COMPACT COMPOSITION OPERATORS ON H”(By)

Barbara D. MacCluer

Introduction. Let By be the open unit ball in CVand let ®: Bx — By be a holo-
morphic self-map of By. For f a holomorphic function on By, denote the com-
position fo® by Cg(f). This will again be a holomorphic function on By. We are
concerned here with the question of when Cg, called the composition operator
induced by ®, will be a bounded, or respectively compact, operator on some
Hardy space H”(By), for 0 < p <oo. Several authors ([1], [S]) have recently
given examples to show that, in contrast to the case N=1, Cs may indeed fail
to be bounded on H”(By) when N >1 and p <. In Section 1 we give a neces-
sary and sufficient condition, in terms of the measure a(®*)~!, for Cy to be
bounded (respectively compact) on H”(By), and derive some consequences of
this criterion.

In one variable, compact composition operators on’ the spaces H”(D) have
been studied by J. Shapiro and P. Taylor in [9], where they examine the relation-
ship between compactness of the operator Cy and certain geometric conditions
on ®(D). In particular, they show that any map ® for which the range of ® is
contained in a region which touches the unit circle sufficiently “infrequently and
sharply” will induce a compact composition operator. In Section 2 we study the
question of whether there are geometric conditions on ®(By) (N >1) which will
guarantee that Cy be compact on H”(By). It is the existence of unbounded com-
position operators when N > 1 which makes this question much more difficult in
several variables than in the case N =1. Using the compactness criterion devel-
oped in Section 1, we show that any & with ®(By) contained in a sufficiently
small (depending on the dimension N) Koranyi approach region D,({) will
induce a compact composition operator on every H”(By), p <oco. We give an
example to show that this result is sharp in a strong sense; maps into larger
Koranyi approach regions may even fail to induce bounded operators.

Finally we give an example of a map &: B, —» B, for which Cy is compact on
H?(B,), but is not Hilbert-Schmidt on H?(B,). To do this we use techniques
developed in this paper to modify examples given in [9] for the case N=1 of
composition operators which are compact but not Hilbert-Schmidt on H*(D).

I would like to thank Professor Daniel Luecking for several helpful conver-
sations regarding some of the material of Section 1, particularly Corollary 1.4
and Lemma 1.6.

1. A characterization of bounded (respectively compact) composition oper-
ators. The main goal of this section is a theorem which gives necessary and suffi-
cient conditions for the operator Cy to be bounded (compact) on H”(By). We
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begin with some notation. In all of what follows ® will be a holomorphic map
of By into By. Denote the rotation invariant probability measure on dBy by
o. Recall that for almost every [¢] point { of 8By, ®*($)=lim,_,; $(r{) exists.
Thus we may regard & as a map of By into By, and we will usually continue to
write ® for this map, and reserve the notation ®* for the map from 8By into By
as defined above.

For a point ye€ dBy and >0 let

S(n,t)={z€By: [1-<z, )| <t} and Q(n,?)=S(n, )N 3IBy.

Recall that o(Q(y, t)) =tV [7, §5.1.4, p. 67]. Given ®: By — By we define a posi-
tive, finite Borel measure p on By by p(A4) = a((®*)~'A4). We can now state the
main theorem of this section.

THEOREM 1.1. Let ®: By — By be holomorphic and let p. be the measure on
By defined by p= o(®*)~\. Then for p <o
(i) Cg is bounded on HP(By) if and only if there exists C < oo so that

w(S(n, 1)) <Ct" (nedBy, t>0).
(ii) Cg is compact on H”(By) if and only if
(S, 1))=0(t") ast—0, uniformlyinny.

Before proceeding to the proof of Theorem 1.1, we give some corollaries, the
first of which appears in [9], for the case N=1, with a different proof.

COROLLARY 1.2. If Cy is bounded (respectively compact) on H”(By) for
some p <oo, then Cg is bounded (respectively compact) on H”(By) for all
p <o,

Proof. This follows immediately, since conditions (i) and (ii) of Theorem 1.1
are independent of p. L

We give a second corollary, and some consequent examples of unbounded
composition operators, after the following lemma.

