The-
rem 2.3 hold. Assume that there are functions w(x), wi(x), a(u), Bx(u) as de-
scribed in Theorem 2.4, but (2.24) holds as u — o and (2.25) holds for x €y,
ueR. Then (2.21) has a solution u # 0.

REMARK 2.7. If a(u) = |u|® in Theorem 2.6, where § >0, then we can allow
w(x) to change sign in Q.

Theorem 2.2 is proved in Section 3, while Theorems 2.3-2.6 are proved in Sec-
tion 4.
Now we present some examples of equations that can be solved by our methods.

1. fx,u)=V(x)e"(W(x)cose”—1),

where V(x)=0, Vel!, We L™. In this case
MER)=|Vh(|[W]e+1), No=co.

Thus (2.21) has a solution for every A > 0.

2. Sf(x,u) =qV(x)|u|"_2u+ Wi(x),

where Ve L™, 1/2=1/q+ m/n, and

(2.26) weM,,, O=<o/nr=m/n+1/2-1/t, t=<2.

In this case we first approximate the problem with one for the exponent p <gq.
Put

[V, |x|<(@-p)!
V"(x)_{O, |x|>(g—p)~"

So(x, u) =pV,(x)|u|? " 2u+W(x).
By Lemma 2.1,

2.27) { 1w u)| dx = M Juln,»

for some constant A,. Also,
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q9—p)/q

p/q (
[ Voo ueol? dx < O V)| |u(x)|"dx) x (j 1V, ()] dx)
<|VI2(C(g—p) ") I P/|u|b, , = Mi|ul5, ».
Thus M(R)=M;R”+M>R and the minimum of M(K,R)R 2in R>0is at
K1Ro, p = (M, /(p—2)M;)"/P~,

with
— p—1 - —2)/(p— —ny(g— -
Aoy = (p__z)(p—z)/(p_l)K12||V||t1=o/(p DALP =2/ P=D(C(g—p)~")ya—PVap=1),
Note that

M;—|V|%
Ro,p,— (M3 /(g—2)|V|%)/9~ ' =R,

1 q—1 20 G=1) ag (=2 a—1) _ x —1
No.p > a2y @ora—n Ki V=" MT =TT E =),

as p —q. Thus if 0 <\ < \¢, then for p sufficiently close to g there is a solution
u, of
(2.28) a(up, ) =N(fp(up), v)

satisfying |up|,m,2 < K (Ro+1). Thus there is a subsequence of {u,} which con-
verges weakly in H"™2 and a.e. to some limit u. Also

{1V lup)]?~"| ax
) (P—1)/(g=1)
=% (S Iup<x>l"dX) (Clg=p) ™I D > V| [l -

Thus there is a subsequence of {V,|u,|” %u,} which converges weakly in L7’
Hence
(fp(Up), 0) = (PVp(x) |Up|P " 2up+ W, 0) = (qV(X) |u| T 2u+ W, v) = (f(u), v),
provided v € LY. Taking the limit on both sides of (2.28), we obtain
a(u,v)=N(f(u),v), veH™?*NL?
3. flx, u) =W(x)—V(x)ue"’,

where W satisfies (2.26) and Ve L!, V(x)=0. Here we apply Theorem 2.3. In
this case \g = oo.

4. fx, u) =V(x)(W)uX sin u¥+'—sinh u+1),
where Ve ll, We L™, V(x)=0, and V satisfies (2.26). Here \o = co.
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3 Sx, u)=W(x)—Vx)u!,
where W satisfies (2.26) and 0 < V(x) € Li,c. Here we use Theorem 2.3; Ao = .
6 S, 1) = Vi) ] 20+ Vo () [u) 22,

with 0 < ¢ <2 < g,. Assume that

S Vi) |u (o) dx < Mi|u|% ».

Then
M(K,R) R 2<M K1RY" %>+ M,K{2R9272,
A calculation gives

)\b—l =M1(q2—2)/(¢12—ql)
X M2~/ @2=0)(g, — q,) (g, —2) "9V D20 (2 — g O = D/ @-a) g4,

By Theorem 2.4 the solution will not be trivial if there is an open set in which
Vi(x) =0, i(x) #0.

3. A variational problem. In this section we give the proof of Theorem 2.2.
Let V={ve W|g(x, v(x)) e L'(2)} and put G(v) =a(v)—2NI(v), ve V, where
I(v)={g g(x,v(x))dx. For R=0 let

Sgr={veV]|a(v)<R?%

YR =sup I(v)
Sr
PR= inf F(U) .
Sg
We will prove the following.

LEMMA 3.1. Under the hypotheses of Theorem 2.2, G(v) has a minimum and
I(v) has a maximum on Sg.

