THE CONSTRUCTION OF THE KERVAIRE SPHERE BY MEANS
OF AN INVOLUTION

Benjamin M. Mann and Edward Y. Miller

One of the most significant results in differential topology is Milnor’s discovery
of exotic smooth structures on the standard PL sphere [5]. Much work has been
done to understand precisely how these exotic structures differ from the standard
structure. Every homotopy sphere, X", for n # 3, 4, may be obtained from two
n-disks by identifying their boundaries via a diffeomorphism of S"7* [7], [9].
For the standard sphere the diffeomorphism may be chosen to be quite simple,
namely, the antipodal map on the equator S”7*. In this paper we show how other
homotopy spheres may also be formed by quite simple diffeomorphisms, namely
smooth involutions.

Kervaire and Milnor, [4] considered homotopy spheres 2**~' which bound
parallelizable manifolds and showed that these homotopy spheres form a finite
cyclic group, called bP,,, under connected sum. Hirsch and Milnor [3], have shown
in dimension 7 that the Milnor exotic sphere M, the generator of bP,, admits
a fixed point free involution that has an invariant codimension one standard S°.
This free involution is defined as the antipodal map in the fibers where M} is
exhibited as a 3-sphere bundle over the 4-sphere. Hence, as Hirsch and Milnor
noted, M], like S”, may be realized by identifying two copies of D? by a fixed
point free involution on their boundary.

Our main result shows that the Kervaire sphere, K****, the generator of bP,, . ,,
may also be obtained by gluing two disks via a smooth involution. Unlike the
Hirsch-Milnor example we must allow the involution to have a set of fixed points.

THEOREM 1. There exists a smooth involution T : dD**** — aD**** with fixed
point set, Fix T = S** such that the Kervaire sphere K***' is diffeomorphic to
the disjoint union of two copies of D**** with their boundaries identified by T.

That is
(1) K**' = (D*T'UD**'|x~Tx for x& aD**")
and

Fix T = §*.

Note that the involution 7' obtained by switching the two disks extends T'
to an involution of all of K***,

Our proof of Theorem 1 is direct and constructive. First, following Milnor [6],
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we construct an explicit Morse function g for K**** which has just two critical
points (both non-degenerate with critical values +1 and —1). Next we define a
differentiable involution 7': K***' — K**! with the property g(T%) = —g(z).
The proof of Theorem 1 is then completed by the following argument.

By Morse theory [5], g *([0,)) and g ' ((—,0]) are two (4% + 1)-disks glued
along their common boundary, the standard sphere g '(0). Also, T produces an
explicit identification between the “upper” disk D****-5 g~'([0,:0)) and the “lower”
disk D*+1 5 g1 ([0,9)) N £ ' ((—,0]). Using these identifications, K***! is given
by

(2) K4k+1 = {D4k+lu D4k+1/x~/—lo TO/(x) fOI‘ x€E aD4k+1}.

where the map T = (/' o To /) : aD* ' = aD**! is the desired involution.

In Section 2, we recall the definition of the Kervaire sphere K***' in terms
of plumbing together two copies of the unit disk bundle D(T'S***") of the tangent
bundle TS*** of the (22 + 1)-sphere. Next we show that K***' is an example
of the more general class of the differentiable manifolds M(f,, f,) considered by
Milnor in his paper “Differentiable Structures on Spheres” [6]. (See Section 3).

Our basic observation (Section 3) is that we may first, (following Milnor [6]),
construct a Morse function g : M(f,,f,) — R with just two critical points for
M(f,,f,) and then construct an involution T : M(f,,f,) — M(f,,f,) with
g(T2) = —g(2) if minor restrictions are placed on the differentiable maps of spheres
into rotation groups

(3) f1:8"—> SO(r+ 1), [o:8"—> SO(m + 1)

used to define M (f,, f,).

The following theorem explains precisely what restrictions must be placed on
the maps f, and f, to insure M(f,,f,) is a homotopy sphere which admits the
desired involution.

THEOREM 2. If the differentiable maps
[,:87"—> SO(n + 1), [o:8"—> 8SO(m + 1)

have the properties
1) f, factors through SO (n),

2) fo(=y) = f,(y) fory € 8%,

then there is a Morse function g : M(f,, f,) = R for M(f,, f,) with just two critical
points and an involution T : M(f,,f,) = M(f.,f,) with fixed points an m-sphere
S™ such that g(Tz) = —g(2). In particular, M(f,,f,) is @ homotopy sphere which
is obtained from two (m + n + 1)-disks by gluing their boundaries together via
an involution T with fixed points an m-sphere S™.

We use theorem 2 to prove theorem 1.
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SECTION 2

The standard model for the Kervaire sphere K***! is given by the boundary
of the plumbing of two copies of the unit disk bundle D(TS**') of the tangent
bundle of the (2% + 1)-sphere S**** [4].