LEMMA 1.3. Suppose \ is a positive measure on 9By such that
MQ(n, 1))<Ct" (nedBy, t>0).

Then d\ = gda, where g € L*(3By) with |g|«< C’, where C’ is the product of C
and a constant depending only on the dimension N.

Proof. The maximal function of the measure X\ is by definition

AMQ(n, 1))
MX(n) =sup ————.
K >0 0(Q(n, 1))
There exist constants A; and A4,, depending only on N, so that 4, tN< a(Q(n, 1)) <
A,t™ for all t>0 and ne dBy [7, §5.1.4, p. 67]. Thus M\(y) < CA, for every
n€ dBy. Theorems 5.2.7 and 5.3.1 of [7, p. 70] show that A < ¢, and d\ = g do,
where |g(n)| = CA, for almost every [o]y in 0By. I



COMPACT COMPOSITION OPERATORS ON HP(By) 239

Lemma 1.3 and Theorem 1.1 have the following corollary.

COROLLARY 1.4. If Cy is bounded on H”(By), then ®* cannot carry a set of
positive a-measure in dBy into a set of o-measure 0 in dBy.

Proof. Suppose A < 9By and $*(A) € R 9By with ¢(A) >0 and ¢(R) =0.
Let u be the measure on By defined by pu=0(®*)~". Let p, =p|apy. Theorem
1.1(i) and Lemma 1.3 imply that p,<<o. But py(R)=p(R)=0c®* (R)=
0®* " 1(®*(4)) = 0(A), since ®*~'($*(A4)) D A. Since by hypothesis o(R)=0,
this is a contradiction. (]

APPLICATION. Corollary 1.4 shows immediately that any inner map
®: By— By with ®*(dBy) contained in a set of o-measure 0 induces an un-
bounded operator Cg. (We say @ is an inner map if |®*({)| =1 for almost every
€ dBy). Thus the maps ® defined by ®(z) =(A4¢,(z), Bp2(z)), where the ¢; are
inner functions on B, and (A, B) € dB,, give unbounded operators, for the image
of 0B, is contained either in a torus or the boundary of a slice, which are sets of
o-measure 0. This example appears in [1].

The proof of Theorem 1.1 uses a variant of the following theorem, due to Hor-
mander. We introduce the temporary notation 8(», t) for {z€ By: |1 —<z, n)| <t}.
Thus 8(n, t) =S(n, t) N By.

THEOREM 1.5 ([4], [2], [6]). If N\ is a positive measure on By, and if there
exists a constant C so that

(*) AS(n, t)<CtN (t>0, nedBy),
then there exists a constant C’ so that

p < ’ *|[ P
(+%) §BN IfPdn=C SOBN 1F*|” do

Sfor all fe H’(ByN), p <.
Conversely, if (¥*) holds for some p, then there exists a constant C so that (*)
holds.

What we need is a slight variation of this result, where \ is a positive measure
on By, the sets 8(, ) in condition (*) are replaced by the sets S(, ¢), and in (x*)
the left-hand integral is over By. In this setting the direction (*x) = (%) follows as
before, using standard estimates on the test functions f,(z) =(1—(z,a))_4N/”
with a=(1—1¢)y.

For the other direction, suppose A is a positive measure satisfying N\S(y, ) <
Ct". Write A=\;+\;,, where \; =X\ | By and Ap =X\ |apy. By Lemma 1.3, d\,=
gdo for some g € L°(dBy). Thus, using Theorem 1.5,

p — Py . P
[ lr1Pan={, IrlPan+{  |r1Pgdo
’ D P
<c'| 1/lPdotigls|,, 1717do

— ” p
C SaBN /|7 do.
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A careful check of the constants shows that C” may be taken to be the product of
C and a constant depending only on the dimension N, and p. Thus, if C is small,
C” can be chosen small.