Postponing the proof of Lemma 3.1 until later, we show how it can be used
in the proof of Theorem 2.2. First we note that u+¢ is in V when v e V and
¢ € L™ with compact support in 2. For by (2.19) and (2.11),

N
glx,u)— 513 cr(@) Wi(x)|u|%* —Co(e) |g(x, u)| < g(x, u+¢)

3.1
=g(x,0)+B(x,u+e)

for x in some domain G CC {2 containing the support of ¢. By Lemma 2.1, the
functions on the right and left in (3.1) are in L!(G). Thus the same is true of
g(x,u+¢). Since

Xﬂg(x,u+so)dx= Sog(x,u+<.o) dx+Sn\G g(x, u)dx,
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we see that g(x, u+¢) € L'(Q). Suppose u is an interior point of Sg and G attains
its minimum on Si at . We shall show that « is a solution of (2.11). Let Y be the
set of those ¢ € WN L™ having compact supports in Q. If ¢ € Y and a(¢) is suffi-
ciently small, then G(u+ ¢) = G(u#) and consequently

(3.2) | [ex, ut0)—g(x, 1)) dx <2a(u, ) +a(e).
Let ¢ be any function in Y and let G CCQ contain its support. Put
| h(x,u,p) =g(x,u+¢)—glx,u)+ 5;‘ (@) Wi(x) |u| ) +co(e) | g (x, u)|.
Then A(x,u, ¢) =0 by (2.19), and
t 7 h(x, u, to) > of (x, u)+ % ex (@) Wi(x)|u|*+eo(e)|g8(x,u)| a.e.in G |
by (2.16). Moreover, by (3.2),
¢! SG n(x, u, to) dx < N"'[a(u, ¢)+ Lta(o)]

N
+¢7! SG (; ik (19) Wi (x) [u(x)| % + co(t9) |8 (x, u)|)dx

N
>N la(u, o)+ SG (21: ex (o) Wilu|%*+eo(p)|g(x, u)|)dx
as £ —» 0. Thus, by Fatou’s lemma,
Sqo(x)f(x, u)dx <\"'a(u, ¢).

Replacing ¢ by —¢, we see that
(3.3) a(u,p)=NJSf(x,u),¢), ¢ey.

Thus u is a solution of (2.21). It thus remains only to show that G indeed has an
interior minimum in Sz for some R > 0. Suppose, to the contrary, that G has no
interior minimum on Sk for any R >0. Then we must have a(v) = R? for every
v € Sg such that G(v) = pr. This implies that vz = I(v) for each such v as well.
For if there were a w € S such that I'(v) < I(w), then we would have

G(w)=a(w)—2NI(w)<R2-2\NI(v)=G(v),
contradicting the fact that G(v) = pr. Hence
pr=Gv)=a(v)—2NI(v) = R*—2\yi.
Thus
(3.4) R2—2Nyr=pr=po=2N(0)= —2\yo
for each R>0. By (2.11) and Lemma 2.1,
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[tetx, w)—gex, 001 ax = | Bx, u) dx
3.5) -
= ; CkMak,rk.Ik(Vk)“u"Iqﬂk,Z =M("u"m,2)-

Thus by (2.7)

(3.6) YR—Yo=M(K,R).
Combining (3.4) and (3.6) we see that \™! <2M(K;R)/R? for all R>0. Thus
Ao =< A by (2.20). This contradicts the assumption that A < Ag. O

We now give the following.

Proof of Lemma 3.1. Let b=0 be fixed, and put H(v) = ba(v)—2XI(v). We
must show that / has a minimum on Sg. Let {v;} be a minimizing sequence.
Since W is a Hilbert space, we can extract a subsequence (also denoted by [v;})
converging weakly to some element in W. By Lemma 2.1,

G.7) SQ B(x, v;(x)) dx > SQ B(x, v(x)) dx.
Since B(x,v)—g(x,v)=0, by Fatou’s lemma we have
| 1B, v)—g(x, v)] dx <lim inf SQ [B(x, v;)—g(x, v;)] dx.

Since the left-hand side is bounded, this shows that g(x, v(x)) is in L'(Q). This
means that v e Sp. We also have

ba(v)+2\ SQ [B(x, v,)—g(x, v;)] dx = bla(v) —a(v;)] + 2\ L B(x, v;) dx+H(v).

Since H(v;) converges to its glb pg in Sk and since a(v) <lim inf a(v;), we see
that H(v) < pg. This proves the lemma. ]

We note that assumptions (2.19), (2.22), and (2.23) are all unnecessary when
n < 2m, since the functions in W are bounded. It then follows automatically that
u+¢isin ¥V when u e V and ¢ € L™ has compact support. For if G is the support
of ¢, then

SQ gx,u+e)dx= SQ glx,u)dx+ sG of(x,u+6¢)dx.