In terms of the characteristic map ¢ : S** — SO(2k + 1) of the tangent bundle
TS%*! the unit disk bundle D(TS*"*!) is
D(Ts2k+1) _— (D2k+1 X D2k+1)AH (D2k+1 X D2k+1)B
4) - with (x,¥), ~ (x,0 (x) ¥)p
for (x,y) € aD***' x D***!
S2k+1 — {(D2k+1)AH (DZk+1)B/xA — xB fOI‘ x E aD2k+1}

where w((x,y)) = «x.

Figure 1.

We may plumb two copies of the unit disk bundle D(T'S***'),, D(TS**"),.

D(T82k+1)1 — {(D2k+1 X D2k+l)AH (D2k+1 % D2k+1)B/~}

(5)

D(Ts2k+l)2 — {(D2k+l X D2k+1)CH (D2k+1 X D2k+1)D/~}
by matching (D***! x D**), with (D®**' x D**") by (x,) 5 ~ (¥,%) , (“switching
base and fibers”). It will be convenient to use two possibly different (but of course

homotopic) characteristic maps ¢,, ¢, in these two disk bundles D(TS***'),,
D(T 2k+1)2.

The Kervaire sphere K***' is the boundary of the resulting manifold W***2,
Note that for (r,y) € 8** x S*, the points (v,%),, *,d,(x)¥)5, @&y, x)p,
(b, (%) y, by (d, (x)y) ' x) are all identified in W***2, Hence, the Kervaire sphere
K**! has the representation
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K4k+1 ~ (D2k+1 X S2k) H (D2k+1 X SZk)
- A C
(6) with (£,5) 4 ~ (&, (%) y, b, @, () y) 7 %),
for (x,y) € S* x §*
It is also convenient (see next section) to write the last factor as S2* x D%*!
instead of D**' x S?; that is,
K4k+1 = (D2k+1 X S2k)AH (SZk X D2k+1)E

(7) with (x,5) 4 ~ (b, (b, (*) ¥) " %, (%) ¥) &
for (x,y) € S* x §%*

where ¢, ,d, : S* — SO (2% + 1) are any two characteristic maps for the unit disk
bundle D(TS***).

LEMMA 1. We may choose $,, &, such that
1) &, factors through SO(2k), S** — SO (2k) — SO 2k + 1)
2) &, satisfies dy(—y) = by (y).

~ Proof. (1) The (2k + 1)-sphere has a nonvanishing vector field (x (S****) = 0).

That is, the structure group SOk + 1) of TS**' may be reduced to
SO(2k) C SO(2k + 1). Equivalently, the characteristic map of TS***' factors
through SO (2k).

(2) The standard form for the characteristic map of the tangent bundle TS****
[8, page 120] is ¢,(x) = a(x) for x € 8***' where a(x) is the reflection through
the hyperplane perpendicular to the line spanned by x in R*". For this choice
of characteristic map, clearly ¢,(—x) = &, (x).

SECTION 3
Given smooth maps f,: 8" — SO + 1), fo:8"—> SO(m + 1) Milnor [6]
defines a smooth manifold M(f,,f,) by matching the boundaries of D™*! x S"

and S™ X D"*! via the identification

f:oD™"' x 8" S™ x aD™*!

(8) m n
flx,y)y=(',y") for x€ S8™,ye S

where

9) Y=H& 'y ¥ =L)Te=fE -y x

This identification f has the inverse

(10) x=L) %, y=fL&@T Y =f(L) )Ty

Thus
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M(f,,f.) = (D™ x8"),1(S™xD"""), with

(11) ()~ &',y )= (f2(fi(x) - y)—lx, f1(x)y),
for (x,y)€ S™"x 8"

Iff,: S™— SO(n + 1) factors as S™ — SO(n) -» SO(n + 1), then Milnor
defines a Morse function g : M(f,,f,) = [—1,+1] with just two critical points
(both nondegenerate) by

(12) {(tx,y)l—-» h(y)/(@ +t%)"? (in first coordinate system)

(x',t'y" )= t'h(y") /(1 + (¢')*)*’? (in the second)

\

where A (F) = y, if € S™ has coordinates (¥,,Y;,...,,). (Here (x,y) € S** x §*"
and0<t=<1, (x,y') €8x S™and 0 = ¢t’' < 1).

If £, : 8" > SO(m + 1) satisfies f,(—y) = f,(y) for y € S”, then we may
define a differentiable involution

T:M(fl,fz)—')M(flif2)
by

T [(tx,y),] = (tx,—¥), (in the first coordinate system)

(13) .

