THE CONSTRUCTION OF THE KERVAIRE SPHERE BY MEANS OF AN INVOLUTION

Benjamin M. Mann and Edward Y. Miller

One of the most significant results in differential topology is Milnor's discovery of exotic smooth structures on the standard PL sphere [5]. Much work has been done to understand precisely how these exotic structures differ from the standard structure. Every homotopy sphere, Σ^n , for $n \neq 3$, 4, may be obtained from two n-disks by identifying their boundaries via a diffeomorphism of S^{n-1} [7], [9]. For the standard sphere the diffeomorphism may be chosen to be quite simple, namely, the antipodal map on the equator S^{n-1} . In this paper we show how other homotopy spheres may also be formed by quite simple diffeomorphisms, namely smooth involutions.

Kervaire and Milnor, [4] considered homotopy spheres Σ^{2n-1} which bound parallelizable manifolds and showed that these homotopy spheres form a finite cyclic group, called bP_{2n} , under connected sum. Hirsch and Milnor [3], have shown in dimension 7 that the Milnor exotic sphere M_3^7 , the generator of bP_8 , admits a fixed point free involution that has an invariant codimension one standard S^6 . This free involution is defined as the antipodal map in the fibers where M_3^7 is exhibited as a 3-sphere bundle over the 4-sphere. Hence, as Hirsch and Milnor noted, M_3^7 , like S^7 , may be realized by identifying two copies of D^7 by a fixed point free involution on their boundary.

Our main result shows that the Kervaire sphere, K^{4k+1} , the generator of bP_{4k+2} , may also be obtained by gluing two disks via a smooth involution. Unlike the Hirsch-Milnor example we must allow the involution to have a set of fixed points.

THEOREM 1. There exists a smooth involution $T: \partial D^{4k+1} \to \partial D^{4k+1}$ with fixed point set, Fix $T = S^{2k}$ such that the Kervaire sphere K^{4k+1} is diffeomorphic to the disjoint union of two copies of D^{4k+1} with their boundaries identified by T.

That is

(1)
$$K^{4k+1} \cong \{D^{4k+1} \coprod D^{4k+1} \mid x \sim Tx \text{ for } x \in \partial D^{4k+1}\}$$

and

Fix
$$T = S^{2k}$$
.

Note that the involution \hat{T} obtained by switching the two disks extends T to an involution of all of K^{4k+1} .

Our proof of Theorem 1 is direct and constructive. First, following Milnor [6],

Received October 17, 1978. Revision received October 29, 1979.

This work was partially supported by NSF.

Michigan Math. J. 27 (1980).

we construct an explicit Morse function g for K^{4k+1} which has just two critical points (both non-degenerate with critical values +1 and -1). Next we define a differentiable involution $\hat{T}: K^{4k+1} \to K^{4k+1}$ with the property $g(\hat{T}z) = -g(z)$. The proof of Theorem 1 is then completed by the following argument.

By Morse theory [5], $g^{-1}([0,\infty))$ and $g^{-1}((-\infty,0])$ are two (4k+1)-disks glued along their common boundary, the standard sphere $g^{-1}(0)$. Also, \widehat{T} produces an explicit identification between the "upper" disk $D^{4k+1} \stackrel{\checkmark}{\to} g^{-1}([0,\infty))$ and the "lower" disk $D^{4k+1} \stackrel{\checkmark}{\to} g^{-1}([0,\infty)) \stackrel{\widehat{T}}{\to} g^{-1}((-\infty,0])$. Using these identifications, K^{4k+1} is given by

(2)
$$K^{4k+1} \cong \{D^{4k+1} \coprod D^{4k+1} / x \sim \ell^{-1} \circ \hat{T} \circ \ell(x) \text{ for } x \in \partial D^{4k+1} \}.$$

where the map $T = (\mathscr{N}^{-1} \circ \widehat{T} \circ \mathscr{N}) : \partial D^{4k+1} \to \partial D^{4k+1}$ is the desired involution.

In Section 2, we recall the definition of the Kervaire sphere K^{4k+1} in terms of plumbing together two copies of the unit disk bundle $D(TS^{2k+1})$ of the tangent bundle TS^{2k+1} of the (2k+1)-sphere. Next we show that K^{4k+1} is an example of the more general class of the differentiable manifolds $M(f_1, f_2)$ considered by Milnor in his paper "Differentiable Structures on Spheres" [6]. (See Section 3).