Both integrals on the right exist (the second in view of (2.10)). Note that one can
always take the function 8(x) to be measurable (cf. [3, p. 177]). Next we note that

! S [gx,u+to)—g(x,u)ldx= SG o (x) f(x, u+tbp) dx.

The integral on the right converges to a limit as # — 0, since the integrand con-
verges a.e. and is majorized by a function in L'(G) by (2.10). Thus
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t N G(u+to) — Gu)] — 2a(u, ¢)+ 2\ S of (x, u) dx

as t -0 for each ¢ in Y. Since G(u) is an interior minimum in S and the limit
is independent of the sign of ¢, it follows that (3.3) holds.

4. An alternate approach. Now we turn to the proof of Theorem 2.3. Let
¥(¢) be an infinitely differentiable function on R such that ¢ (z)=1¢ for 1 < —1,
Y(t)=0fort>1,and 0<y’(¢)<1. For each k> 1 put

([ k4y—k), =0,
Vi) = { —k—y(—t—k), t<O.

Note that Y (¢) is infinitely differentiable,

“4.1) min(|¢|, k—1) < |¢x(¢)| = min(|¢], k),
4.2y - O=yr()=<1, Yy (#)/t=0,
4.3) Yi(1)=0 for |t|=k+1,
and

4.4) O=tyi(t)/ k() = (k+1)/(k—1).
Put

gk(xs u) =g(x’ \bk(U)),
Ji(x, u) =0gx(x,u)/u= f(x, Yx(u))Yi(u),

[k(u)=SQ 8r(x, u)dx,
Gr(uw)=a(u)—2N1;(u).
Note that
8k(x, u)—g(x,0) = B(x, yx(u)) = B(x, u)
and
|gx(x, u+v)—gr(x, u)| = |vf(x, px(u+0v)) Yf (u+6v)]
=|v|V(x), xeGCCQ

by (2.10). It therefore follows that g, satisfies all of the hypotheses of Theorem
2.2. Therefore, by that theorem we can conclude that there is a u; € S; such that

4.5) a(ug, v) =N(fi(ug),v), veWw.

Put
[uf(xsu)]i/us u;ﬁos

A6 =1 f1x, 00, u=0.

Then uh . (x, u) =0 and

(4.6) Sx,u)y=h (x,u)y—h_(x,u).
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Set Ay g (x, u)=hy(x, Yr(u))Yi(u). Then
JeOe, u)=[h (O, Y (u)) —h_(x, Yr (u))1¥i (1)

@.7
= h+k(xs U)—h_.k(x, u).

Consequently, by (4.5),
a(ug, our) = N fi(ur), oug)
= N(hpx(ug), oug) — (h_x (ug), pug)l

for all ¢ € C5°(2). . Assume (2.22) holds.
Note that, by (2.22), (4.2), and (4.4),

vh. (V) = [ (V) S, Y (XN ]+ Yk () v/ (V)

(4.8)

4.9)
=2b(x, Yr(v))<2b(x,v), k=3.
Thus
h ils i =2 b i
(4.10) (hx(ui), pui) = 2| b (1)

< CEN;|ui| % »= Ci(R),
and consequently, by (4.8),
NA_g(u)), o) < NCI(R) +a(u)a(ou;)'?
) = C,(R).
Take ¢ =0 and let G CC Q2 contain the support of ¢. Then

“4.11)

X‘P|h+k(x, u)—hyj(x,u;)| dx= S¢|’1+k(x’ ur)—hyo(x, ug)| dx

+ S @Ay e(x, ug) —hyo(x, uj)| dx

4.12)

+ S‘P|h+f(X, u;)—hyj(x, u;)| dx

=L+1,+13.

73

Take ¢ < j, k and let Gy, be the set of all x e G such that |ug(x)|>¢—1. Since
hyx(x,v)=hyo(x,v)=hy(x,v) for |v| <?—1, the first integral and on the right

in (4.12) vanishes outside G,. Hence

L={  o(hrtx, ud]+ e, ue)) dx
Gre

1
= —1 SG“ eluhy (O, ug)+urhyo(x, ug)l dx

1

=71 [Pk (), oug) + (P (Ur), oug)]

=Ci(R)/(f—1)
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by (4.10), since vh, (x,v)=0 for all k. Let ¢ >0 be given, and take ¢ so large
that C;(R) <e(f—1). Then I, < e and similarly 73 <e. By (2.10) there is a func-
tion ¥(x) e L'(G) such that

|hie(x,0)|=V(x), xeG, veR.

Since Ay o(x, ug) —hye(x,u;) >0 a.e. in G as j, k — oo, we have
L={_elhteu)—hiox,up|dx—0, j,k—co.

