GENERATING NON-NOETHERIAN
MODULES EFFICIENTLY

Raymond Heitmann

In their excellent 1973 paper [2], Eisenbud and Evans developed a unified
treatment of a number of results relating the dimension of a ring to the gen-
erating sets of modules over that ring. Throughout, they assume the ring in ques-
tion has Noetherian j-spectrum. Subsequent work by the present author [3],
Vasconcelos and Wiegand [5], and Brumatti [1] has produced some of these
results in a non-Noetherian setting, but many questions remained unanswered.
In fact, with a few fairly minor modifications, virtually all of the results in {2]
can be demonstrated without any Noetherian assumption. Moreover, the same
unified presentation can be followed.

In §1, we shall introduce the notation we shall use and prove some elementary
lemmas which shall be needed later. In §2, we present the results. This begins
with a generalization of Bass’s Stable Range Theorem (Theorem 2.1), which
immediately allows us to extend Kronecker’s Theorem that radical ideals (that
are radicals of finitely generated ideals) are radicals of (dim R+ 1)-generated
ideals (Corollary 2.4). More importantly, (2.1) serves as the fundamental lemma
needed to prove our version (Theorem 2.5) of the Basic Element Theorem [2,
Theorem A, p. 282]. With this, we may extend the ‘‘corollaries’’ of Theorem A—
Serre’s Theorem (2.6), Bass’s cancellation theorem (2.7), and the Forster-Swan
Theorem (2.8, 2.9). In §3, we offer a few examples to illustrate the necessity of
some of the modifications which have been made in the presentation.

The methods employed herein are not really new; primarily they are descended
from the techniques introduced in [3]. The presentation is quite different how-
ever and no familiarity with the earlier paper will be required.

1. Throughout, R will be a commutative ring with identity and 4 will be a
finite R-algebra (meaning finitely generated as an R-module). On first reading,
the simplifying assumption 4 =R may be helpful. All modules are unitary left
A-modules.

Let u(A,M) denote the minimal number of generators of M as an A-
module. Following [2], we say a submodule M’CM is basic at a prime P of
R if u(Ap, (M/M")p) <u(Ap,Mp), and is t-fold basic if u(Ap, (M/M’)p) <
uw(Ap,Mp)—t. We say a set my,...,m, €M is basic (resp. ¢t-fold basic) at P if
A(m,...,m,) is. We also use the terminology basic (resp. j-basic, X-basic) to
mean basic at every prime P € Spec R (resp. j-spec R, X).

We make frequent use of Spec R, the set of prime ideals of R with the usual
Zariski topology. We will also need the patch topology; this has the same points
as Spec R but has for a closed subbasis the Zariski-closed and Zariski quasi-
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compact open sets; that is, V(J) and D([) are closed when 7 is finitely generated.
A closed set in the patch topology is called a parch. The success of the methods in
this paper depends on the two facts that patches occur conveniently and that the
closure of a patch in the Zariski topology is the union of the closures of its points
[4, p. 45]. Because of this reliance, the following revised definition seems in
order.

DEFINITION. The j-spectrum of a ring R is the closure of the maximal spec-
trum of R in the patch topology. A prime in j-spec R is called a j-prime.

This definition coincides with the prevailing definition (primes which are inter- .
sections of maximal ideals) when the maximal spectrum is Noetherian, the only
situation in which the j-spectrum has proved useful (or will without the revi-
sion). The necessity of the change is discussed in §3. As usual, the dimension of a
subset of Spec R is the maximal length of a chain of primes in that subset. Of
course, dim R =dim(Spec R) and j-dim R=dim(/-spec R). We also (unfortu-
nately) need a new dimension function.

DEFINITION. For any prime P € Spec R, we let
8(P) =sup dim(j-spec R[r "INV (P)).

rer
DEFINITION. For XCSpecR, we let 6-dim(X)=suppeyx 6(P). We let
6-dim (R) =6-dim(Spec R).

REMARKS. (i) 6(P) <dim R/P. All results and proofs in this paper will be
valid (though weaker) if dim is used in place of §-dim.

(ii) j-spec(R/J)<S (j-spec R)NV(J) but, unlike the Noetherian case, the
reverse inclusion needn’t hold.

(iii) 6-dim R[r~!] <6-dim R for any r € R. Krull dimension has this property
also of course, but j-dimension doesn’t.

Next we discuss the connection between u, basic elements, and patches. We
begin with the familiar.

LEMMA 1.1. {P|u(Ap, Mp) >k} is closed.
Proof.
{P|u(Ap, Mp)>k}=N{support(M/A(my,...,my)) | m,...,my €M}
= (M {closed sets}
is closed. O

Of course, the complement of this set is open. Now in the Noetherian case all
open sets are quasi-compact, and consequently both {P|u(Ap, Mp)>k} and
{P|u(Ap,Mp) < k) are closed and open in the patch topology. So u(A_,M_)
partitions Spec R as a finite union of sets { P | u(Ap, Mp) =k} which are likewise
closed and open in the patch topology. The usefulness of this partition follows
from two extremely elementary lemmas which formed the heart of [3]—and
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much of the present paper. Lemma 1.2 was somewhat obscured by notation and
did not appear explicitly; Lemma 1.3 is [3, p. 118, Lemma 1] and is just a version
of the Chinese Remainder Theorem. -

LEMMA 1.2. Suppose dim X < . If Cy, C; are disjoint patches CXC Spec R,
then either CCNC,;NX =@ or dim C,NC,NX <dim X. (Over aset, indicates
closure in the Zariski topology.)