Our basic observation (Section 3) is that we may first, (following Milnor [6]), construct a Morse function $g: M(f_1, f_2) \to \mathbf{R}$ with just two critical points for $M(f_1, f_2)$ and then construct an involution $\hat{T}: M(f_1, f_2) \to M(f_1, f_2)$ with $g(\hat{T}z) = -g(z)$ if minor restrictions are placed on the differentiable maps of spheres into rotation groups

(3)
$$f_1: S^m \to SO(r+1), \quad f_2: S^r \to SO(m+1)$$

used to define $M(f_1, f_2)$.

The following theorem explains precisely what restrictions must be placed on the maps f_1 and f_2 to insure $M(f_1, f_2)$ is a homotopy sphere which admits the desired involution.

THEOREM 2. If the differentiable maps

$$f_1: S^m \to SO(n+1), \quad f_2: S^n \to SO(m+1)$$

have the properties

- 1) f_1 factors through SO(n),
- 2) $f_2(-y) = f_2(y)$ for $y \in S^n$,

then there is a Morse function $g: M(f_1, f_2) \to \mathbf{R}$ for $M(f_1, f_2)$ with just two critical points and an involution $\widehat{T}: M(f_1, f_2) \to M(f_1, f_2)$ with fixed points an m-sphere S^m such that $g(\widehat{T}z) = -g(z)$. In particular, $M(f_1, f_2)$ is a homotopy sphere which is obtained from two (m + n + 1)-disks by gluing their boundaries together via an involution T with fixed points an m-sphere S^m .

We use theorem 2 to prove theorem 1.

SECTION 2

The standard model for the Kervaire sphere K^{4k+1} is given by the boundary of the plumbing of two copies of the unit disk bundle $D(TS^{2k+1})$ of the tangent bundle of the (2k+1)-sphere S^{2k+1} [4].

In terms of the characteristic map $\phi: S^{2k} \to SO(2k+1)$ of the tangent bundle TS^{2k+1} , the unit disk bundle $D(TS^{2k+1})$ is

(4)
$$D(TS^{2k+1}) = \left\{ (D^{2k+1} \times D^{2k+1})_A \coprod (D^{2k+1} \times D^{2k+1})_B \right\}$$

$$\text{with } (x,y)_A \sim (x,\phi(x)y)_B$$

$$\text{for } (x,y) \in \partial D^{2n+1} \times D^{2n+1}$$

$$S^{2k+1} = \{ (D^{2k+1})_A \coprod (D^{2k+1})_B / x_A \sim x_B \text{ for } x \in \partial D^{2k+1} \}$$

where $\pi((x,y)) = x$.

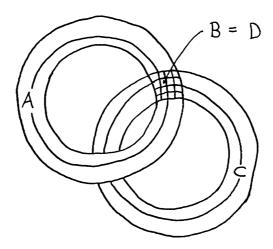


Figure 1.

We may plumb two copies of the unit disk bundle $D(TS^{2k+1})_1$, $D(TS^{2k+1})_2$.

(5)
$$D(TS^{2k+1})_1 = \{ (D^{2k+1} \times D^{2k+1})_A \coprod (D^{2k+1} \times D^{2k+1})_B / \sim \}$$
$$D(TS^{2k+1})_2 = \{ (D^{2k+1} \times D^{2k+1})_C \coprod (D^{2k+1} \times D^{2k+1})_D / \sim \}$$

by matching $(D^{2k+1} \times D^{2k+1})_B$ with $(D^{2k+1} \times D^{2k+1})_D$ by $(x,y)_B \sim (y,x)_D$ ("switching base and fibers"). It will be convenient to use two possibly different (but of course homotopic) characteristic maps ϕ_1 , ϕ_2 in these two disk bundles $D(TS^{2k+1})_1$, $D(TS^{2k+1})_2$.