T, 'y )] =&, —t'y), (in the second).
(For (x,y) € S" X S"and 0 =t =1 and (x",y') € S" X §"and 0 = ¢ = 1).
T is compatible with the identification of (8D™*' x S”), and (S™ X aD"*'),
since for (x,y) € S™ X 8"

xy), - (5" ) = ([ (fi(®) - )%, f1(x) - ¥),
(14) T ((fi(®) - ) 2, —f,(0)y),
[
(x,=y), — (fo(fi(®) - [=yD 7 % fi(x) [-Y])2

The asserted equality arises since
) [=y] =—filx) - ¥
(as f, (x) is linear) and
LUAR@I=yDT  x=f-fi®) - y)7 - x=f(fi(®) - y)'x

(since f,(—a) = f,(a) by assumption).

Since A((y,, -.-,¥,)) = ¥,., it is clear that
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‘ —h(y)
15 Tlex, ) =glitx,—y),] =————— = 52N
(15) g(T[(tx,5),]) = g [(tx, —¥), 1] EWCYE g [(tx,5),]
(in the first coordinate system)
‘i Y] ! 7., _tlh(y,)
(15) g(T[",t'y" ). D =g[(x",—t"y"),] = =—g[(x",t'y"),]

(1 + (tl)2)1/2

(in the second coordinate system).

Hence, if f, factors S™ — SO(r) C SO(n + 1) and if f,: 8" - SO(m + 1)
satisfies f,(—y) = f,(y), then

1) g is a Morse function on M(f;,f,) with just two critical points (both
nondegenerate) and with critical values +1),

2) T'is a differentiable involution with fixed point set 8™ = {(x’,0), |x" € 8™}
3) g(Tz) = —g(2) for z in M(f,, f,).
This proves Theorem 2.

Proof of Theorem 1. Theorem 1 follows from Theorem 2 as Lemma 1 implies
the Kervaire manifold K***' may be exhibited as K***' = M(d,,$,) where
¢, : 8 — SO(2k + 1) factors S** — SO (2k) — SO 2k + 1) and &, : S** — SO (2% + 1)
satisfies ¢, (—y) = ¢,(y) for y € S,

If we modify the second condition in theorem 2 slightly we obtain a free involu-
tion on M(f,, f,).

THEOREM 3. If the differentiable maps
[1:8"—> SO(n + 1), [:8"—> SO(m + 1)

have the properties
1) f, factors through SO (n),

2) fo(=y) = —fo(y) fory € S*,

then there is a Morse function g : M(f,, f,) = R for M(f,, f,) with just two critical
points and a free involution T : M(f,,f,) — M(f,,f.) such that g(Tz) = —g(2).
In particular, M(f,,f,) is a homotopy sphere which is obtained from two
(m + n + 1)-disks by gluing their boundaries together via a free involution T.

Theorem 3 is proved in precisely the same way as is theorem 2. We define
a Morse function g : M(f,,f,) — R by equation (12). We define a free involution

TI M(flnfz) '_)M(f1’f2) by

T(tx,y),] = (tx,—y), (in the first coordinate system)

16
e Tty )] = (=%~ ), (in the second).

The compatibility of this involution 7" with the identification of (6D™"" X S"),




THE CONSTRUCTION OF THE KERVAIRE SPHERE 307

with (8™ x aD"*'), follows as in equation (14) except f,(—y) = —f,(y) by
assumption. The equality g(72) = —g(2) is easily checked as in equation (15).

Theorem 3 may be used to recover results of Hirsch and Milnor [3] in dimensions
7 and 15. Let M7 and M*® be generators for bP, and bP,, respectively.

THEOREM 1’ [3]. There are smooth fixed point free involutions
T,: D" — D’
and
T,;:0D"” — aD™

such that M7 is diffeomorphic to the disjoint union of two copies of D* with their
boundaries identified by T, and M"® is diffeomorphic to the disjoint union of two
copies of D'° with their boundaries identified by T,;.

The result for M7 actually appears in [3] while the result for M'® is implicit
there.

To recover theorem 1’ from theorem 3 one uses the techniques of [2] and
[6] to show that in dimension 7, respectively 15, one may choose f; and f, to
be characteristic maps of 4 plane bundles over S*, respectively of 8 plane bundles
over S° so that M(f,,f,) = M’, respectively M(f,,f,) = M, where f, and f,
satisfy the hypothesis of theorem 3.

The following observation of Hirsch and Milnor allows the construction of many
other homotopy spheres by involutions.

THEOREM 4 [3]. Let M***' and M3**"' be homotopy spheres (n > 1) where
M?**! can be decomposed as the union of two disks identified along their boundaries
via a smooth fixed point free involution. Then the connected sum, M>*** 4 2(M2**),

can also be so decomposed.

Theorems 1’ and 4 imply that all 28 elements of bP; and all 8128 elements
of bP,; may be decomposed as in theorem 1’.
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