Proof. If P € C,N C, then there must be Q, € C;, O, € C, with Q,, O, C P, since
the closure of a patch is the union of its pointwise closures. Since C\NC, =@,
0,, O, can’t both be P. Say Q;#P. Since Q, € X, P is not minimal in X. Thus
C,N G, contains no minimal members of X and the lemma follows. 0O

LEMMA 1.3. If B, and B, are disjoint closed sets in Spec R, then there exists an
element r € R with B;CV(r) and B,C D(r).

Proof. Write B;=V(J;) and B,=V(J;). Note J,+J,=R. So we may write
1=r;+r, with r; €J;. Clearly r=r, has the desired properties. ]

The basic technique is fairly easy to outline. Using (1.3), we can deal with dis-
joint closed sets one at a time. Meanwhile, (1.2) tells us that if we partition a set
by patches, the closures will be disjoint except on a set of lower dimension which
we can deal with using some sort of induction hypothesis. Of course, we cannot
proceed unless we have the partition. Because u(A_,M_) does so partition
Spec R (or subsets thereof) under several different circumstances, it seems best
to simply assume it and mention some of the conditions which imply our
hypothesis.

DEFINITION. For a patch XC Spec R, a finite R-algebra A4 is X-appropriate
provided the open set { P|u(Rp, Np) <k}NX is quasi-compact for every k and
every N=A/B, where B is a finitely generated right ideal of A. Of course, R is
X-appropriate for any X. We say A is appropriate if it is (Spec R)-appropriate.

We say a finitely generated A-module 4M is X-appropriate provided A is
appropriate and [P |u(Ap, Np) <k}NX is quasi-compact for every k and every
N=M/B, where 4BC 4M is finitely generated.

The remainder of §1 is quite transparent in the case A =R.

THEOREM 1.4. For 4M to be X-appropriate, either of the following condi-
tions is sufficient:
(i) Spec R is Noetherian, or A=R and X is Noetherian.
(i) A isa finitely presented R-module and M is a finitely presented A-module.

Proof. (i) has been noted earlier. We first prove (ii) in the special case where
R/P is infinite for every P€X. Let m=u(R,A) and A=R(a;,...,a,) as an
R-module. Let N=M/B. For N=A/B, a nearly identical proof works (as well as
easier ones). It is easy to see M must be finitely presented as an R-module and so
N is also. So N=R'/J where J is finitely generated. Suppose xi, ..., X, generate
N as an R-module. Now a set of elements ny, ..., n; generates M as an A-module
precisely where {a;n; |i <m, j <k} generates N as an R-module. As each n; must
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be an R-linear combination of the x;’s, we see that u(Ap, Np) <k if and only if
there exists

{

{rilj<k,I<t}CR with P¢ support(N/R({ Y rjjaix;|i<m, jsk})).
=1
Let y;; be any preimage of @;x; in R'. Then, u(Ap, Np) <k if and only if there
exists {I‘j/ | j<k,l<t}CR with P¢ support(R’/R([ E;_:} Tt Vit li<sm,j<k})+J).
Suppose J=R(z,...,2,); fixing a basis for R’, we may regard the elements
Yir, Zs as t-tuples. Let {8, | j <k, I <t} be unknown; then Yio Biryu=ajjisat-
tuple in R[{(;;}]. Consider the matrix over R[{8;;]] whose rows are {o;; }U [z,}.
Let I be the ideal generated by the ¢ X ¢ minors of this matrix. Then we see
p(Ap, Np) <k if and only if there exists a homomorphism ¢: R[{8;,}] = R such
that ¢ (/)¢ P. (Choosing ¢ is the same as picking {r;;} so that ¢(8;,) =rj;.) Now,
as I is generated by minors {f,}, ¢(I)Z P if and only if ¢(f,)¢ P for some
fo. So u(Ap,Np) <k if and only if P€ U.{Q|¢([.) ¢ Q for some ¢}. This is a
finite union and so it suffices to prove the intersection of each set with X is quasi-
compact. Observe f, is a polynomial in {8;,}; as R/P is infinite for P € X, we can
find ¢ such that ¢ (f,) € P whenever any coefficient of f, is not in P. Of course,
if each coefficient is in P, we cannot. Thus {Q]|¢(f,) ¢ QO for some p}NX=
D({g;}) NX, where the g; are the coefficients of f.. This set is quasi-compact as
desired.

Now consider the general case where R/P need not be infinite. Let 7 be an inde-
terminate and let X'={P[T] | P€X}CSpec R[T]. By Lemma 3.1 of [6, p. 472],
X' is a patch in Spec R[T'] and the map P— P[T] is a homeomorphism. Now
R[T]/P[T} is infinite for every P[T] € X’ and so the theorem follows from the
special case, provided that u(Ap, Np) =p(A[T]pr), N[T1p;7)) for every PE€ X.
This holds; in fact, if R — S is any homomorphism of commutative rings and P
has a prime Q € Spec S lying over it, then u(Ap, Np) =p((ARr S)g, (N S)g).
To prove this, we may harmlessly replace R, S by the fields (Rp/PRp), (Sg/QOSp)
and A by the semisimple Artinian ring (Ap/(Jacobson radical of Ap)). It is
therefore enough to show u(A,N)=u(ARg S, NQr S) where A is simple and a
finite dimensional vector space over R. Since (dimgz N/dimgp A)<u(A,N)<
(dimg N/dimg A)+1 and dimg(NQr S) =dimp N, the result follows. O

In [2], it is noted that while an element in a projective module is unimodular
on an open set, the same is not true for basicness. What is true is the following.