The Kervaire sphere K^{4k+1} is the boundary of the resulting manifold W^{4k+2} . Note that for $(x,y) \in S^{2k} \times S^{2k}$, the points $(x,y)_A$, $(x,\varphi_1(x)y)_B$, $(\varphi_1(x)y,\varphi_2(\varphi_1(x)y)^{-1}x)_C$ are all identified in W^{4k+2} . Hence, the Kervaire sphere K^{4k+1} has the representation

(6)
$$K^{4k+1} \cong \left\{ (D^{2k+1} \times S^{2k})_A \coprod (D^{2k+1} \times S^{2k})_C \\ \text{with } (x,y)_A \sim (\phi_1(x)y, \phi_2(\phi_1(x)y)^{-1}x)_C \\ \text{for } (x,y) \in S^{2k} \times S^{2k} \right\}$$

It is also convenient (see next section) to write the last factor as $S^{2k} \times D^{2k+1}$ instead of $D^{2k+1} \times S^{2k}$; that is,

(7)
$$K^{4k+1} \cong \begin{cases} (D^{2k+1} \times S^{2k})_A \coprod (S^{2k} \times D^{2k+1})_E \\ \text{with } (x,y)_A \sim (\phi_2(\phi_1(x)y)^{-1}x,\phi_1(x)y)_E \\ \text{for } (x,y) \in S^{2k} \times S^{2k} \end{cases}$$

where $\phi_1, \phi_2: S^{2k} \to SO(2k+1)$ are any two characteristic maps for the unit disk bundle $D(TS^{2k+1})$.

LEMMA 1. We may choose ϕ_1 , ϕ_2 such that

- 1) ϕ_1 factors through SO(2k), $S^{2k} \to SO(2k) \to SO(2k+1)$
- 2) ϕ_2 satisfies $\phi_2(-y) = \phi_2(y)$.

Proof. (1) The (2k+1)-sphere has a nonvanishing vector field $(\chi(S^{2k+1})=0)$. That is, the structure group SO(2k+1) of TS^{2k+1} may be reduced to $SO(2k) \subset SO(2k+1)$. Equivalently, the characteristic map of TS^{2k+1} factors through SO(2k).

(2) The standard form for the characteristic map of the tangent bundle TS^{2k+1} [8, page 120] is $\phi_2(x) = \alpha(x)$ for $x \in S^{2k+1}$ where $\alpha(x)$ is the reflection through the hyperplane perpendicular to the line spanned by x in \mathbb{R}^{2k+1} . For this choice of characteristic map, clearly $\phi_2(-x) = \phi_2(x)$.

SECTION 3

Given smooth maps $f_1: S^m \to SO(n+1)$, $f_2: S^n \to SO(m+1)$ Milnor [6] defines a smooth manifold $M(f_1, f_2)$ by matching the boundaries of $D^{m+1} \times S^n$ and $S^m \times D^{n+1}$ via the identification

(8)
$$f: \partial D^{m+1} \times S^n \to S^m \times \partial D^{n+1}$$
$$f(x,y) = (x',y') \quad \text{for} \quad x \in S^m, y \in S^n$$

where

(9)
$$y' = f_1(x) \cdot y, \quad x' = f_2(y')^{-1}x = f_2(f_1(x) \cdot y)^{-1} \cdot x$$

This identification f has the inverse

(10)
$$x = f_2(y') \cdot x', \quad y = f_1(x)^{-1} \cdot y' = f_1(f_2(y') \cdot x')^{-1} \cdot y'.$$

Thus

(11)
$$M(f_{1}, f_{2}) = \begin{cases} (D^{m+1} \times S^{n})_{1} \coprod (S^{m} \times D^{n+1})_{2} & \text{with} \\ (x, y)_{1} \sim (x', y')_{2} = (f_{2}(f_{1}(x) \cdot y)^{-1}x, f_{1}(x)y)_{2} \\ \text{for} \quad (x, y) \in S^{m} \times S^{n} \end{cases}$$

If $f_1: S^m \to SO(n+1)$ factors as $S^m \to SO(n) \to SO(n+1)$, then Milnor defines a Morse function $g: M(f_1, f_2) \to [-1, +1]$ with just two critical points (both nondegenerate) by

(12)
$$\begin{cases} (tx, y)_1 \to h(y)/(1 + t^2)^{1/2} \text{ (in first coordinate system)} \\ (x', t'y')_2 \to t'h(y')/(1 + (t')^2)^{1/2} \text{ (in the second)} \end{cases}$$

where $h(\vec{y}) = y_n$ if $\vec{y} \in S^n$ has coordinates $(y_0, y_1, ..., y_n)$. (Here $(x, y) \in S^{2n} \times S^{2n}$ and $0 \le t \le 1$, $(x', y') \in S^{2n} \times S^{2n}$ and $0 \le t' \le 1$).