A positive measure \ on By satisfying (*) NS(y, t) < Ct™ will be called a on-
Carleson measure; the smallest C which satisfies (*) will be called the Carleson
constant of A and denoted K(\).

We can now give the proof of Theorem 1.1. We divide the proof into two parts
and begin with the boundedness characterization.

Proof of Theorem 1.1(i). Suppose Cy is bounded on H”(By). Then there
exists C; < oo so that for every fe A(By) = H(By)NC(By)
B[P = o ®*|P do < S p
|2lp=,, |fo#Pdo=Cil |717do,

where we have used the fact that (f-®)*= fo®* which follows from the con-
tinuity of f on By. But

SaBN|f°‘1’*|”d0=§ETV |f|7dp where p=a(®*)7".
Thus
[ PPduscf,, 1717do (feABW).

As in the proof of Theorem 1.5, the test functions (1—(z, o)) ~4NP (in A(By)),
where a = (1— )7, show that there is a constant C so that pS(n, f) < Ct", for all
t>0and ne dBy.

Conversely, suppose that for some constant C we have pS(y, t) < Ct" for all
t,n. Then our variant of Theorem 1.5 shows that

P ’ *| P P
L_ﬁ_vm dp=C'{, |f*|Pdo (fe HP(By)).
In particular, for fe A(By),
’ P p
'y, 1Pdo=|_|11Pdu

= ] *p = o *IJ
_SaBNIf(I’| do SaBNI(f )| do,

and thus | fe®|yrs,) =< C"|flura, if f is in A(By). Since A(By) is dense in
HP(By) we are done. O

Before turning to the proof of the compactness characterization we give one
lemma. In the case N =1 this lemma is due to J. Ryff [8], where the key ingredient
of the proof was an application of Lindelof’s theorem on asymptotic values of
functions in H* (D). Ryff’s argument does not extend to the case N > 1, where
Lindelof’s theorem fails. The following alternate argument using Corollary 1.4
was shown to me by Daniel Luecking.
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LEMMA 1.6. Suppose Cg is bounded on H”(By) and let f be in H? (By). Then
for almost every [c]¢ in 0By, (fo®)*($)=[f*®*({). (Here the notation f*
denotes the function defined on By by f*(z) =lim,_ f(rz).)

Proof. For r<1 let f,e A(By) be defined by f.(z)=f(rz). Now f,— f in
H?(By) and, since Cg is bounded on H”(By) by hypothesis, f,o® — fo® in
H?”(By). Thus as r11

) SaBN | fro®*|" dor= SaBN |(Jro®)*|"do SBBN |(f-@)7|" do.

Since, by Corollary 1.4, ®* cannot carry a set of positive measure in dBy into a
set of measure 0 in dBy, and since the radial limit functions of both ® and f exist
on a set of full measure in dBy, we have lim, | f,o®*= f*.®* at almost every
point of dBy. This combined with () shows that f*e®*=(fo®)* almost every-
where [o]. O

We now complete the proof of Theorem 1.1 by showing that Cg is compact on
HP(By) if and only if u(S(y, ?)) =o0(¢") uniformly in 5. The proof relies upon
the following easily obtained characterization of compact composition operators
[5]: Cs is compact on H?”(By) if and only if for every sequence {f,} which is
bounded in H”(By) and for which f, -0 uniformly on compacta, we have

|fno®[p—0.

Proof of Theorem 1.1(ii). Suppose first that uS(n,?)# o(¢"), uniformly in
n. Then there exists 5, € 8By, t,—0 and 8>0 such that uS(y,, ,) = BtY. Let
Ju@)=(1—(z, a,))~*N/P, where a,=(1—1,)y,. A computation [7, §1.4.10,
p. 17] shows that || £,]5 = t:73N. Let g =1,/ | /x| p- Note that g, — 0, uniformly on
compacta, since if |z| <r <1, |g,(z)|” = C(t,/(1—r)*"). Thus {g,} is a bounded
sequence in H”(By) with g, — 0 almost uniformly. Another calculation shows
that

"gn°q>"1!72 CZHJ;r";pI‘S(nm tn)tn_4N
= C3tf?N(ﬁtr}1V)tn_4N
=Cg.