THEOREM 1.5. Suppose 4M is X-appropriate and m,,...,m,€M. Then
{PeX|my,...,my, is t-fold basic in M at P} is open and closed in the patch
topology on X.

Proof. The set is precisely
U ((P1a(Ap, M) ZKIN (P | w(Ap, (M/A(m, ..., m))p) k=130 X),

which is a finite union of sets both open and closed in the patch topology on X.
]
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Noting that if I is a subset of R, V(/)=support(R/IR) and D(I) is its com-
plement, we are led to the following definition.

DEFINITION. If I is a subset of A, set V(I)=support(A/IA) and D(I)=
Spec R —V(I).

Thus we may partition any patch X=(D(I)NX)U (VI)NX). If A is X-
appropriate and IA is finitely generated (e.g., if 7 is finite), then both sets are
open and closed in the patch topology on X and so X is represented as the dis-
joint union of two patches. It should be noted that, unlike the commutative
situation, D(/;Ul,) may properly contain D(1,) U D(1).

We conclude §1 with three technical lemmas which we shall need to deal with
the case A #R.

LEMMA 1.6. Suppose A is an X-appropriate R-algebra. For any a€A,
{PEX |a€ Jacobson radical of Ap} is open and closed in the patch topology
on X.

Proof. When A =R, this set is V' (a) N X, but in general it is a proper subset of
V(a)NX. Since A is finitely generated as an R-module, AaA is finitely gen-
erated as an R-module and so is (A4aA)"” for any n, in particular when n=
p(R,A). For any P, Ap/PAp is a vector space over Rp/PRp of dimension <n.
So (Jacobson radical of Ap)" C PAp and a € Jacobson radical of Ap if and only
if (AaA)"ApC PAp. Hence a € Jacobson radical of Ap if and only if u(Rp, Ap) =
p(Rp, (A/(AaA)")p). So our set is just

LkJ ((P|p(Rp, Ap)=k}NXN{P|n(Rp, (A/(AaA)")p) =k},

which is open and closed in the patch topology on X as desired. O

LEMMA 1.7. Let A be an X-appropriate R-algebra, c|,c,€A, and let s be
a unit in R. For each PE X, let Cp denote Ap modulo its Jacobson radical.
Then we may find a finite collection of disjoint patches X;CX and a corre-
sponding set of elements d; €A such that X=\U X;, and, for each PEX;,
(61,8,)Cp=¢6,d;(§—)Cp@ & Cp= (& d;u(5§— &)+ ) Cp for any central unit
u€ Cp. Moreover, we may choose X, to be any set, open and closed in the patch
topology, for which d, € A can be found to satisfy the equations.

Proof. Throughout this proof, we will use only the patch topology. The X; we
seek must necessarily be clopen (closed and open) in X with this topology. Con-
sider any P € X. Since Cp is semisimple Artinian, we may decompose (¢;, ;) Cp
into ¢;aCp® &, C,. Moreover, since ¢;aCp@C, Cp is a direct summand of Cp,
we may find an orthogonal pair of idempotents which generates these right
ideals, say ¢, and ¢, 3. We observe the equations ¢; =¢, ay;+C,7y2 and ¢, =C, 36
must hold, and so ¢ «& =0. Now lift «, v,, v, to elements dr ~', g, r ~!, gor ! €Ay,
where r€ R — P. Letting 6p: A = Cp be the obvious map, we see that the follow-
ing conditions are clearly satisfied: (i) 0p((cld)2—c1 dr)=0; (ii) 0p(c,dc;) =0;
(iil) 0p (c;r?—c;dg,—c, 8,r) =0; and (iv) r € P. Moreover, these four conditions
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guarantee (¢, 6,)Cp=6 dCp@® &, Cp and G dc,=0. So ¢ d(5— &) =2 ds and we
have (&, &)Cp=¢E,d(5— &) Cp@® G, Cp. Further, let u be any central unit in Cp.
Then
G d(5—6&)=(Fu) '6,d(¢ du(5—6)+ &),

from which & d(5—&)Cp@ &, Cp= (¢ du(5— &) + &) Cp quickly follows. Hence,
for the set of primes satisfying (i)-(iv) and this particular d €A, the equa-
tions are satisfied. Now, to say 0p(a)=0 means « is in the Jacobson radical
of Ap. Thus, by (1.6), each condition is satisfied on a set clopen in X. So there is
a clopen set Y in X which contains P on which all conditions are satisfied. We
repeat this procedure at every prime in X. Thus we cover X with sets clopen in X.
Since X is compact, we may choose a finite subcover—Y,..., Y,. Adding an
extra clopen set is harmless so if we wish to specify the first set in the cover, we
let Y, be that set. Choosing X;=Y,, X,=Y,—Y,, etc., we produce our desired
disjoint cover. O

Our final lemma of this section will be needed in the proof of Theorem 2.5
because Lemma 5 of [2] is not exactly what we need. As we shall need that
result later and its statement will put (1.9) in the proper context, we state their
Lemma 5 here.

PROPOSITION 1.8. Let A be a semisimple Artinian ring, a€A, and M a
finitely generated A-module. If m,,...,m, is w-fold basic in M with w<u and
(a,m,) is basic in A®M, then there exist elements a,,...,a,_,€ A such that for
all central units r € A, {m;+aa,rmy,, my+a,rmy,, ..., My, +a,_,rm,) is w-fold
basic in M.