If $f_2: S^n \to SO(m+1)$ satisfies $f_2(-y) = f_2(y)$ for $y \in S^n$, then we may define a differentiable involution

$$\widehat{T}: M(f_1, f_2) \rightarrow M(f_1, f_2)$$

by

(13)
$$\hat{T}[(tx,y)_1] = (tx,-y)_1$$
 (in the first coordinate system)
$$\hat{T}[(x',t'y')_2] = (x',-t'y')_2$$
 (in the second).

(For $(x,y) \in S^m \times S^n$ and $0 \le t \le 1$ and $(x',y') \in S^m \times S^n$ and $0 \le t \le 1$). \hat{T} is compatible with the identification of $(\partial D^{m+1} \times S^n)_1$ and $(S^m \times \partial D^{n+1})_2$ since for $(x,y) \in S^m \times S^n$

$$(x,y)_{1} \rightarrow (x',y')_{2} = (f_{2}(f_{1}(x) \cdot y)^{-1}x, f_{1}(x) \cdot y)_{2}$$

$$\downarrow \hat{T}$$

$$(f_{2}(f_{1}(x) \cdot y)^{-1}x, -f_{1}(x)y)_{2}$$

$$\parallel$$

$$(x,-y)_{1} \rightarrow (f_{2}(f_{1}(x) \cdot [-y])^{-1}x, f_{1}(x)[-y])_{2}$$

The asserted equality arises since

$$f_1(x)[-y] = -f_1(x) \cdot y$$

(as $f_1(x)$ is linear) and

$$f_2(f_1(x)[-y])^{-1} \cdot x = f_2(-f_1(x) \cdot y)^{-1} \cdot x = f_2(f_1(x) \cdot y)^{-1}x$$

(since $f_2(-\alpha) = f_2(\alpha)$ by assumption).

Since $h((y_0,...,y_n)) = y_n$, it is clear that

(15)
$$g(\widehat{T}[(tx,y)_1]) = g[(tx,-y)_1] = \frac{-h(y)}{(1+t)^2)^{1/2}} = g[(tx,y)_1]$$

(in the first coordinate system)

$$(15) \quad g(\hat{T}[(x',t'y')_2]) = g[(x',-t'y')_2] = \frac{-t'h(y')}{(1+(t')^2)^{1/2}} = -g[(x',t'y')_2]$$

(in the second coordinate system).

Hence, if f_1 factors $S^m \to SO(n) \subset SO(n+1)$ and if $f_2: S^n \to SO(m+1)$ satisfies $f_2(-y) = f_2(y)$, then

- 1) g is a Morse function on $M(f_1, f_2)$ with just two critical points (both nondegenerate) and with critical values ± 1),
 - 2) \hat{T} is a differentiable involution with fixed point set $S^m = \{(x',0)_2 | x' \in S^m\}$
 - 3) $g(\hat{T}z) = -g(z)$ for z in $M(f_1, f_2)$.

This proves Theorem 2.

Proof of Theorem 1. Theorem 1 follows from Theorem 2 as Lemma 1 implies the Kervaire manifold K^{4k+1} may be exhibited as $K^{4k+1} \cong M(\phi_1, \phi_2)$ where $\phi_1: S^{2k} \to SO(2k+1)$ factors $S^{2k} \to SO(2k) \to SO(2k+1)$ and $\phi_2: S^{2k} \to SO(2k+1)$ satisfies $\phi_2(-y) = \phi_2(y)$ for $y \in S^{2k}$.

If we modify the second condition in theorem 2 slightly we obtain a free involution on $M(f_1, f_2)$.

THEOREM 3. If the differentiable maps

$$f_1: S^m \to SO(n+1), \quad f_2: S^n \to SO(m+1)$$

have the properties

- 1) f_1 factors through SO(n),
- 2) $f_2(-y) = -f_2(y)$ for $y \in S^n$,

then there is a Morse function $g: M(f_1, f_2) \to \mathbb{R}$ for $M(f_1, f_2)$ with just two critical points and a free involution $\hat{T}: M(f_1, f_2) \to M(f_1, f_2)$ such that $g(\hat{T}z) = -g(z)$. In particular, $M(f_1, f_2)$ is a homotopy sphere which is obtained from two (m + n + 1)-disks by gluing their boundaries together via a free involution T.