Thus |g,°®|, # 0 and this implies that Cg is not compact.

Finally suppose that uS(y, 1) = 0(¢") as ¢ » 0, uniformly in ». It is convenient
at this point to replace the sets S(n, ¢) by the sets D(y,¢t)={z€By:|z|>1—t¢
and z/|z| € Q(y, t)}. Since D(y, t) < S(y, 2¢), the hypothesis that xpS(y, 1) = o (")
implies that uD(y, )= o(t™), uniformly in 7.

Given € > 0, choose ¢ sufficiently small so that uD(y, t) < et™ for all n and for
all #<tg. Let p’ be the measure supported on Ry=By\(1—1#¢)By, defined by
p'(A)=p(ANRy). We claim that p’ is a on-Carleson measure with K(u’) < Ce,
where C is an absolute constant depending only on the dimension N. We need to
verify that u’(S(y, 1)) < Cet™, for all n and ¢. This is immediate for ¢ < ¢y since in
this case p/(S(n, 1)) =pS(n, t) <pD(n, t) < et™.
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In the case ¢ > ¢y, we have u’'S(n, t) =p(S(n, t)NRN) = u(D(n, t)NRy). Cover
O(n, t)={{€dBy: |1—<{, n)| <t} by a finite collection of balls Q(«;, #0/3) with
centers «; in Q(n, ¢). Note that there is an absolute constant s (depending on N)
so that Q(n,st) D Q(«;,t0/3) [9, p. 29]. Now, as in Lemma 5.23 of [7, p. 68],
we may extract a disjoint collection of the balls Q(«;,/3) so that O, t)C
Ur O(«j, o). Since each Q(«;, £9/3) is contained in Q(», s¢), and I is a disjoint
collection, we must have

U(LFJ O(a;j, f0/3)) = ? 0Q0(aj,19/3)

<oQ(y,st)<Cyt".

But 0Q(aj, tp/3) = C,t{, so we can have at most C;(¢/t,)" balls Q(aj, tp/3) in
the collection I'. (Each constant C; depends only on the dimension ). Since
Ur Q(«j, to) covers Q(n, t), we have D(n, )N Ry covered by Ur D(«j, to). Thus

1'S(n, 1) = p(D(n, t)NRy)
< 3 uD(aj, to) < C3(t/to) et
r

= C361N,

which verifies our claim.
To finish the proof, suppose {f,} is a sequence in H”(By), where f,, — 0 almost
uniformly, and | f,|5 < M. Since by Theorem 1.1(i) Cs is bounded, we have

elp={,, 10he2)|"do

=§ | £20®*|P do (Lemma 1.6)
3By
= *|D oy — 1P oy’ p

Vo Vil dn={ 1A aw+ ] 1l

=CN, p)K(p') |f¥]” do+ __|fal”du
8By —19)By

(1

sC(N,p)Me+S( 1|? di.

1-10)By

The first term can be made as small as desired by choosing ¢ small (this
determines ¢, > 0). Then the second term is made small for n sufficiently large
using the hypothesis that f, — 0 uniformly on (1—¢9)By. Thus | f,°¢],—0, and
we are done. O

We remark that a similar “little 0” Carleson condition appears in connection
with the characterization of compact Toeplitz operators on Bergman spaces. See
[2] and the references therein.
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2. Maps into Koranyi approach regions. Our main goal in this section is a
result in the spirit of the one-dimensional work due to J. Shapiro and P. Taylor
[9], where certain geometric conditions on (D) are shown to be sufficient to
guarantee that Cy be compact on H”(D). For example, they show that if (D) is
contained in a polygon inscribed in the unit circle, then Cy must be compact [9,
p. 482].

Our main result here involves Koranyi approach regions D,({) in By, defined
as follows. For a>1and (e dBy let

Do ($)=1{z: |1—(z, O <Fa(1—|z|})}.