Proof. [2, pp. 294-298].

LEMMA 1.9. Let A be a semisimple Artinian ring, a€ A, and M a finitely
generated A-module. If my€M is such that (a, m,) is basic in A®M, then there
exists b€ A such that ab is idempotent, ab € ann(m,), and (ab,m,) is basic in
A®M.

Proof. We may handle each simple summand of A4 separately. While there
may be summands on which (a, m,) is not basic, such summands pose no diffi-
culty. We can choose b=0 as (ab,m,) is not required to be basic. So we may
harmlessly assume A is simple. Then conditions of basicness reduce to conditions
of length. Letting A(A) be the length of A4, we write \(A@M)=n\(A)+gq for
some n and 1<g<A(A). u(A,A®M)=n+1 and the condition (a,m,) basic
means precisely A(A(a, m;)) =2q. Thus, for basicness, it suffices to find b such
that A(A(ab, m;)) =N(A(a,m;)). We note N(A(a, m;)) =N(Am,) +N\((ann m,)a).
Now the A-module homomorphism (ann m,) — (ann m,)a has a splitting map
(ann m,;)a — ann(m,), which we may extend to a homomorphism ¢: A = ann(m,)
by sending the complementary summand of (annm;)a—0. Now ¢ is right
multiplication by b=¢(1). As the map is injective on (annm,)a, we have
A((ann m)ab)=N((ann m;)a) and of course ab€AbCann(m,;). As bab=>b,
ab is an idempotent and b is the desired element. O
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2. We begin this section with a generalization of Bass’s Stable Range
Theorem. The statement will be in a form necessary to prove the Basic Element
Theorem and so not very recognizable. Consequently, the statement will be
followed by a succession of corollaries which are really special cases; these
should seem familiar. Then Theorem 2.1 will be proved.

THEOREM 2.1. Let A be an appropriate R-algebra, s€R, and d=
j-dim R{s™'1. Suppose a, .. .,a, €A such that k>d+1 and

k
D(s)CD(a;,a) U U D(a;).
i=3
Then there exist b,,...,by €A such that D(s)CD(a,+ab,,...,a+a,by).
Moreover, we may take each b; Es*A(s—a;).

Of course, D(a,+abs,...,ax+a;b)NV(s)=D(a,,...,ar)NV(s). In the
case A=R, (2.1) immediately leads to

COROLLARY 2.2. Let sER and d=j-dimR[s™']. Suppose ry,...,ry €R
such that k>d+1and D(r\) CD(s)CD(ry,...,ri). Then there exist t,,...,ty ESR
such that D(ry+ryty, ..., rp+rity)=D(r,...,rg).

If s=1, we get the usual Stable Range Theorem.

COROLLARY 2.3. Let d=j-dim R and k>d+1. If (r,...,rx)R=R, then
there exist t,,...,ty €ER such that (r,+rity,...,rx+ritx)R=R.

On the other hand, the other extreme of (2.2), s=r, generalizes Kronecker’s
Theorem to the non-Noetherian setting.

COROLLARY 2.4. (i) Suppose j-dim R[r{'1=d and k>d + 1. Then there exist
lry.. L, € R with D(ry+rity,...,ri+rtg)=D(ry,...,1rg).

(ii) If d=6-dim R, then any ideal which is the radical of a finitely generated
ideal is the radical of an ideal requiring at most (d+1)-generators. In fact,
\/(al, N RN b], . .,bm) =\/(C'1, .. .,Cd+1), where ci=a;+ )> r;jbj.

Proof of Theorem 2.1. Since we are only concerned about primes in
D(s)=Spec R[s~'], we may work over this ring. So we assume s is a unit
and Spec RC D(ay,a,)UU%_; D(a;). (Admittedly, this reduction will yield
b, €s* (A®R[s~'1)(s—a;), which may not lift to s24 (s—a;). This concern will
be addressed when b; is actually chosen.)

Set X=j-spec R. We prove the theorem by induction on dim X. Assume it
holds for dim X <d; we prove it for dim X =d.

Next we want to construct a partition X = |J X; and find a corresponding set
of elements d; € A. Let Cp denote Ap modulo its Jacobson radical. (When A=R,
Cp is the field Rp/PRp. As our consideration of Cp will be restricted to its ideals,
in the field case it matters only whether or not a particular element is zero. With
this observation, the non-commutative notation can be circumvented.) Partition
X according to (1.7), obtaining {d;}CA such that for PeX;, (a,a)Cp=
a,d; (§—a,)Cp@a, Cp=(a,d; u(5—ay) +ay)Cp for any central unit # € Cp. We
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may choose X;=D(a;)NX since d;=0 works there. (For A=R, X=X,UX,
where X, =V(ay)NX and d>=1.) Now let Y=U);; (z\_’;ﬂ)?j). By (1.2), either
YNX=@ ordim YNX<dim X.