This shows that the left-hand side of (4.12) does likewise. Hence ¢, (x, u)
converges in L'(G) to a limit. Since the u are in Sg, there is a subsequence con-
verging weakly in W to an element # in W. Another subsequence will converge
a.e. to u. For this subsequence oh_ (X, u#;) will converge a.e. to ph, (x, u). Thus
oh, x(x, uy) converges in L'(G) to oh, (x, u). Since ¢ was arbitrary, we see that
h i (x, u;) converges in LY(G) to h,(x, u) for each G CC Q. The same reasoning
applies to h_;(x, u;) (all we need is (4.11) in place of (4.10)). Hence fi(x, uy) -
f(x,u) in L'(G) for each GCC Q. Thus, if p € Y, then

a(uks 90) _‘)a(u: 50)’ (fk(uk)’ ‘P) - (f(u)s ﬁo)-
Thus

(4.13) a(u,o)=Nf(u),¢), ¢€Y

by (4.4). This completes the proof when (2.22) holds. If (2.23) holds we have,
in place of (4.11),

(h—k(ui), i (i) < b (u)|1 = Ci(R),
and in place of (4.10) we have
Nk (1), o (7)) < NC1L(R) +a(u) 2 a(eodr(ui)'/? = C2(R).
The proof then proceeds as before. O
In proving Remark 2.5 we shall make use of the following simple lemma.

LEMMA 4.1. If w(x)e L'(R), 0 <d < o, and
.14) [ wewrax=0 (rec@, ¢(x)=0)
0

then w(x)=0 a.e.

Proof. Let ji(x)=k" exp{— (1—k?|x|*>)"!} and let y be any point in Q. Then
for k sufficiently large, the function ¢(x) = j, (x—»)"¥is in CF(Qp) and is =0.
Thus, by (4.14),

(4.15) Sw(x)jk(x—y)dx=0.

It is well known that this implies that w(x) =0 a.e. O

We now give the following.
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Proof of Theorem 2.4. It was shown in the proof of Theorem 2.2 that G has
an interior minimum in S for some R >0, and that this minimum is a solution
of (2.21). We shall show that under hypotheses (2.24) and (2.25), the minimum
cannot be at 0. To see this, we note that by hypothesis there is a ¢ € Cg () such
that a(¢) =1 and

(4.16) by = W)Y 0|t (x)) dx — eo
0

as ¢ — 0. Moreover, for ¢ > 0 sufficiently small,
4.17) b))t =X by (t)<I(ty)—I(0)
by (2.25), where

4.18) bty = | w0 Be(td(x)) dx < Cit?.
0

Thus there is a # < R such that
(4.19) G(tY)—G(0) < t2—2N(b(1)t*>*— X b, (1)) <O.

This shows that the minimum of G in Sy is not G(0). Thus the solution given by
Theorem 2.2 is not 0.

Next let us turn our attention to Theorem 2.3. It follows from (4.19) and (2.24)
that there is a f < R and a 6 > 0 such that G(¢y) < G(0) — 6. Since ¢ is bounded,
G (1Y) = G(ty) for k sufficiently large. The solution u; of (4.5) can be taken as
the point of Sy where G, attains its minimum. Thus

(4.20) Gr(ui) = G(0)—6é.

As shown in the proof of Theorem 2.3, {u;} has a subsequence converging a.e.
and weakly in W to an element #. We have

“4.21) a(u)<liminf a(u,).
Moreover, by (2.11) and (4.1),

8k (x, u) —g(x, 0) = B(x, Yy (1)) = B(x, u).
Thus A (x, u)=B(x,u)+g(x,0)—gi(x,u) =0, and

| [BGx ) +g(x,0)—glx, )] dx
4.22) <tliminf | h(x, u0) dx

< Sﬂ [B(x,u)+g(x,0)] dx—1lim sup SQ grl(x, uy) dx

by (3.4) and Fatou’s lemma. Thus by (4.20)-(4.22),
G(u) <liminf G(u,) < G(0)—6.
This shows that u# 0, and the proof is complete. O
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Proof of Remark 2.5. By Lemma 4.1 there is a y € W such that a(¥)=1 and
b= Sw(x)yb(x) | ()|' =% dx > 0.

We merely take b(¢) = ¢ ~%b and continue as before. O

Proof of Theorem 2.6. By (2.24) there is a y € W such that a(y) =1 and (4.16)
holds as ¢t - . By (4.17) and (4.18), we see that (4.19) holds for ¢ sufficiently
large. By hypothesis, there is an R > # such that

2M(K;R)/R* <\ L.

By the argument given in the proof of Theorem 2.2, G does not attain its mini-
mum on the boundary of Sig. On the other hand, (4.19) shows that the minimum
is not G(0). Thus the solution given by Theorem 2.2 is not 0. In the case of The-
orem 2.3 we follow the proof of Theorem 2.4. ]
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