Note that the intersection of D, ({) with the complex line through 0 and ¢ is a
standard non-tangential approach region in a disc, while D,({) allows “para-
bolic” approach to dBy in the orthogonal directions. Basic facts about the
Koranyi approach regions can be found in [7, §5.4].

We will show that if ®(By) is contained in D,({), for o < ag = ag(N), then Cy
will be compact on H?(By), p < . The limiting value o decreases from oo to 1
as NN increases from 1 to co. An example will be given to show that this result is
sharp, and moreover it is possible for ®(By) to be contained in D, ({) for some
v > ap and yet Cg fail to be even bounded on H”(By).

For simplicity we will work with approach regions based at the point e; = (1, 0").
This involves no loss of generality since for every unitary map U, UD,({) =
D,(U¢). Note that D,(e)) ={z: |1 —zi| <—é—a(l— lzlz)l.

We begin with the following lemma, which exploits the compatibility of the
regions D,(e;) and the non-isotropic balls S(e;, ¢).

LEMMA 2.1. Suppose ®: By — By is holomorphic and suppose further that
®(By)<=D,(e)). Then
(i) Cs is bounded on HP(By) if there is a constant M such that

o(®*71S(ey, 1)) = MtN  (1>0).
(i) Cg is compact on HP(By) if
o(®*7!S(e;, 1)) =0(t™N) as (t—0).

Proof. By Theorem 1.1, to verify (i) we need to show that there exists a con-
stant M’ with o(®*~!S(y, £)) < M’t" for all ne By and all ¢ >0.
For z, we By let

d(z, w)=|1—<(z,w)|.

Suppose 7 is in 3By and f < (4a)~'d(e;, 7). We claim that S(y, )N D,(e;) = D.
Lemma 5.4.3 of [7, p. 74] shows that if z is in D,(e;) and y is a point of dBy then
d(e;, 1) <4ad(z,n). So d(z,n)> (4a) " 'd(e, n) >t and thus z ¢ S(, ). Hence
for t < (4a)"'d(er, 5), 0®*7'S(n, 1) =0.

On the other hand if = (4a)~'d(e, ) then O(y, )N O(e, dat)# D and
there exists an absolute constant s (depending on N) so that Q(e;,4ast)D
Q(n, t). Thus S(e;, 8ast) D S(n, t), and writing u for 6®*~! we have
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uS(n, t) =pS(ey, 8ast)
<CM(8ast)N=M"tN.

The above calculations, together with Theorem 1.1, also give (ii), since for a
fixed o the constant M’ can be taken to be the product of M and an absolute con-
stant depending only on N. ]

We can now state our main result. Both statements in this theorem are sharp,
as will be shown following the proof.

THEOREM 2.2. Let ®: By — By be holomorphic and set oy = (cos(7r/2N))".
(1) If ®(Bn) S Dqoy(€r), then Cy is bounded on HP (By).
(2) If ®(Bn) <D, (&) for some 1<y <ayg, then Cy is compact on HP(By).

We remark that in (2) the operators Cg are moreover Hilbert-Schmidt on
H 2(BN), as will be shown later. Before beginning the proof of Theorem 2.2 we
give one lemma. Let ¢y denote normalized Lebesgue measure on aD.

LEMMA 2.3. Suppose y: D — D is holomorphic such that (D) is contained in
the non-tangential approach region D,={\eD:|l-\|< —;_a(l —|\*)}. Then
there exists a constant C depending on y(0) and «, such that

a(¥* 7S, 1)) = Ct?,

where b=x/(2 cos " (a™!)). (Note that in the special case o = (cos(m/2N)) ™" we
have b =N).