To handle the case YN X =@, it suffices to demonstrate a more general fact
which we shall need later: If Z is closed and YN XNZ=@, then we can find
by €s*A(s—ay) such that ZCD(ay+ab,,...,ax+a,b;) for any choice of
by,...,by_€A. Replacing R by R/J where Z=V(J), we may assume Z=
Spec R. (XN Z may properly contain j-spec(R/J) but this presents no prob-
lem; the important thing is that it contains max-spec R/J.) Since Spec RC
D(ay,...,ay), it suffices toshow A= (a,,...,ax)AC (ay+a; bs, ..., a; +a, by ) A.
It is enough to show the right ideal contains @; and to do this we show that for
each maximal P, necessarily in some X;, @ € (a +a,by)Cp. The condition
YNX=¢g tells us that the closed set Y contains no maximal ideals. So Y=0
and the {X;] are pairwise disjoint closed sets. By (1.3), find {r;}CR such
that X;CD(r;) and X;CV(r;) for each j#i. Let by=Y r;s°d;(s—ay) for
some integer e. Then, for PGX,', &1 € (5| ’ c?k)Cp=al d,' (S—ak)Cp®5k Cp=
(@y +a,ris¢d;(5—ag))Cp since r;s€ is a central unit in Cp. This in turn equals
(ay +a; by ) Cp since r; =0 for j #i. Here we must treat the concern that b; should
be in 524 and not just A[s~']. The element Y r;d;=as™" for some a€A and
n€Z. By choosing e=n+2, we get by =s a(s a;) as desired.

Next we consider the case dim Y N.X <dim X. Here Y= Spec R/I for some 1deal
I and j-spec(R/I)CYNX. Then k—1>1+d1mj spec R/I. Further, if Q€Y,
QDP for some PE X, j # 1. Since P ¢ D(ay) and D(ay) is open, Q ﬁéD(ak) Thus
Spec RC D(ay,a,)UUX_; D(a;) implies Spec(R/I)C D(ay,a,)U U] D(a;).
(Necessarily, £ =3 in this case.) Hence we may use the induction assumption to
apply the theorem to R/I, thus obtaining suitable b,, ..., by_; €A such that YC
D(a,+ab,,...,ax_+a,bi_,). Finally, let Z=V(ay,+a,b,,...,a_;+a,bi_,).
It remains to choose b, so that ZC D(a,+a, b,, ..., a,+a, by); we showed this
was possible in the treatment of the case YNX=0. O

We are now ready to state and prove our version of the Basic Element
Theorem.

THEOREM 2.5. Suppose 6-dim R=d <o, X a patch in Spec R which contains
the maximal spectrum, A an R-algebra, and M an A-module such that 4M is
X-appropriate. Then the following hold.

(i) If n(Ap, Mp) >d for every prime P € X, then M contains an X-basic element.

(ii)(a) More generally, let M’ be a finitely generated submodule of M. If, for
every PeEX, M'is (6(P)+1)-fold basic in M at P, then M’ contains an X-basic
element of M. (b) If furthermore M'=Am;+M?* for some submodule M*C M,
and if a€ A is given such that (a,m) € ADM is X-basic, then there is an X-basic
element of M of the form m;+am*, where m*€M?*.

Proof. (i) follows from (ii), and (ii)(a) is a consequence of (ii) (b), obtained by
setting @ =1. So we need only prove (ii)(b). In order to accomplish this, we shall
make repeated use of the following reduction. Choose some m*€M* and
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set m{=m;+am*. Now (a,m,;) is basic at P if and only if (a,m/) is basic at P,
because the automorphism ¢ on A@M given by (b, m)= (b, m+bm*) takes
(a,my) to (a,m{). As Am+M*=Am{+M* and m;+aM*=m|{+aM*, it suf-
fices to prove (ii)(b) with m, replaced by the new element ;. By repeatedly
deforming m, in this manner, we shall force m, to satisfy an increasing number
of nice properties. After each replacement, we shall feel free to reuse the symbols
m* and mj. (The m* promised in the theorem will never be displayed explicitly.)

Let k=infu(Ap,Mp) and k+n=sup(Ap,Mp). We use induction on n,
assuming the theorem holds when sup u(Ap, Mp)—inf(Ap, Mp) <n. Let
Y={P|u(Ap,Mp)>k}. We shall deform m, in order to make it satisfy the
property ‘‘m; is XN Y-basic’’. If n=0, Y= and m, already is. If n>0, Y is
closed and nonempty and so for some ideal 7 of R, Y=V (I)=SpecR/I. We
apply the induction hypothesis to R/I and M/IM to obtain m|{=m,+am*, which
is X N Y-basic. Replace m; by m|. Next let Z={P € X | m, is not basic in M at P}.
Since 4M is X-appropriate, Z is a patch. Of course, foreach P€Z, u(Ap, Mp) =
k. For each ¢, we define a set B,={P|M’ is t-fold basic, but not (¢+1)-fold
basic, in M at P}. We will now prove the following statement for every integer
N, 1<N<gk.

(*) If my is XN Y-basic and BLNZ=@ for all t <N, then we can find m{=
my+am* with m*€M?* such that m{ is X N\ Y-basic and B,NZ'=@ for all
t <N, where Z'=(P € X | m{ is not basic in M at P}.

This statement will be sufficient to prove the theorem since it allows us to repeat-
edly deform m,, starting with B,NZ =@ for ¢t <1 and finishing with BNZ'=©@
for t<k. As Z'CU,<x B;, Z'=@ and m| is X-basic. Now we must prove the
statement.