Theorem 3 is proved in precisely the same way as is theorem 2. We define a Morse function $g: M(f_1, f_2) \to \mathbb{R}$ by equation (12). We define a *free* involution $\widehat{T}: M(f_1, f_2) \to M(f_1, f_2)$ by

(16)
$$\hat{T}[(tx,y)_1] = (tx,-y)_1$$
 (in the first coordinate system)
$$\hat{T}[(x',t'y')_2] = (-x',-t'y')_2$$
 (in the second).

The compatibility of this involution \hat{T} with the identification of $(\partial D^{m+1} \times S^n)_1$

with $(S^m \times \partial D^{n+1})_2$ follows as in equation (14) except $f_2(-y) = -f_2(y)$ by assumption. The equality $g(\hat{T}z) = -g(z)$ is easily checked as in equation (15).

Theorem 3 may be used to recover results of Hirsch and Milnor [3] in dimensions 7 and 15. Let M^7 and M^{15} be generators for bP_8 and bP_{16} respectively.

THEOREM 1' [3]. There are smooth fixed point free involutions

$$T_7: \partial D^7 \to \partial D^7$$

and

$$T_{15}:\partial D^{15} \rightarrow \partial D^{15}$$

such that M^7 is diffeomorphic to the disjoint union of two copies of D^7 with their boundaries identified by T_7 and M^{15} is diffeomorphic to the disjoint union of two copies of D^{15} with their boundaries identified by T_{15} .

The result for M^7 actually appears in [3] while the result for M^{15} is implicit there.

To recover theorem 1' from theorem 3 one uses the techniques of [2] and [6] to show that in dimension 7, respectively 15, one may choose f_1 and f_2 to be characteristic maps of 4 plane bundles over S^4 , respectively of 8 plane bundles over S^8 , so that $M(f_1, f_2) = M^7$, respectively $M(f_1, f_2) = M^{15}$, where f_1 and f_2 satisfy the hypothesis of theorem 3.

The following observation of Hirsch and Milnor allows the construction of many other homotopy spheres by involutions.

THEOREM 4 [3]. Let M^{2n+1} and M_0^{2n+1} be homotopy spheres (n > 1) where M^{2n+1} can be decomposed as the union of two disks identified along their boundaries via a smooth fixed point free involution. Then the connected sum, $M^{2n+1} # 2(M_0^{2n+1})$, can also be so decomposed.

Theorems 1' and 4 imply that all 28 elements of bP_8 and all 8128 elements of bP_{16} may be decomposed as in theorem 1'.

REFERENCES

- 1. W. Browder, The Kervaire Invariant of Framed Manifolds and its Generalization. Ann. of Math. 90 (1969), 157-186.
- 2. J. Eells and N. Kuiper, An Invariant for Certain Smooth Manifolds. Ann. Mat. Pura Appl. (4) 60 (1962), 93-110.
- 3. M. W. Hirsch and J. Milnor, Some Curious Involutions of Spheres. Bull. Amer. Math. Soc. 70 (1964), 372-377.
- 4. M. A. Kervaire and J. Milnor, Groups of Homotopy Spheres: I. Ann. of Math. 77 (1963), 504-537.
- 5. J. Milnor, On Manifolds Homeomorphic to the 7-sphere. Ann. of Math. 64 (1956), 399-405.
- 6. —, Differentiable Structures on Spheres. Amer. J. Math. 81 (1959), 962-972.

- 7. J. Munkres, Obstructions to the Smoothings of Piecewise-differentiable Homeomorphisms. Ann. of Math. 72 (1960), 521-554.
- 8. N. Steenrod, *The Topology of Fiber Bundles*. Princeton University Press, Princeton, N.J., 1951.
- 9. R. Thom, Les Structures différentiables des boules et des sphères. Colloque Géom. Diff. Globale (Bruxelles, 1958), pp. 27-35. Centre Belge Rech. Math. Louvain, 1959.

Department of Mathematics
Harvard University
Cambridge, MASS 02138
and
Department of Mathematics
M.I.T.
Cambridge, MASS 02139
Current address for Edward Y. Miller:
Polytechnic Institute of New York
Brooklyn, NY 11201