Proof. The region D, is contained in a polygon P € D with one vertex at 1 and
with vertex angle =2 cos ~'(a ') at this point. Let p be the biholomorphic map
of D onto the interior of P with p(1) =1 and p(0) =v¥(0). As in Corollary 3.2 of
[9] a standard local mapping argument shows that there is a neighborhood N of 1
and a non-vanishing holomorphic function 4 on that neighborhood so that for
all zin N

1—p(z) = (1-2)""h(z)
where b =7/(2 cos "'(a™!)). Thus there is a #,> 0 such that
p~'S(1,1) €801, Cit%)  (t<to),

where ¢9 and C; depend on the map p; that is, on the geometry determined by «
and on (0). Since ¥(D) C D, C P we may write ¢ = po(p ~'eyy) = po7. Thus for
1<ty

v IS, )y crsd, Cie?).

Now C, is necessarily bounded on H”(D), by Littlewood’s subordination prin-
ciple [3, Theorem 1.7], with |C,| <1 since 7(0) =0. Thus there is an absolute
constant C, so that

(¥ IS, 1)) = 0y (7 7'S(1, Cyt?))
=< CzC]tb
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for all # < ¢y. Trivially for ¢ = ¢, we have
o1 (¢v IS, 1)) <1=<t5"tP.
Thus there is a constant C such that, for all ¢, o;(y*~'S(1, #)) < Ct?. Ol
We now give the proof of Theorem 2.2.

Proof of Theorem 2.2. By Lemma 2.1 it suffices to show that there is a con-
stant C so that

o(®*71S(er, 1)< CtN  (1>0).

Let A=®*"!S(e;, 1) and let ¢ be a point of dBy. We consider first AN[{], the
intersection of A with the boundary of the slice through 0 and ¢ (that is, points of
the form e®¢ in A4).

Let ®° be the map of D into D given by ® (\) = ®;(\¢). Here &, denotes the
first coordinate function of ®. By hypothesis ®(By) S Dqy,(€)), so

1-2,(\)| < 31— @A)
<zao(1—|2;(\)[%).

Thus, in the notation of Lemma 2.3, (D) cD,, €D. Since ®%(0) = P,(0) for
all ¢, Lemma 2.3 shows that

a(AN[ED) =0:((%) '8, 1))
<CtV,

where C is a constant depending on ®(0) and on the geometry fixed by «y, but
not on {. Then by slice integration [7, §1.3.7, p. 15]

— _ i 0y 40
o={ xa0)do(t)={ do®) | xae"t) 5,

where each of the inner integrals is at most C¢". This gives 6(A4) < Ct" and com-
pletes the proof of the first statement in Theorem 2.2.
If ®(By) €D, (e;) where v < g, then by Lemma 2.3 again

a((2%)7'8(, 1)) = Ct?,

where b=7/(2 cos_’(—y")) satisfies b > N. Again slice integration shows that
0(A)<Ct?=0(t"). Thus by Lemma 2.1, Cy is compact on H”(By). O

EXAMPLE. The following example shows that Theorem 2.2 is sharp. Let y be
an inner function on By with (0)=0. Recall that y* is a measure-preserving
map of dBy into aD [7, §19.1.5, p. 405]. Construct a map ® of By into By by

®(z) = (1-(1-¥(2))",0,...,0).
Consider first the case 1>b>1/N.
a(@*7'S(er, 1)) = oft: |(1—y(£))°| < 1)
=o{:y(5) e S(1, 7))

z—tl/b
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for ¢ sufficiently small. Since 2= 0(") if b>1/N, Cg is not bounded. If
b=1/N then Cs is bounded but not compact since ¢ o(t"). Since ®(By) is
(essentially) contained in D,(e;) where a=(cos(wb/2))~', this shows that
Theorem 2.2. is sharp.