Let SER, a,€A. We say (s,a,) is an m;-suitable pair provided we can find
a,...,ay €A and local generators m, + 11, m,,...,my; of M with m, m,,...,myEM*
such that SMCA(m+nm,m,,...,my), sm=a(m+m)+a,my+---+a;myg,
and D(s)CD(a,a;). An open set D is called an m,-suitable set if there exists an
my-suitable pair {s,a;) with D=D(s). We shall demonstrate that, given any
PeByNZ, we can find an m,-suitable pair (s, a;) with P€ D(s), and hence we
will cover ByNZ with m-suitable sets. To accomplish this, first note that gen-
erating M locally at P is the same as generating Cp@ M, where Cp is Ap modulo
its Jacobson radical. (For A =R, we get a vector space and it is easy to find gen-
erators of the right form and lift to M; since m, is not basic at P, m;=
0 € Cp®M and causes no difficulty. Since (a,m,) is basic at P and m, isn’t,
a ¢ P. So we can choose s €aR to force D(s) C D(a,a;).) In general, Cp is a semi-
simple Artinian ring and we can utilize Lemma 5 of [2, p. 295], that is, Propo-
sition (1.8). First, by (1.9), since (&,n#n1;) is basic in Cp@Cp&Q M, we can
find B€E€Cp such that (a8)?>=(aB)€ann s, and (aB, ;) is basic. Choose
ny,...,n,€EM* so that my,n,,...,n, is N-fold basic in M at P (recalling
PeBy). If N<u, we apply (1.8) to the sequence m,, n,,..., n, and the element
(aB,m)ECPr®Cp®M to find «,...,a,_; €Cp such that for all central units
y€Cp, {m+aBoyvyn,,...,n,_+aBa,_,vyn,} is N-fold basic. Choosing v
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properly, we can lift So;y to A for each i. Thus, we can lift our new set to a
subset of M that is N-fold basic in M at P and has the form m,+#,n3,...,n,_,
with 7i,n3,...,n,_|€EM* and A€aBCp@M*. If u—1>N, we may repeat the
process until we have produced a set of N elements, m;+m, m,,..., my with
W, my,...,myEM* and m €aBCp@M*. As (aB)*=(ap) and aBm, =0, =
(1—ag)(m;+m). Lifting this equation to ApQ@M, we get

my,— (1—abr~'y(m,+m) € (Jacobson radical of Ap)(Ap@M),

where br~! is a lifting of 8. Next choose MpN41,..., Mg €M to complete the
local generating set. We can now find a pair sE R—P, a; €A such that sMC
A(my+m,my,...,myg), smy=a (my+m)+---+aymy, and a;=(1—abr™')s
modulo the Jacobson radical of Ap. Noting P € D(a, a,) if and only if (&, a,)Cp=
Cp, we observe §Cp=Cp and 5§=a,+a(br~'s), yielding P€D(s)ND(a,a,).
Next we find a basic open set D(¢) with PED(¢)CD(s)ND(a,a;). {st,a;t) is
the desired m;-suitable pair.

Thus we can cover By M Z with m,-suitable sets. By Theorem (1.5), ByN X isa
patch and so then is ByMNZ. Hence it is quasi-compact and can be covered by
finitely many m,-suitable sets. We shall now prove (*) by induction on the
number of m;-suitable sets needed to cover ByMNZ. The case of no sets (i.e.,
ByNZ =) is trivial. Otherwise, let J be an ideal such that V(J)=ByNX; we
note 6-dim(R/J) <é-dim V(J)=sup{é(P)|Pe€ByNX], the equality holding
since every prime in V(J) contains a prime in ByNX. If PEByNX, M’ is not
(N+1)-fold basic in M at P and so 6(P)<N. Hence 6-dim(R/J) <N. Now
choose some m;-suitable set D(s) from a minimal cover and let (s, a;) be the
corresponding m,-suitable pair. Since D(s) C D(a, a;), we may apply (2.1) to the
algebra R/J® A and the sequence a, a,, . . ., ay. Lifting the result to A, we obtain
elements b; Es*A (s —a;) such that V(J)ND(s) C D(a;+aby,...,ay+aby). Write
by=sc;(s—a;) and by=sc,,...,by=scy where each c;€sA. Now set m*=
scim+(cy+cra)my+ -+ + (ey+cray)my €sM* and, as usual, m{=m;+am*.
As m{—m; EsM, we have, for every P € V(s), mjis basic at P if and only if m, is
basic at P. Now sMCA(m;+ni,my,...,my) tells us that u(Ap, Mp)=k for
PeD(s) and M’ is N-fold basic in M at P for P€D(s). Thus XNY CV(s) and
XNB,CV(s) for t <N, it follows that m{ is X N Y-basic and X N B,-basic for
t<N. Letting Z'={P€X |mj is not basic in M at P}, we will have proved
(*) and so Theorem (2.5), provided we can show ByNZ’ can be covered by
fewer m{-suitable sets than the number of m;-suitable sets in a minimal cover
of ByNZ. We already know ByNZ'NV(s)=ByNZNV(s); we shall show
ByNZ'ND(s)=@, that is, m{ is basic at P for each P€ByND(s). It suffices
to prove smj is basic. Noting as?c, i1 =as?c, (m, + 1) —as’*c;my, we see

smi{=sm;+sam*
= (l—ascl)sm1+aszc1(m1+n"z) +a(sc,+scia)my+ -+ +a(sey+scyay)my
=(l—asc)(aqy(m+m)+--- +akmk)+aszc,(m;+n'1)
+ (aby+ascia)ymy+ -+ - + (aby +ascyan)my
=(a;+asci(s—a)))(m+m)+ (a,+ab)my+ -+ + (ay +aby)my
+ (1—asc))ansymy+ -+ (1—asc))a, my
=(a,+ab))(m+m)+ -+ (ay+aby)mn+ -+ + (1 —asc,)ay my.
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If we let F be the free module on the generators (rm;+#1),...,mg, the map
Fp— Mp is onto for P € D(s). Thus, to show smj is basic at P it suffices to find a
preimage of sm{ which is basic in Fp. For P€ ByNXND(s), the choice of {b;}
guarantees the obvious preimage is basic, since P€D(a;+ab,...,an+aby)
gives 1= (a,+ab,)d,+ - -+ + (ay +abyn)dy for some d; EAp. So the map Fp > Ap
which sends m+m—d,,...,my—>dyn, my;1—0,...,m;—0 is onto, sending
our preimage to 1. Thus my is basic at each prime in ByNXND(s), that is,
ByNZ'ND(s)=@

Suppose ByNZCD(s)U (U D(s;)) where {s;,g;» is m-suitable for some
{gi}CA. Now ByNZ'=ByNZNV(s)c U D(s;), so we will be done if for
each / we can find an mj-suitable pair {¢;,b;) with ByNZNV(s)ND(s;)C
D(t;). Let my+#,n,y,...,n; be a local generating set on D(s;) correspond-
ing to {s;,g;>. To show a pair is mj-suitable, we can use this same gener-
ating set because m+aAE€Em{+M*. As m{=m+am* with m*€sM*, we may
instead write m,’::ml-i—sn‘r. We have s;m=g(m +na)+--- +gk n, and s; =

1(m1+n)+ -+ hy ng. Thuss,ml = (g1 +sh)(my + i)+ -+ (gx + Shy) ng.
Clearly D(a, gl)ﬂV(s) D(a, g, +sh))NV(s). As D(s,)CD(a gi), we obtain
D(s;)NV(s)C D(a, g +sh;). Hence, in Spec R[s; 1, we get disjoint closed sets
D(s;)NV(s) and D(s;)NV(a,g +sh;). Applying Lemma (1.3), we find rER
such that V(s)ND(s;)CD(r) and V(a,g +sh)ND(s;)CV(r). We set t;=rs;
and b;=r(g,+sh;). Clearly By\NZNV(s)ND(s;)CD(¢;), and since D(¢;)C
D(a,g+sh))ND(ryC D(a, (g,+sh,)r) we see that {f;,b;) is an mj-suitable
pair. O

REMARKS. Theorem 2.5 actually contains new information even in the
Noetherian case. In Theorem A of [2, p. 282], the hypothesis needed to guar-
antee an element basic on all of Spec R is that the set M’ be (dim(P) +1)-fold
basic in M at each prime P. Here we require only that M’ be (6(P) +1)-fold basic
in M. This may be smaller, and will be, for example, if R is local and not zero-
dimensional.

On the other hand, the remark made in [2, p. 282] following Theorem A has
no analogue here. Since the essence of our proof is to start at maximal primes
and work down, restricting to primes of low height yields nothing.

Now we are ready to derive the corollaries, analogues of Corollaries 1, 4, and 5
to Theorem A. As the proofs require no alteration, they will not be repeated .
here. Assume X =j-spec R in the statements.

COROLLARY 2.6 (Serre’s Theorem). Lef 6-dim R=d.

(@) If P is a finitely generated projective R-module whose rank at each localiza-
tion is at least d+ 1, then P has a direct summand.

(b) With R and P as above, if P is generated by elements m,,...,m,, then the
generator of the free direct summand may be chosen to be of the form m=
m+aymy+---+a,m, with all a, ER.

Proof. See [2, p. 283].

COROLLARY 2.7 (Bass’s Cancellation Theorem). Lef 6-dim R =d and let P be
a finitely generated projective R-module whose rank at each localization is at
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least d+1. Let Q be any finitely generated projective R-module and M any
R-module. If Q®P=Q®M, then P=M.

Proof. See [2, p. 285].

COROLLARY 2.8 (Forster-Swan). Let N be a finitely presented R-module and
suppose that t =maxpe x (6(P)+u(Rp, Np)). Then N can be generated by t ele-
ments.

Proof. See [2, p. 286 and note on p. 304].

COROLLARY 2.9. Let N be a finitely generated R-module and suppose
n=max u(Rp, Np). Then N may be generated by 6-dim R + n elements.

Proof. Start with the exact sequence 0 >M —>R* > N—-0. M is (k—n)-fold
basic in R* at each prime P. We select a (kK —n)-fold basic subset consisting of
finitely many elements for each P. Such a subset is (kK —n)-fold basic on an open
set. These open sets cover Spec R. Take a finite subcover; the union of the corre-
sponding subsets of M is finite and (k —n)-fold basic in R¥ at every prime P.
This union generates a submodule M*CM. Since R'//M*—>»N, u(R,N)<
p(R,R'/M*), and since R'/M?* is finitely presented, (2.8) yields u(R,R'/M*) <
6-dim R +n. O

Actually, this proof encompasses a weakened version of [5, Lemma 1.1, p. 2]
which asserts that any finitely generated module M is an image of a finitely
presented module N (where we can assume that for finitely many quasi-compact
sets X;, if u(Rp, Mp) <n; for P€ X; then u(Rp, Np) <n; for P€ X;). However,
since { P|6(P)=k} needn’t be quasi-compact, (2.9) can’t be strengthened.

COROLLARY 2.10. Let A be an R-algebra which is finitely presented as an
R-module. Then corollaries (2.6)-(2.9) hold for A-modules.