REMARKS ON THEOREM 2.2. Lemma 2.3 may also be used to show that if &
is such that ®(By) €D, (e;) where vy < (cos(w/2N)) !, then Cq will be Hilbert-
Schmidt on H?*(By). It is easy to see [5] that Cg w1ll be Hilbert-Schmidt pre-
cisely when

-N
[ A= 12@ODVdo(5) <o,

If ®(Bn)CD,(e;) then |1—<I>1(z)[<%'y(1—-|<I>(z)|2)<7(1——|<1>(z)[). Thus Csp
will be Hilbert-Schmidt if

7 dG
* i -N — X3 iy =N 27
¢ o> =8@Ndo)={ do()[" [1-2%")]

As in the proof of Theorem 2.2, the map ®° takes D into the nontangential
approach region D,. If N(2 cos'l('y_'))/1r<1 the techniques of Lemma 2.3
show that each of the inner integrals above is bounded by a finite constant inde-
pendent of ¢. Thus Cg will be Hilbert-Schmidt on H2(By) if y < (cos{x/2N)) .

We finish by applying the methods of this Section to construct an example of a
map ®: B, — B, for which Cgy is compact on H”(B,), but not Hilbert-Schmidt
on H?(B,). This example relies heavily on the work done by Shapiro and Taylor
to construct analogous examples when N=1. We will use the relevant results
from [9, §4] as needed, and refer the reader to their paper for further details.

Let f(z) =z(—logz) on {Rez=0, |z|<1}. By [9, p. 485] there exists 0 <e <1
and a one-to-one conformal map g of the disc D onto H(e) ={|z| <e, Rez>0],
with g(1) =0so that 7(z) =1— f(g(z)) maps D univalently onto a Jordan domain
in D whose boundary touches oD only at 1 and for which C, is compact on
H?(D). Moreover there is a constant M so that 1—|1—f(iy)| <My for all
yel0,¢€].

The map we wish to consider is ®(z) = (1 —¢(p(z)),0), where p: B, - D s an
inner function in the ball with p(0) =0 and ¢ is defined on D by ¢(z) =F(g(z))
with g as above and F(z) = (z(—logz))l/ 2, (Both the logarithm and square root
denote the principal branch.)

We show first that Cy is compact on HP(B,). Since ®(B,) is contained in a
nontangential approach region based at 1 in the complex line through 0 and ¢,
Lemma 2.1 shows that we need only verify that o(®*~'S(ey, 1)) = 0(¢?). Tracmg
back through the definition of & we see that if ¢ is in 8B, the point e'’¢ is in

&*~!S(ey, ¢) if and only if

|Fog(p(e®¢))| <t o |fog(pc(e))] <2
el-—fog(p(e)) eSS, t?)
e1(p(e”)) e S, ?).
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But C, is compact on H?”(D), and therefore Theorem 1.1 shows that
aite”: 7(ps(e)) e S(1, %)} = 0(£?),

independent of ¢{, since p(0) =0. By slice integration, o{{: ®*({) e S(ey, 1)} =
o(t?), as desired.
To show that Cs is not Hilbert-Schmidt on H*(B,) we show that

-2 _
[, =12 do() =

We claim that there is a constant m so that for iy in the interval I, =
[i(m(k+1)) 72, i(mk)™?) on the imaginary axis, where k is a sufficiently large
integer, we have 1—|1—F(iy)| <k ~'. Note that |I;| =k 3.

Assume for the moment that the claim is verified. If #=_g !, then as in [9] 4
extends conformally to a neighborhood of 0 and there is a § > 0 so that both A4’
and its reciprocal are bounded on [—i§,i6]. Thus if k is sufficiently large, say
k=K, so that I}, ©[—i6,id], then

ale” T} =k~.
Since p is measure preserving as a map from 9B, to dD

olp (g ) =k,
Thus

[, a-le@h2do)= 3 | (=] @) 2 do(§)
2

k=Kovp ey

=C 3 (k) (k*) =eo,
kZKO
since on p g ~'(I;) we have 1—|®(¢)|=1—|1—F(iy)| <k ' by our claim.
To verify the claim, a calculation shows that there are absolute constants M,
and M, such that

1= 1=F(iy)| = Mi((1— 1= fGn)) > + | fGiy)])
Ssz]/z

for y sufficiently small. The second inequality follows from Lemma 4.1(c) of [9]
and the fact that | f(iy)| = y(—log y) = o(»"/?). This verifies the claim and we are
done. L]
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