Proof. By (1.4), finitely presented A-modules will be X-appropriate and so we
may apply (2.5), which is really all we need. O

3. In this section we shall attempt to justify the hypotheses we have ‘‘added”’
to the theorems—precisely, the redefinition of j-spectrum, use of é-dim instead
of j-dim, and the restriction to appropriate modules.

Treating the last item first, appropriate modules are simply a generalization of
finitely presented R-modules; the necessity of a restriction of this type was
observed in [5]. Of course, all modules are appropriate in the Noetherian case
anyway. We include an example of a 1-dimensional ring, and a module which
requires n generators locally at each P € Spec R =j-spec R but does not contain a
basic element.

EXAMPLE 3.1. Let F be a countable field, {T;} a countable set of indetermi-
nates and R=F[{T;}]/({T;T;|i#j}). Let {m;} be a countable enumeration of
the elements of the free module M=R""' and set N=M/({T;m;})R. Then
w(Rp,Np)=n for all P but no element of N is basic on all of Spec R.
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Proof. Any basic element must be #; for some i. However, if P;=
({T; | T; #T; )R, we see 11; Rp;=0 and so 1, is not basic at P;. For the other half,
note that every prime Q contains some P; since {P;) is the set of minimal primes
of R. Hence {T;m;|j#iJRCQON and so u(Rg,Ng)=pn(Rg, (M/T;m;R)p) 2
[,L(RQ,MQ)—1=H. O

Next we discuss why we have altered the definition of j-dimension. First we
shall make some philosophical observations and then offer an example showing
the failure of the theorems when the classical definition of j-dimension is used.

A topological space is spectral if it is 7, and quasi-compact, if the quasi-
compact open sets are closed under finite intersection and form an open basis,
and if every nonempty irreducible closed subset has a generic point [4, p. 43].
The maximal spectrum is always T, and quasi-compact but the other two prop-
erties may fail. If the maximal spectrum is Noetherian, all open sets are quasi-
compact and so the maximal spectrum satisfies the third property, making
the absence of generic points its only topological deficiency. Classically, the
j-spectrum was defined by adjoining the missing generic points (which is cer-
tainly the right thing to do if that was the only problem). However, the results in
this area are inherently topological and it is not sufficient to add generic points
when the maximal spectrum does not have a quasi-compact basis. In Example
3.2, we exhibit a ring whose maximal spectrum satisfies the generic point prop-
erty but which has no quasi-compact open subsets except the entire spectrum.
Moreover, the theorems in this paper fail when the classical definition of
J-spectrum is used. Note that with the new definition, j-spec R is a spectral
topology and the injection j-spec R —>spec R is a spectral map.

EXAMPLE 3.2. There exists a ring R whose maximal spectrum is isomorphic to
the unit circle with the Euclidean topology and which has an invertible ideal
which is not free. Since the only nonempty irreducible closed sets in max-spec R
are points, the classical j-dim R =0 and so (2.5), (2.6), and (2.8) are immediately
contradicted with this definition.

Proof. Let T be the ring of continuous functions from the unit circle
(x%+y2%=1) to the reals and let

R={fe€T|f(—x,—y)=f(x,»)].

Let /= (x2,xy)R. It is well known that max-spec R={M, ,}, where M, ,=
{f€R]| f(a,b)=0]}. To see this, note R/M, , =R and so each M, , is maximal.
On the other hand, if M is maximal and M # M, , for any (a, b) on the circle, we
employ compactness to find fi,..., f; €M such that for each (a,b), some
fila,b)#0. Then fi+---+fZ is never zero and so M contains a unit. Now
M, ,=M_, _;, but otherwise the maximals are distinct and so max-spec R=
unit circle with antipodal points identified = unit circle. Clearly the corre-
spondence is a homeomorphism. Now let /= (xy, x?)R. Since (xy, x?)(xy, y?) =
(x%y2,x3y, xy3)=xyR and xy is not a zero divisor, I is invertible. As IT=xT, I
is principal if and only if there exists # € T such that xu € R and u is a unit in 7.
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Since x is antisymmetric and nonzero on a dense set, xu is symmetric if and only
if u is antisymmetric. However, an antisymmetric function must be zero some-
where and so cannot be a unit.

Finally, we must consider the use of 6-dimension. Some of our results certainly
require it. In our results, we talk about every prime in Spec R, not just primes in
j-spec R. This may often be unimportant to our ends but can have interesting
consequences, for example, Kronecker’s Theorem (2.4). Without 6-dimension, we
cannot do this. In a local ring, the fact that j-dim R =0 gives information about
the maximal ideal only. However, if we are only concerned about j-spec R, is
J-dim good enough? The author does not know; the techniques used here will
not work. In fact, Vasconcelos and Wiegand obtained a bound on the number of
generators of a module of (sup{u(Rp,Mp)})(j-dim R+1). This bound is not
always higher than that given by (2.8). If j-dim R <é-dim R, this bound will be
better for modules requiring few generators locally. For j-dim R=0, the
[5]-bound is optimal; that bound also follows from this paper. To see this, note
that while 6-dim R >0 can happen when j-dim R =0, it suffices to work over
R/MN(Max), a zero-dimensional ring. This illustrates another point—take
homomorphic images when you can, for example, work modulo annihilator of
M. The 6-dimension may go down.

The author wishes to thank Efraim Armandariz, Stephen McAdam, Martha
Smith, and Roger Wiegand for various helpful conversations.
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